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1. Introduction

1. In their fundamental paper of 1949, Higman, Neumann and Neumann
proved for the first time that a countable group can always be embedded in some
2-generator group: [1], Theorem IV. Two kinds of improvement of this result
have recently appeared. In [4], Theorem 2, Dark has shown that the embedding
can always be made subnormally. On the other hand, in [2], Theorem 2.1, Levin
has shown that the two generators can be given preassigned orders m > 1 and
n > 2; and in [3], Miller and Schupp prove that the 2-generator group can also
be made to satisfy several additional requirements, such as being complete and
Hopfian.

We make here two main contributions, Theorems A and C.
In the first, we adapt the methods of Dark to the direction taken by Levin;

and show that, if H and K are non-trivial groups not both of order 2, a group L
can always be embedded as a special kind of subnormal subgroup in some group
of the form J = <//, K}, subject only to the obviously necessary condition that
|L| ^ |/f * K\. The corresponding pure embedding theorem, in which no assertion
of subnormality is made, has already been obtained, at least for the case of coun-
table L, by Schupp [13], using the methods of 'small cancellation' theory. In §3.5,
we show how this result, like the theorem of Levin, may be derived in a quite dif-
ferent way from the original Theorem IV of [1].

In the central part of the paper, we consider the problem of embedding a
given group in some simple group with a finite number of preassigned subgroup-
generators. Given any four non-trivial groups KY,--,KA, we show that a group
L can always be embedded in some simple group of the form S = (Ku •••,KA}
provided only that the necessary condition |L| ^ \Kl * ••• *K4\ holds. We may
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even allow X 4 to be trivial, provided that at most one of KUK2, K3 is of order 2.
In particular, it follows that a countable group can always be embedded in some
3-generator simple group.

The group J of Theorem A is obtained as a subgroup of a complete wreath
product, and the group S of Theorem C as a quotient group of an amalgamated
free product. It is due in large part to the work of Hanna Neumann that the use-
fulness of these two constructions is now widely recognised.

The proof of Theorem A occupies §2; that of Theorem C takes §§3 and 4,
with some supplementary results in §5. In the final §6, following up a remark of
Hanna Neumann, we find necessary and sufficient conditions for a group G to be
embeddable as a transitive subgroup in the wreath product of a given set of
transitive permutation groups rlt-",rr.

We shall now explain these results in closer detail, so as to place them in the
context of their proofs, with the special aim of introducing certain notations of
frequent occurrence. The most important of these are : the subnormality relation
<a2, the vector groups £l(L,A), the numerical invariant l(K), the characteristic
subgroup fi(G) and the notion of a hololophic subgroup.

2. Let H and K be subgroups of the group G. As usual,

HK, CG(H) and NG(H)

denote respectively the normal closure of if in J = </J, K}, and the centralizer
and normalizer of H in G. We define the relation

(1) H<i2G

to mean that the following two conditions hold: (i) H ° is the direct product of all
the conjugates of H in G; and (ii) NG(H) = HCG{H) i.e. the only automorphisms
of H which can arise by transforming it with an element of G are the inner ones.

Obviously, # < i 2 £7 implies H<i HGand hence H<i2 G. Thus «a2 is a special
case of the relation <]2 of 2-step subnormality. In this respect «=a2 resembles the
normality relation -=a; but -=a2, unlike <a, is transitive, indeed transfinitely so: cf.
Lemma 1.3, §2.1.

We can now state

THEOREM A. Let H, K and L be any groups such that

(2) |fl| >2, \K\>1 and

(3) | L | g K . = max(K0,|H|,|K|).

Then there always exist groups of the form J = <H, K} such that

(4) L < i 2 J

and such that J is soluble ifH, K and L are soluble.
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Of course, Ka = \H*K\.
It is easy to see that we could not replace o 2 by <i in this theorem without

imposing further conditions on H, K and L. For example, a 'small' but non-
Abelian group L cannot be normally embedded in any group which is generated
by 'large' simple groups Si,S2,---; for L<a <S1,S2,---> would imply that at least
one St can be embedded in the group of automorphisms of L. However, suitable
direct powers of L can always be normally embedded, as stated in

COROLLARY 1. Let H, K and Lbe any groups satisfying (2) and (3), and let D
be the direct product of Ka copies ofL. Then D can always be normally embedded
in some group of the form J = <ff, K").

PROOF. We may suppose L # 1. Then \D\ = Ka and we may take D in place
of L in Theorem A. Hence D<i2 J for some J = <//, K}; and \j\ = Na. Thus D
has at most Ka conjugates in J; and DJ is their direct product by definition of
<i2. It follows that D ^ DJ < J , which is the result required.

3. For any group L and any non-empty set A, we write

(5) Q = Q.(L,A)

for the multiplicative group of all vectors v — (va)a€A with arbitrary coordinates
va e L. Given a representation of any group F by permuations of A, the semidirect
product W = CiT with the transformation law

(6)

is the complete wreath product of L by F with respect to the given representation.
We shall assume throughout that this representation is transitive.

Given be A, the vectors veil such that vb = 1 form a group Mb\ and those
such that va = 1 for all a # b form a copy Lb of L. Let Tb be the stabilizer of b in
F. From the definition of Q, (6) and the transitivity of F, we then have

(7) fi = Lb x M^y-'L.y = Lby,(Lb)
w = Dr La and [L»,r4] = 1.

a eA
Here Dr indicates the direct product. It follows that, for all be A,

(8) Nw{Lb) = iirb = LbCw(Lb) and Lb^2W.

When F is the symmetric group of all permutations of a countably infinite
set A, Dark showed in [4], Theorem 1, that the group W is always perfect; and
thereby that any group L can be embedded as a <i2-subgroup in some perfect
group. When, as in this case, F is stated to be a permutation group, the intended
representation is clear; and we may write without ambiguity

(9) W = Wr(L,F); with R = LlT
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for the corresponding restricted wreath product, referring to W and R as natural
wreath products. The base group D of R consists of all vectors in il which have
finite support. Thus R ^ W, with equality when the support A of F is finite.

When no representation of F is implied by the context, W and R in (9) are
always to be interpreted as the standard wreath products, formed from the regular
representation of T, so that A = T in this case. Throughout §§2 to 5 only standard
wreath products occur except for the unconventional kind used in §4.4-4.7 and
referred to in §1.7 below; but in §6 natural ones predominate.

For standard wreath products, we adopt the usual convention which iden-
tifies each x e l with the corresponding vector of Lt, so that x = xt and xy = 1
for all y # 1 in T. This convention makes L = Lr a subgroup of W, D = Lr and
R = <L, F>. It is easy to see that the standard R is defined to within isomorphism
by the conditions

R = <L, r ) ,L< 2 J?andrn iV 8 (L) = 1.

Repeated standard wreath products are defined inductively by

.rv-.r,) = wi<wi(L,r1,-Jrr_1),rr).
The group J of theorem A is constructed as a subgroup of a repeated wreath
product of this kind.

4. A further deduction from Theorem A leads to our major topic of embed-
ding in simple groups. This is

COROLLARY 2. Let K and L be any groups such that

(11) K # 1 and\L\ ^ \K*K\.

Then L can always be embedded in some simple group P which is generated by
Ko copies of K.

PROOF. If K is finite, it may be replaced by its free square K*K, which is in-
finite since K ^ 1. Hence we may suppose that \K\ = Ka. We take

00

P = U P m , where Po < P^ < P2 < •••
m = 0

and the groups Pm, all of order Ka, are to be chosen successively as follows.
Let P0 = K x L x / l x £ > , where A is the alternating group of degree and

order Ko and D = <f1; t2} is the infinite dihedral group generated by two involu-
tions ft and t2. By (11), \P0\ = Ka; and Po contains elements of all possible orders:
for each finite m > 0, A contains an element am of order m; and the element a x = 1112

of D is of infinite order.
We secure the simplicity of P by the choice of PuP3, P5, •••. Suppose P2n to

be chosen and of order Xa. In its regular representation P2n, each x e P2n is re-
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presented by a permutation x* consisting of Ka cycles of order m, where m is the
order of x (whether finite or oo); and so we may choose for each x a permutation
f such that £~lx*l; = a*. The group P2n+i = (x*,£;xeP2n) is then of order
Ka; and if we identify P2n with P*n, it will follow that any two elements of the
same order in P2n are conjugate in P2n+1. This rule ensures that in P any two
elements of the same order will be conjugate.

Now let 1 ^ M«a P. We show that M — P by showing that ameM for all m.
Since M ^ 1, we must have ameM for some m > 1. If ax e M, then M contains
all elements of infinite order in P ; in particular, anax e M for all finite n, and the
required result follows at once. On the other hand, if am e M for some finite m > 1,
then A C\M ^'\. Since A is simple, M must contain A. Hence M contains every
periodic element in P, in particular ft and t2. Hence txt2 = axeM and again the
result follows. Thus P is simple.

We secure that P is generated by Ko copies of K by the choice of P2,P4, •••.
Suppose P 2 n - 1 t o be chosen and of order Xa. By Theorem A, P2n_ x may be embed-
ded in a group P2n which is generated by two copies K2n_t and K2n of K. Hence
P = (Km; m = 1,2, •••>. This concludes the proof of Corollary 2.

In this proof only the 'pure embedding' form of Theorem A is needed; sub-
normality is irrelevant. As remarked above, this weaker form of the theorem is
easily deduced, in the countable case, from Theorem IV of [l].Unfortunately, it is
precisely when a = 0 that the 'even' steps of the above proof are unnecessary.
For any a, omission of these steps gives an elementary proof of a well known fact:
a group of order Ka can always be embedded in some simple group of order K,.

It is not easy to give a secure attribution of this result. It is implicit in the
theorem of Neumann's Essay, [5], 239, that every group can be embedded in a
larger group in which any two elements of the same order are conjugates. It is also
an easy consequence of the work of Onofri [6], Schreier andUlam [7], and Baer
[8] on the structure of the infinite symmetric groups. These authors showed that,
if S is the group of all permutations of a set L of Ka elements and if So is the sub-
group of all permutations whose support is of cardinal less than Ka, then the group
T = S/So is simple. When L is a group, the regular representation of L provides
an embedding of L in the simple group T; and it follows easily that there are
simple subgroups of order Ka in T which contain copies of L.

Corollary 2 suggests the following definition. Given any group K / 1, let
l(K) be the least cardinal number such that a group L satisfying (11) can always
be embedded in some simple group which is generated by l(K) copies of K. For
completeness, we define /(I) = 1. Then Corollary 2 states that

(12) l(K) ^ Ko for all K.

The decisive step in the proof of Theorem C is to show that l(K) is always finite.
For this step we use the 'well-known fact' just mentioned, but not Corollary 2.
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5. To prove the finiteness of l(K) two things are needed: a theorem, Bu on
embedding in monolithic groups; and a construction, first used by Graham
Higman, involving free products with amalgamations. We consider these in turn.

For any group G, let

(13) n(G) = n ( M ; l # M<iG)

be the intersection of all the non-trivial normal subgroups of G. We note that G is
monolithic if and only if fi(G) # 1; and simple if and only if G = n(G) # 1. (This
definition of 'monolithic' is formally stricter than that given by Hanna Neumann
in her book [9] 146-7, where it is merely required that G shall have a unique
minimal normal subgroup; but for the finite groups being considered there, the
two definitions are equivalent. In dealing with infinite groups, the stricter defini-
tion seems essential: cf. [20], 597).

We can now state

THEOREM Bl. Let H, K and L be any groups satisfying (2) and (3). Then
there always exist groups of the form J = <//, Ky such that

(14) L ^ n(J)

This is formally similar to Theorem A and easily deduced from it. However,
we shall give an indedpendent proof. In view of the 'well known fact' mentioned
in the preceding section, it may be assumed that L = P is a perfect simple group.

A second theorem on embedding in monolithic groups, more precise than
Theorem Bl but of slightly narrower scope, is

THEOREM B2. Let H, K and L be any groups satisfying (11) and

(15) l(K) < \H\.

Then there exists a perfect simple group P and an embedding of K in the base
group P" of R = P I H such that

(16) L g P andR = <//,/C>.

It is easy to see that R is monolithic: for all H, we have

(17) n(P l H) = PH if P = P' = fi(P) ± 1.

Monolithic groups of this special form we shall refer to as groups of RP-type.
The proof that l(K) < Ko requires Theorem Bl, but only for the case of in-

finite H. Once this is established, Theorem B2 becomes an easy corollary. To ob-
tain reaslitic bounds for l(K), we require Theorem B2, but only for the case of
finite H. (When H is infinite, condition (15) is vacuous). Thus both theorems are
essential, but in different ways.
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6. A subgroup H of the group G will be called hololophic in G (from
a crest) if and only if H n M = 1 for every proper normal subgroup Af of G; or
equivalently, if

(18) <x°> = G for all x * 1 in H.

For example, if G is either soluble or periodic, it will have a non-trivial hololophic
subgroup if and only if it is generated by a class of conjugate elements of prime
order.

The existence of infinite but finitely generated simple groups was first proved
by Higman [10] by showing that, in the group G = <a, b, c, d} defined by the re-
lations a~lba = b2,b~1cb = c2,c~idc = d2 and d~1ad = a2, the infinite cyclic
groups generated by a, b, c and d are hololophic, for arithmetical reasons. The
bearing of this notion on the problem of embedding in simple groups will be clear
from this example. If H is a non-trivial hololophic subgroup of G, then by Zorn's
Lemma G has a maximal proper normal subgroup N; and the simple group G/N
contains copies of every hololophic subgroup of G. Any group which can be em-
bedded in one of these can therefore be embedded in G/N.

For our purpose, the most useful examples are the groups of the form

(19) G = <JX,••-,/„>, where J, = (/, n ^ l . 1 ) / ' (i = 1, - , n )

and the suffix i is to be taken modulo n. It is easy to see that the subgroups Jt are
all hololophic in G. Consequently any group L which can be embedded in one of
them can also be embedded in a simple quotient group of G having the form S
= <Jt,-,Jny.

The method of free products with amalgamations, applied to any four groups
Ji>'">J* giy e s " s e t o groups G = </i,---,./4> with four disjoint amalgamated
subgroups

(20) ff. = Hi+l = JinJiJ,i where #,- O # , = 1 (i mod 4).

The Higman group is an example. We call these quadrilateral groups. When the
four 'corners' Hi of the quadrilateral are trivial, G reduces to the ordinary free
product of its four 'sides' •/,-. On the other hand, if

(21) 1 # # , - ^ KJ.) and/f = HJ' (i = 1, - , 4 ) ,

then (19) holds with n = 4. This construction gives an easy proof of the finiteness
of l(K) if we take for the Jt suitable monolithic groups provided by Theorem Bl.

If the group H in Theorem B2 is finite, then the base group P" of R = P\H
contains a copy .PofP such that [H,F] = 1. Pis the group of all constant vectors.
This fact makes it possible to form bilateral groups G = </ i , / 2 > w i t n sides Jx

and J2 of J?P-type, such that (19) holds for n = 2. Here G is the free product of
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Jx and 32 with a single amalgamated subgroup having the form of a direct product
H^ x Hi = H2 x H2, such that J, = / / / ' and Ht ^ /i(J,) for i = 1,2.

Using this bilateral construction, we obtain the first part of our second main
theorem, viz.

THEOREM Cl. Let Ku • -,X4 and L be any non-trivial groups such that

(22) \L\^\Ki*-*KA\.

Then L can always be embedded in some simple group of the form

(23) S = (Ku-,Kt).

It follows at once that
(24) 1{K) ^ 4 for all K.

7. The same construction, based on Theorem B2 for finite H, also yields em-
beddings in simple groups with only three given subgroup generators. But to ob-
tain a result comparable in generality with Theorem Cl we need a substitute, when
H is infinite, for the restricted wreath product R = P I H, which then no longer
lends itself to the bilateral construction. We find this by tapping a higher stratum
of Cl = il(P,H) than that occupied by the base group of R. However, we only
need to discuss the case where H is cyclic, and prove

THEOREM B3. Let H be an infinite cyclic group and let K and L be any
groups sarisfying (11). Then there exists a perfect simple group P and a semi-
direct product J2 = H(i(J2) such that

(25) L^P, fi(J2) = KH = P2 and[H,P2] = I,

where P2 and P2 are two copies of P contained in n(J2).
Note that J2 = <i/,K> and contains the subgroup H x P2.
J2 may be described as a Boolean wreath product of P by H and its base

group P2 as a Boolean power of P. For this notion, cf. [25] where other references
will also be found. The connection with the wreath products described above in
section 3 may be worth noting here.

Consider any groups P and H. Every transitive representation of H is equiva-
lent to one of the representations nH:A of degree \H : A\, where A is some subgroup
of H. This is the representation defined by

(26) (Ax)nH:A(y) = Axy (x, y e H).

The non-standard wreath products — complete and restricted — of P by H with
respect to nH:A occur naturally as subgroups of the complete standard product
W, viz. as the semidirect products

(27) WA = QAH and RA = DAH,
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where ClA is the group of all vectors veQ, which are constant on each coset of A,
and DA consists of all veQA which are trivial except on a finite number of these
cosets. For any subset B of H, let PB be the group of all vectors in Q which are
constant on B and trivial elsewhere. Then PB is a copy of P, and the transforma-
tion law in W shows that

(28) t i ^

and so, if X is any transversal to A in H, we have

(29) DA = Dr PAi = (PA)H and RA = <PA,H}.

Now suppose that P is a perfect simple group. For any subsets B and C of H
we then have

(30) [ P , , P c ] = PBnC and PBuC ^ (PB> Pc).

If |H : v4| is finite, then RA contains the group P = PH of all constant vectors in
Q; but when H is infinite, RA is not monolithic, 'since it has the non-trivial normal
subgroup

(31) KH(A) = D A",

which is disjoint from DA.

However, suppose that A is not a subgroup, but is still of finite index in H in
the sense that

(32) // = ^u^2u-u^,

for some finite set of elements £,, •••, £,„ in H. The group RA = (PA, H} will never-
theless still contain P, by (28) and (30); but its base group DA = (PA)H is no longer a
direct power of P, but a 'Boolean power', associated with the H-invariant Boolean
algebra S&A generated by the translates Ar\{r\ e H). As a Boolean algebra with oper-
ators, S8A is in general no longer simple, as it is when A is a subgroup. Its H-in-
variant ideals correspond one-to-one to the normal subgroups of RA which are
contained in DA.

The group J2 of Theorem B3 has the form RJN, where N is the subgroup of
DA which corresponds to a maximal .H-invariant ideal of 93X- To ensure that fi(J2)
= DJN, the subset A of the infinite cyclic group H has to be carefully chosen: it
may be described as a 'dislocated' subgroup of finite index.

We shall refer to monolithic groups J2 of this kind as of ''SP-type.

8. The second part of Theorem C is

THEOREM C2. Let Kl,K1,K3 and L be non-trivial groups such that

(33) \L\ g \K1*K2*K3\
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Then L can always be embedded in some simple group of the form

(34) S = <KUK2,K3X

except possibly when the Kt are all of order 2, or when two of them are of order
2 and the third is uncountable.

This theorem clearly implies the greater part of Theorem Cl, but its proof is
more difficult. The proof of Theorem Cl depends only on the ' // finite' case of
Theorem B2 for which an elementary 'free product' proof is available, and for
this reason we have treated it separately. The groups S in (34), like those in (23),
are obtained as bilateral quotient groups; but one of the two sides of the bilateral
may have to be of 23P-type, or possibly^- when two of the Kt are small — a finite
simple group.

From Theorem C2 it follows at once that

(35) l(K) g 3 if |X| # 2.

No very obvious reasons appear to forbid the conjecture that in fact

(36) l(K) = 2 if |A-| > 2, and l(K) = 3 if \K\ = 2.

More generally, it should be possible to strengthen Theorem Bl so that the
conclusion (14) reads L ^ n(J) = J, thus obtaining a theorem on embedding in
simple groups of exactly the same scope as Theorem A. But our methods seem in-
capable of yielding such a result. Given groups H and K which satisfy (2), we
cannot even prove the existence of a single simple group of the form S = <//, K}
except in special cases. Accordingly, we confine attention in § 5 to the case where
H and K are both finite.

Elementary calculations then show that the alternating group of degree q is
of the form <//, X> for infinitely many values of q: cf. Theorem D l ; and it follows
that a finite group L can always be embedded in some finite simple group of this
form. But the interesting question remains: for which finite pairs H, K can any
countable L always be embedded in some simple <H,/C>? When H is itself a
simple group of composite order, we obtain a positive answer for all finite K ^ 1;
in particular, l(H) = 2 for all such H: cf. Theorem D3, §5.6 We also show that
l(J) = 2 for a wide class of finite monolithic groups J: cf. the corollary to Theorem
D2, §5.5 But the fragmentary nature of these results is clear.

9. Finally, in §6, we take up an observation of Hanna Neumann: [9], 46, footnote,
to the effect that the well known theorem of Kaloujnine and Krasner [23], on the
embedding of group-extensions in standard wreath products, is implicit in the
much earlier work of Frobenius on monomial groups. What is in question is the
connection between the method of induced representations and extension theory.
When expressed in qualitative terms, this method lends itself to iteration, and

https://doi.org/10.1017/S1446788700018073 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700018073


444 P. Hall [11]

leads to an abstract characterization of the transitive subgroups of the natural
complete wreath product

(37) W = W i ( r 1 , - > r r )

of any given transitive permutation groups F t , •••, Fr. If F, acts on the set Ah then
W may be regarded as a transitive group acting on the set A = A± x ••• x Ar\
and by a transitive subgroup of W, we mean one which is transitive on A.

When r = 2, W = fiF2, with fi = fi(ris,42); and may be regarded as the
group of all permutations n£ of At x A2, where nZ, is defined for all rjeQ and

(38) (b,c)r,C = (br]c,c0(beAl,ceA2).

Equivalently, W may be regarded as the group of all A2 x v42-monomial matrices
JJC» where the (c, c^-coefficient of rjC is given, for all c, c' in /12> by

(39) 07Oc,c = »fA { .c -0?e<Uer 2 ) .

Here <5cfiC, = 1 if c£ = c' and is zero otherwise. In this version, the elements of
F2 are identified with the corresponding permutation matrices, while those of Cl
become diagonal matrices.

To express the result of Frobenius in the required form without circumlocu-
tion, we use the following notation, in which Y and Z are transitive permutation
groups acting respectively on the sets B and C. Then

(40) (i) YxZ, and (ii) Y transZ

are to mean: (i) that Z is a transcription of Y, i.e. Z = (f>~iY(j> for some one-to-
one mapping <f> of B onto C; and (ii) that Y x Y*, where Y* is some subgroup of
Z which is transitive on C.

Now let G, H and J be groups such that J ^ H ^ G. We write

(41) n C : W = nG:H{G).

where the representation nG.H of G is defined as in (26). Thus nG : H is a transitive
permutation group acting on the cosets of H in G. As we shall show, the method
of induced representations leads to the formula

(42) UG:H trans Wr(nH:,, nG:W);

or equivalently:

(43) If TlH.j trans I \ and IIc. t f trans F2, then YlG:J trans Wr(F1,F2).

The theorem of Kaloujnine and Krasner is the particular case where J = 1 and
H<i G; for in this case, G ^ ITGjl, since nG:1 is the regular representation of G;
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and the wreath product in (42) is isomorphic with the standard wreath product
Wi(H,GIH), since fl<G.

We recall that the natural wreath multiplication of permutation groups defined
by (38) is an associative operation; cf. [15], 96; and so the inductive generaliza-
tion of (43) is immediate. When a converse is supplied as well, we obtain

THEOREM El. Let W be defined by (37). Then a group G can be embedded in
W as a transitive subgroup if and only if it has a chain of subgroups H = Ho

^ Hi ^ ••• ^ Hr = G such that

(44) KC(H) = 1 and IiH,.Hl_, trans F,( / = 1, • • •, r).

Here KG(H) is the kernel of the representation nG:H of G, and is defined as in
(31). It is sometimes called the normal core of H in G.

The most interesting special case of Theorem El occurs when the F( are all
regular as well as transitive: cf. Theorem E2. F; then has no proper transitive sub-
groups, and (44) implies that H,_ t -=a i/f and #,///;_ t = F, for each i. In this case,
W is called the regular wreath product of the groups F j , - - , r r , although as a
permutation group it is not regular except in trivial cases.

To conclude, we apply Frobenius' Theorem in its usual form to analyze the
connection between the relation <i 2 and wreath products: cf. (8) above and
Lemma 1.1 with Theorem E3 and Lemmas 23 and 24.

10. Some conventions of notation will be apparent from the foregoing sketch.
A group of the form <J1; J2 , •••> is any group which can be generated by one copy
each of JUJ2,--; and in passing from one such group to another, we only use
distinguishing labels when confusion might otherwise arise. For example, in §1.6
where S = G/N, we have written S = <J l 5 J 2 , - -> although S = (NJJN,
•••,NJJN} would be more strictly correct. But when a group contains several
copies K1,K2,K*, ••• of a given group K as subgroups, distinguishing marks are
essential. For any yeK,v/e then write yi,y2,y*,-" for the corresponding elements
of K1,K2>K*, •••on the tacit assumption that fixed isomorphisms of K onto each
of these groups have been chosen.

Commutators are defined by [x,y] = x~1x" = x~1y~1xy; and inductively,

for n > 2, by

[Xi,x2,---,xnj = [[*!, •••,xn_1],xnj.

The support of a vector v e il(L, A) is the set of all a e A such that va ^ 1; and the
support of a permutation 9 of A is the set of all a e A such that a6 # a. The sup-
port of a vector group or a permutation group K is the union of the supports of
its elements. For these supports, we frequently write Sup v, Sup 9 or Sup K.
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2. Proof of Theorem A

1. We begin by noting some elementary properties of the relation -o2. In the
following three lemmas L is a subgroup of the group G.

LEMMA 1.1. If L o 2 G , then L<i2J f°r every subgroup J of G which con-
tainsL. Conversely, if L*32(L,x1,--,xn} for every finite set of elements xu--,xn

in G, then L <s2G.

PROOF. The first part follows easily from the definition of < J 2 . If L«=a2 G, then
LG is the direct product of all the conjugates of L in G, and so LJ is the direct pro-
duct of all the conjugates of L in J. Secondly, NG(L) — LCG(L); and so, since

X1

Nj(L) = JK NG(L) = L(J O CC(L)) = LCj(L).

Thus L<i2J.

For the converse, note first that the join of any n distinct conjugates L
•••,LX" of L in G is their direct product, since L<i2(.L,xl,---,xny by hypothesis.
From this it follows that L° is the direct product of all the conjugates of L in G.
Secondly, let x e NC(L). By hypothesis, L <i2 <L,x>, and so x transforms L by an
inner automorphism. Hence NG(L) = LCG(L). Thus L <i2 G.

LEMMA 1.2. Let 1 # L g M-a 2 G and suppose that L* ^ Mfor some xeG.
Then M = Mx and Lx = U for some yeM.

PROOF. Since M<i2G, distinct conjugates of M in G are disjoint. But by
hypothesis, 1 # If ^ M O Mx. Hence M = Mx, and x transforms M by an inner
automorphism. Thus U — U for some yeM.

LEMMA 1.3. / / L < i 2 M and M<i 2G, then Lo2G. More generally, the rela-
tion <a2 is transfinitely transitive.

PROOF. The last statement means that, if L = Lo, G = L^ for some ordinal
p,Lx <i 2LA + , for all X < p, and L,, = (JAOI^A f° r au< hroit ordinals fi^ p, then
L <i2 G. This follows by transfinite induction from the first part of the lemma and
the converse part of Lemma 1.1.

In proving the first part, we may assume L T4 1. Since L<i2M, LM is the
direct product of the conjugates of L in M; and by Lemma 1.2, these are the only
conjugates of L in G which lie in M. Since M <a2 G, MG is the direct product of
the conjugates of M in G; and each of these conjugates has, like M itself, as a nor-
mal subgroup the direct product of those conjugates of L in G which it contains.
It follows that LG is the direct product of all the conjugates of L in G.

Secondly, NG(L) g NG(M) by Lemma 1.2; and NG(M) = MCG{M) since
M^2G. Since CG(M) g CG(L), this gives NG(L) = NM(L)CG(L). But NM(L)
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= LCU{L) since L*a2 M. Hence NG(L) = LCG(L). Thus L-d2G, and this con-
cludes the proof of the lemma.

2. We prove next some useful results involving standard wreath products. We
recall from 1.10 the definition of Sup v, the support of a vector v e Q(L, Q):

(1) a e Sup v if and only if a e Q and vx # 1.

The first result, which plays an important part in the proof of Theorem A, is
adapted from Lemma 1 of Dark's paper [4]:

LEMMA 2.1. Suppose that the group Q contains an element P of infinite
order; and let G = Wr(L, Q) where L is any group. Then there is a subgroup M
in G which is generated by \L\ copies of Q and is such that

(2) L ̂  <pMy.

PROOF. For any u e L, let v = v(u) be the vector in Q = Q(L, Q) such that

vfin = u"+1 if n ^ 0, and r4 = 1 otherwise.

Thus, if u is not periodic, Sup v consists of the non-negative powers of p. All the
coordinates of v~l and x? being powers of u, these two vectors commute; and the
transformation law gives

[/?,/?•] = p-h-ip-^Pv-Lpv = p-'v-2p- p~2vp2-v = u,

from the definition of t;. Define

(3) M = <e"( u ) ;ueL>.

Then y = pv(u)e M and so u = P~lpye{pMy for all ueL. (Here v(l) = 1, so that
Q < M.)

A very similar calculation shows that, if x, y and £ are elements of any group
such that x commutes with >>•% then

[x,y] = x-'y-^-'yZMZ-'y-'Oy = «-J"^-1«'.

With x and y in X, this gives

LEMMA 2.2. If a group contains a subgroup K and an element <* SUC/J

[K,K«] = 1, then K' g <^K>.

For example, in the standard wreath product R = M i H, we have [M,
= 1 for alU # 1 in //• Hence K' ^ < ^ > for every subgroup X of M.

The next result is of frequent application

LEMMA 2.3. Let X be any subgroup of Q = fi(M, H) such that the coordi-
nates of all the vectors in X together generate M. Then M n N <s M for every
normal subgroup N of the subgroup J — (X,Wy o/Wr(M,/f).
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PROOF. If xeX and r\eH, then nxn'1 eQ.nj. But Moil and NoJ.
Hence nxn~l normalizes M f>N. Let ue M CtN, so that u = u1 by convention.
Since {nxn~l)x = x,, this gives unxtl~l = un. Hence xn normalizes M OiV for all
xeX and neH. By hypothesis, M = (x ? ; j e I , t / eH> . Thus M nJV<M, as
stated.

Although it is not needed for the proof of Theorem A, it will be convenient
to prove here

LEMMA 2.4. Suppose that in the preceding lemma we have n(M) non-Abelian
and M C\J # 1. Then n{J) = H

PROOF. We have only to show that every non-trivial normal subgroup N of
J contains the group D = (JH(M))H ; for 1 ^ D < K = Wi(M,H) since ju(M) # 1.

By hypothesis, Mr\J # 1; and Mr\J<xM by Lemma 2.3. Hence /i(M)
^ J. Since J contains H, it follows that D ^ J. Since N # 1 and Nv(n(M)) = O,
we must have Q n JV ̂  1, since otherwise [iV, D] = 1. Hence 1 # t; e N for some
ceQ. Since J contains H and N*a / , we may suppose that Uj ^ 1 without loss of
generality. By hypothesis, ix{M) is non-Abelian, and so its centralizer in M is
trivial. Hence [ I ^ M ^ ] ^ 1 for some w1e(i(M). But [v^wj = [v,w^eN, since
wtej and veN<tJ. Hence 1 ̂  M n N < i M by Lemma 2.3; and this gives
/i(M) ^ N, D ̂  N = NH as required.

3. In the proof of Theorem A, we shall use an auxiliary group Q which is
closely related to the given group K # 1. Let Kt and K2 be two copies of K. In
the free product Kj^ * K2, the normal subgroup [X1; X2] is freely generated by the
commutators

(4) [x,, j2] (1 # x , l *y;x,yeK);

and 2£t and X2 are disjoint from [Ki,X2], the quotient group Kl *K2j\^Kl,K2]
being isomorphic in a natural way with the direct product Kx x K2. The group
Xt * K2IKU K2y is therefore generated by two copies of K which we may identify
with K^ and K2. Hence we may define

(5) Q = <KuK2y s X! * K2I[KU K2]'.

In Q, the subgroup \_KU X2] is a free-Abelian group, the direct product of the in-
finite cyclic groups generated by the commutators (4).

The proof of the theorem is rather more difficult when both of the given groups
H and K are finite. When at least one of H and K is infinite, we may suppose
without loss of generality that \H\ 2: \K\. In this case. Theorem A follows from

THEOREM Al. Let H, K and L be any groups such that

(6) |ff | = K, ^ max (\K\, \L\) and K / 1;
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let Q be defined by (5) and let G = Wr(L, Q). Then there is a copy K* ofK such that

(7) K* S n(G, H) and L g [H, K*~\.

Here fi(G, H) is the base group of W = Wr(L, 2 , H). As noted in 1.3 (8), we
have L < 2 G < 2 ^ , and so L o 2 W by Lemma 1.3. This also follows more directly
from the fact that W is also the non-standard wreath product of L by Wr(Q, H).

Assuming(7), we have L ^ J = {H,K*} ;£ W. HenceL<i2 J by Lemma 1.1.
The solubility clause of Theorem A also follows immediately from Theorem Al.
Let %m denote the variety of all soluble groups whose derived length is at most m.
Suppose that He%h, Ke %k and Le%l. Then Qe2t* + \ and so We%h+k+l+l, and
J is soluble.

In [11], Neumann and Neumann proved, among other results, that a coun-
table %'-group can always be embedded in some 2-generator %l + 1-group. If we
take H and K in Theorem Al to be infinite cyclic groups, we obtain the following:
a countable %l-group can always be subnormally embedded in some 2-genera-
tor "Hi1-1-3-group.

For the proof of Theorem Al, we shall need

LEMMA 3.1. Every infinite group H contains a subset A and three distinct
elements al,a2,a3 such that

(8) Aal1 CsAa^1 nAa^1 = 1 and \A\ = \H\.

PROOF. If H is of exponent 2, we may take A to be a basis of if and au a2, a3

to be any three elements of A. The verification of (8) is immediate.
If H is not of exponent 2, it has an element <x such that a2 ^ 1. The two

elements 1 and a form a set Ao such that Ao n Aoa.-1 = 1; and by Zorn's Lemma,
there is a subset A of H containing Ao and maximal subject to the con-
dition A nAcn'1 = 1. Let £ e H — A and let Ax consist of A together with £. By
the maximal property of A, we have 1 ^ neAt n ^ a " 1 for some r\; and either
r\ = t, and note A, or else r\ = &~l eA. In the first case i^eAa-1, in the second
£eAa. Hence H = A U Aa~l U Aa. and so |/l | = |/f|. In this case we may take
ax = 1, a2 = a and for a3 any third element of A.

4. PROOF OF THEOREM Al. Since K / 1, it contains an element b ¥= 1. Let

(9) /» = [61,62,61].

so that fie\KuK^\ 5| Q. In terms of the free-Abelian generators of \KUK^\,
we have P = \b\, &2][&i. &2]~2, s o t h a t P is o f infinite order, even if b2 = 1. By
Lemma 2.1, the group G contains a subgroup M, generated by |L | copies of Q,
such that (2) holds. Since Q is generated by two copies of K and L\ ^ Ka, we
may write

(10) M = <Xa;aer>, where |r | ^ K>

https://doi.org/10.1017/S1446788700018073 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700018073


450 P. Hall [17]

the Kx are copies of K and F is a suitable set of labels which we may suppose to
include the numbers 1 and 2. Hence there is a mapping 9 of the set A of Lemma
3.1 onto F such that

(11) flCaJ = 9(a3) = 1 and 0(a2) = 2.

For each y e K, let y* be the vector in Q(M, H) which is denned by the rule

(12) (>•*)„ = y8w if a e A; and (y*)x = 1 if x $ A.

The vectors y* form a copy K* of Â ; and this is contained in fi(G, H), since M ^G.
Also, if y ^ 1, we have Sup y* = A by (12), and hence Sup a,^*^"' = Aa^1 by
the transformation law. Let

(13) y = [a16*«r1,a2fr*«2"1,fl3fr*ar1],

so that ye [ / f ,K*] . Then Sup y g Aa^1 nAa^1 n ^a^ 1 = 1, by (8); and so
y e M . By (12), (0,6*0,-^i = (**)., = &»(.,)5 and so 7 = 7i = p by (13), (11) and
(9). Hence

(14) 1 * peMn[H,K*l

Since 6 maps A onto F, the coordinates of the vectors y* in K* together
generate M, by (12) and (10); and since [ / / ,X*]<iJ = (H,K*}, Lemma 2.3
gives M n [if, K*~\ <i M.Using (2) and (14), we obtain L ^ <£M> g [//, K*].

This concludes the proof of Theorem Al.

ADDENDUM 1. / / \H\ = No and if H has an element a. of infinite order, then
we may take A = Sup K* to be contained in <(a>. This makes

(15) L ^ <aJ>.

PROOF. We may take A to consist of 1 together with the powers a2"-1

(n = 1,2, •••) and at = 1, a2 = a, a3 = a3. Then (8) holds since |x | = Ko = |/f|.
Since <aJ> -< J, we have M O <aJ) *a M, by Lemma 2.3. With this choice of the
ah (13) gives y e M n <<xJ>. Since jS = y, we obtain L ^ <)SM> ^ <a7>, as required.

5. To complete the proof of Theorem A, we must deal with the case where the
given groups H and K are both finite. Let Qt be a copy of Q. We write

(16) Gx = Wri^QJ, Wv = Wr(G1;Q) and W2 =

With 1 # feeKas before, let

(17) \K\ = m; and a = [fci,^]"1 or \_b2,bl,b1~]m2

according to whether H is not or is of exponent 2. Here [b2, blt 6j]
so in either case a is of infinite order, even if b2 = 1.
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Noting that L is countable and |g | = Ko, we may apply Theorem Al to the
triple <2,61, and L (in place of if, Q and L). Hence there is a copy K3 of K (corre-
sponding to the K* of the preceding section) such that

(18) K3 g n(Gu Q), Sup K3 ^ <<x> and L ^ <aJ>,

where

(19) J = (KuK2,K3y.

Here we have used the Addendum to Theorem Al and the fact that Q = <K1; K2).
By (17), a e [ X 1 ; X 2 ] ; and by (18), Sup y3 = A £ <a> for all y # 1 in X.

Hence Sup^i"1^3y1 = Ayi and Sup yjiy3y2 = Ay2 are both disjoint from A;
and so the coordinates of the vectors [ j^ . .^ ] = y3yiy3 a n d [^3,^1] = J'i 'Vl1

all lie in various copies of K. Therefore, by (17),

(20) [y2,y3T = [y3,yilT = 1.

Similarly, if H is of exponent 2, we have C K I , ^ ] " 1 $ <<*>, if j # 1, since in this
case a = \b2,bl,b1~\ml; and so

(21) [[yuyzT.ysF = 1.

Further, since [KUK2] is Abelian, we have

(22) i{y2,y,r,yiT = {y2,yuyxY2-

This follows from the identity \uv, w] = [M, W}V[V, W] by induction on r, taking
v = b>2,yi], u = v'andw = yt.

We can now state

THEOREM A2. Let H and K be any finite groups such that

(23) \H\ > 2 and | x | > 1;

and let L be any countable group. Then there is a copy K1 of K in il(WuH)
such that

(24) L£[H,Ktl

As in the case of Theorem Al, it follows from this that L<i2JT, where Jt
= <#, Kt>; and that Jt is soluble whenever H, K and L are soluble. The proof of
Theorem A2 will therefore complete the proof of Theorem A.

PROOF. Since J g W^ by (19) we may choose Kt to be a subgroup of Q(J, H).
If H is not of exponent 2, we choose d in H such that d2 ^ 1; and define the vector
yt, for y e X, by writing only the 1, d~l and rf-coordinates in order as

(25) yt = (yi,y2,y3);
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the remaining coordinates, if any, are to be trivial. The corresponding coordinates
of d~lbid are then b2,b3,b1 or b2,l,bt according as d3 = 1 or not. In either
case, \bi,d-ltfd]m = [bub2~\m = a, by (20) and (17). Hence

(26) aie[H,Kf\.

If H is of exponent 2, it has a subgroup of order 4, by (23). Let 1, dt, d2 and
d3 = dtd2 be the elements of such a subgroup. In this case, we take the 1, du d2

and ^-coordinates of >>t in order to be given by

(27) yi = (y2,yi,yi,y3)

the remaining coordinates again being trivial. Then

difrdi = {bub2,b3,bi) and d2btd2 = (bub3,b2,bl).

Writing c = [bu 62]m and using (20), we have \b\d^di]
m = (c~l,c, 1,1).

Then (21) gives [c, b3]m = 1; and since in this case a = [c~l,b1]
m by (17) and

(22), we obtain a = [^bt,dlb^di]
m,d2b^d2]

m. Thus (26) holds in this case also.
By (19) and (25) or (27), the coordinates of the vectors yt in K* together

generate J. Since \H, 2£t] <a Jt = <H, Kt>, it follows that J O [H, Kt] <3 / ,
by Lemma 2.3. Hence L ^ <aJ> ^ [//,Kt] by (18) and (26).

This completes the proof of the theorem, and therewith of Theorem A.

6. In the proof of Theorem Al, the role of Lemma 3.1 is to provide supports,
for conjugate vectors in a wreath product, which have small intersections. More
powerful lemmas give more precise results, and we now consider a few of these.

A subset A of any group will be called azygetic if there is no relation of the
form aj"lfl2 = fl3lfl4 connecting any four distinct elements at of A. Thus every
set of at most 3 elements is azygetic; and by Zorn's Lemma, every subset X of a
group contains azygetic subsets which are maximal in X.

LEMMA 3.2. Let X be any infinite set of elements in a group H and let A be
a maximally azygetic subset of X. Then \A\ = \x\.

PROOF. We may suppose that A =£ X. Let x be any element of X not in A. By
the maximal property of A, there are three distinct elements aua2,a3 in A such
that x = a^1 a3. Hence X ^ AA~lA; and so |^ | = \x\ since X is infinite.

LEMMA 3.3. Let A be any azygetic subset of a group H, and let al,a2,a3 be
any three distinct elements of A. Then

(28) Aa^1 n Aa^1 O Aa~3
l = 1

except when ata2
l is of order 3 and a3 = aia2~

1a1 = a2a^la2-

PROOF. Suppose that 1 # xeAa^1 O / l a J 1 (~\Aa~3
l. Then x = bfij1^ = 1

2,3) where bltb2,b3 are also three distinct elements of A. Thus b^lbj = flf1^-;
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and if i # j , we have b, ^ at and bt # by Since A is azygetic, this leaves only two
possibilities. Either (i) bx = a2,b2 = a3 and b3 = at; or else (ii) at = b2, a2

= b3 and a3 = bt. Hence a1a2
1 = a2a3

1 is of order 3 and equal to x~L in case (i),
or x in case (ii). The result now follows.

We mention without proof

LEMMA 3.4. Let x and y be any two distinct elements of the group H.
Then \Ax n Ay\ ^ 3 for every azygetic subset of A of H.

Another result which will be useful is

LEMMA 3.5. Let xu ---.x,, be distinct elements of the infinite group H. Then
H contains a subset A such that

(29) \A\ = \H\ and \AxtnAxj\ = Ofor i ¥= j (i,j = 1, •••,«).

PROOF. Since the elements xf are distinct, H contains a non-empty subset A
which is maximal subject to the condition that the n sets Axu-,Axn are (set-
theoretically) disjoint in pairs. Let y be any element of// not in A. By the maximal
property of A, there is a pair i # j and an element a e A such that yx, = axj.
Hence y e AxjX^1. Since y was arbitrary, this shows that

H = U Axjxi1;

and since H is infinite, it follows that \A\ = |//|.

7. We now reconsider the proof of Theorem Al. Use of the group Q and the
form (9) for /? appears to be the path of least resistance. When H is not of exponent
2, the form /? = [bu fe2] would do just as well, as the proof of Lemma 3.1 makes
clear. Perhaps of more interest is

ADDENDUM 2. In Theorem Al, if the group [K',K] contains an element ft of
nfinite order, then we may replace Q by K.

PROOF. In Lemma 2.1, we may take G = Wr(L,iQ and obtain L ^ </?M>,
where M is contained in G and has the same form (10) as before, in which we
suppose that Kt = K. But in place of the simple expression (9), we now have

(30) P= U fo.tt.zj*1

for suitably chosen elements xt, y( and z, in K. This means that the subset A of
H, which is to be the support of the vector group K*, must be chosen more care-
fully.

We may take A to be any maximally azygetic subset of//. Then Ul = |// | by
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Lemma 3.2, since the group H in Theorem Al is infinite. Let the an and
<*n (' = !>'">") t>e anY 2n distinct elements of A. We may then select n further
elements distinct from these and from each other and such that ai3 ^ a<iaJ2laii>
(j = 1, ••-,n). Then Lemma 3.3 gives

(31) Aan' n ^ n Aajf = 1 (i = 1, • • -,»).

Since | r | :g |/l|, we may choose the mapping 0 of A onto F such that

(32) 0(ay) = l ( i = l , - , n ; j = 1,2,3).

With K* denned by (12), we must now take

(33) y = n C a d ^ a r i S a ^ i V i ' . a o z f f l o 1 ] * 1 -
i= l

(31) ensures that each of the n factors of y lies in M; and by (12) and (32), the i-th
factor of y coincides with the i-th factor of /?. Thus y = P, and the rest of the proof
proceeds as before.

8. PROOF OF THEOREM Bl. We have to show that, if the groups H, K and L
satisfy the same conditions as in Theorem A, then L ^ fi(G) for some group of the
form G = <//,iC>. Assuming L # 1, the well known fact mentioned in § 1.4, viz.
that L can always be embedded in a perfect simple group P such that
|P| = |i, * i,|, allows us to suppose without loss of generality that L is itself a
perfect simple group:

(34) L = L' = n{L) # 1.

We deduce Theorem Bl from Theorem A, using the groups of the form
J = <H, K} provided (with K= K* or Kt, respectively) by Theorems Al and A2.
Hence L<i2 J in each case; and (34) therefore implies that LJ is a minimal normal
subgroup of J. We define

(35) G = J/N,

where N is any normal subgroup of J which is maximal subject to

(36) LHN = 1.

This ensures that G is monolithic, with n(G) = NLJ/N, so that L can be embedded
in fi(G).

It only remains to show that G is of the form <//, K>; or more precisely, that
H n N = 1 and KnN = 1. These two relations will follow from (36), if we can
show that

(37) L ^ <xL> for all x * 1 in H
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and

(38) L ^ < /> for all y ¥= 1 in K.

In Theorem Al, we have L ^ W r (L,Q) g Wr (Wr(L, Q),H), so that (37)
follows directly from (34) and Lemma 2.2. Note further that the element

since the at lie in H. Just as for the element y — y(b) used in the proof of Theorem
Al, we find here the relation y{y) = [ J ' L ^ . J ' I ] , which is a non-trivial element of
Q since y # 1. Since L ^ Wr(L,g), we have [L,L7(JI)] = 1; and so L ^ <y(>0L>
by (34) and Lemma 2.2. Hence L ^ <0>*/>, which gives (38) for this case, where
K = K*.

In Theorem A2, we have L ^ l f ^ W r ^ , / / ) ; so that once again [L,LX~\
= 1 and (37) follows from (34) and Lemma 2.2. Further, using (25) and (27), we
have Lyt = L*2 or L"' according as H is of exponent 2 or not. Since y # 1, yx

and >>2 are non-trivial elements of Q. By (16), L ^ Gi ^ Ŵ  = W^Gj.Q); and it
follows that \_L,LS~] = 1. Hence L g <(^t)L> by (34) and Lemma 2.2. Here
L ^ Jt = <//, Kt> and this gives (38) in this case also, where K = Kf.

This completes the deduction of Theorem Bl from Theorem A.

For the proof of the finiteness of the invariant /, we need to know a little more,
though only in the case of infinite H, viz. that the definition (12) of K* can be so
chosen that

(39) [K*,K*] g HJ.

To ensure this we need only choose the support A of K*, which is provided by
Lemma 3.1, such that A n Au = 0 for some ueH; for then \_K*,u~lK*u] = 1,
and so the derived group of K* is contained in <u**> ^ HJ, by Lemma 2.2. If K
is perfect, (39) implies that K* <; H1 and so J = HJ.

That the support A can always be chosen to satisfy this additional condition
follows easily from Lemma 3.5, 3.2 and 3.3. However, we shall give a direct proof
of the important part of Theorem Bl, making no appeal to Theorem A, although
using a similar method.

3. The finiteness of l(K).

1. LEMMA 4. Let the perfect simple group P be generated by j A | not neces-

sarily distinct copies of the group K and let aua2, ••,an be n distinct elements

of A. Then there exist elements b(l\ •••, bM in K and an expression

(1) P={Ka;asAy

for P as the join of copies Ka ofK such that c # 1, where
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(2) c

We recall the convention that ba is the element of Ka which corresponds, in
some fixed isomorphism, to the element b e K.

PROOF. By hypothesis, some expression of the form (1) exists for P. Since P
is simple, P # 1 and so K ^ 1. When n = 1, this leaves nothing to prove. Suppose
that, for some n 2; 1 and for some choice of the fo(i) in K and the expression (1),
we have c # 1. Let an+i = a be any element of A distinct from au ••-,«„. Then
P = <Pa,Ka>, where Px = (Ka;aeA,a # a> . Hence l^K^'oP; and so
K%- = P, since P is simple. Since P is also perfect, its centre is trivial; and since
c # 1, it follows that c* = [c,(j8a)

x«] # 1 for some P = b(n + 1)eK and some
x a e P s . Then P = (PX,K*~}; and if we replace Kx in (1) by Kx", we obtain a new
expression of the same form with respect to which the n + 1-fold commutator
c* ^ 1 and has the form corresponding to (2). The lemma now follows by induc-
tion on n.

LEMMA 5. Suppose that, in Lemma 4, A is a subset of the group H and that

(3) Aai1 n Aalx n ••• n Aa'1 = 1.

Then there is a copy K* of K in the base group fi = Q(P,H) of W = Wr(P,/f),
such that

(4) n(J) = PH, where J = {H,K*} and Sup K* = A;

so that] — P I H if A is finite.

PROOF. By Lemma 4, there is an expression (1) for P and elements b(i) e K
such that c # 1. For yeK, let y* be the vector in Q. defined by

(5) yi = y.if aeA; yt= I if htA.

The vectors y* form a copy K* of K, and their coordinates together generate P,
by (1) and (5). Since (K*)H-< J, we have P O (K*)ff-=a P by Lemma 2.3.

If a e 1̂ and 1 # j / e X, we have Sup ay*a"x = Aa~1 by (5). Hence the com-
mutator y = [a1fe(1)*a71,a2fe(2)*a2"1,---,anb<n)*an"1]£Pby(3).The 1-coordinate
of flji^V1 i s &i'>by (5). Hence y = c, by (2). But c ^ 1 and ye(K*f. We con-
clude that, since P is simple, (K*)H must contain P. Hence R = P I H ^ J.
Since P = ^(P), we have /i(J) = P" by Lemma 2.4.

If A is finite, we have K* g PH, which is the group of all vectors in ft of
finite support. Hence J = (H, K*} = R in this case.

2. We now prove a key lemma, which not only contains the major part of
Theorem Bl in the form required to prove the finiteness of l(K), but then has
Theorem B2 as an immediate corollary. This is
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LEMMA 6. Let H, K and L be any non-trivial groups such that either

(6) (i) \H\ = K^ max(|x|, |L|); or (ii) \L\ ^ \K*K\ and l(K) < \H\.

Then there exists a perfect simple group P and a copy K* of K in Q(P. H) such
that

(7) L^P and n(J) = PH, where J = <//, K*>;

and further

(8) J = HK* if K is perfect.

PROOF. We begin by choosing the perfect simple group P and the subset A oi
H so that the conditions (1) of Lemma 4 and (3) of Lemma 5 hold. Then (7) will
follow from Lemma 5 if we define K* by (5).

In case (i), \K X L\ g Xa and we may therefore choose P to be of order Ka

with K x L as a subgroup. Since K # 1, this gives P = (K";u e P ) . By Lemma
3.1, H has a subset A and three distinct elements such that (3) holds with n = 3
and \A\ = \H\. This makes |.4| = \P\, so that P is generated by \A\ copies of K.

In case (ii), by the definition of l(K), we may suppose that P contains L and is
generated by l(K) copies of K. If H is infinite, we choose A and the a, as in case (i).
If \H\ = n + 1 is finite, we take A to consist of all the non-trivial elements at,
•••,an of H. Then (3) holds; and since I(K) < H\, P is generated by at most A
copies of K.

It remains to prove (8). Suppose that K = K'. Then K coincides with the n-
th term of its lower central series; it is therefore generated by all the commutators
of the form u = [y{U, y{2), •••, / n ) ] , where y(l), •••,J>(FI) run independently through
K. We have

(9) u* = iaiy
(l)'al\a2y

w* a~2
l , •••,afl/'

1)* a"1] mod D = HK\

By (3) and (5), the right-hand commutator in (9) lies in P. But 1 # D <i J and so
D contains n(J) = P". Hence u* e D. Since the commutators u* generate K*
this gives K* ^ D and hence J = <//, K*y coincides with D, as required.

This concludes the proof of the Lemma 6.
Once the finiteness of l(K) has been established for all groups K, we may

take the set A in case (ii) of the lemma to be finite, even when H is infinite. This
makes J = P I H by Lemma 5 and Theorem B2 follows and therewith a major
part of Theorem Bl.

We shall then show, without further appeal to Theorem Bl, that l(K) ^ 3
for \K\ # 2 and l(K) g 4 for \K\ = 2. Since the conclusion of Theorem Bl is
symmetrical as between H and K, this will leave only a small squad of awkward
cases requiring special treatment viz. those in which \H\ and \K\ are respectively
(i) 3 and 3; (ii) 4 and 2; and (iii) 3 and 2. These cases are only required in the proof
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of our two '/ = 2'-theorems Dl and D3. The first two are dealt with in Lemma
18: cf. § 5.3-4; and the third in Lemma 20: cf. § 5.8. We shall then have a complete
proof of Theorem Bl which makes no appeal to Theorem A.

3. As noted in §1.6, the problem of embedding a given group L in some simple
group of the form S = {K1,K2,---}, where the groups Ki,K2,-- are also given,
is equivalent to that of embedding L in a hololophic subgroup of any group G
having the same form as S and in which the generating subgroups K1,K2,--- are
also hololophic. Useful for this purpose are the groups G described in

LEMMA 7. Let G = <J\,J2, ""S-Ai) an& suppose that the Jt are subgroups of
G which satisfy the n conditions

(10) Jt = (J, n n(Jt- i )) J | (i mod n).

Then J i , •••, J,, are hololophic in G.

PROOF. If any Ji_1 = 1, then J\ is also trivial; and it follows in cyclic order
that J;+1, •••, J,_2 are all trivial and G = 1. Dismissing this case, let M*a G and
suppose ./;_! O M 7̂  1. Since J,_! nM<a./,._,, we have / J ( J ,_ ! ) ?S, M. Hence
J; g M by (10); and s o J , n M ^ 1; and M contains all the Jt by cyclic induction,
giving M = G. The lemma now follows.

Let J , , •••, J4 be any four groups with subgroups //,• and //,• such that

(11) <//,., //,.> g Jh Hi n Hf = 1 and ^ , ^ Hi+, (i mod 4).

Supposing the four isomorphisms in (11) to be given, we may form the groups

(12) Gl = J^*J2\HV = H2 and G2 = J3*JJH3 = HA

each of which is a free product with a single amalgamated subgroup, as indicated.
The subgroups Ht of J t and / / 2 of J2are both disjoint from the amalgamated sub-
group Hx = H2 of Gi, by (11). Hence the subgroup <//,, //2> of Gj is the ordinary
free product Ht* H2: cf. Neumann's paper [12]. Similarly, the subgroup </f 3, /?4>
of G2 is H3 * HA. Since H t s ^ 4 and ^ 2 s / / 3 by (11), we may now form the free
product G of Gj and G2 with the subgroups <H1; //2> and <//3, ^ 4 > amalgamated
in the obvious way. Thus the quadrilateral group.

(13) G = J1*J2*J3*JJffl = H2,H2 = H3,H3 = H4,H4 = H{

has the form

(14) G = <J1)---,J4> with J?; = tfi+1 = JtnJi+l (i mod 4).

Although the four corners Ht of the quadrilateral are the intersections of adjacent
sides J,, in general Jt will be larger than the group-theoretical join of the two cor-
ners Ht and Hi+l which it contains. The two 'diagonals' are the free products
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4. LEMMA 8. Let H be any infinite group, Ku---, KA four icosahedral groups,
and L any group such that |L | ^ \H\. Then L can always be embedded in some
simple group of the form

(15) S = <//?', • ••,//?«>,

where H1,---,H4 are four copies of H.

PROOF. For each i = 1, •••,4, let Ht and H, be two copies of H and Lt a copy
of L. Note that Ht is infinite, Kt = K[ is finite and non-trivial, and \Lt x Ht\
= \H,\. By case (i) of Lemma 6, there exists a perfect simple group P, and a sub-
group of the form Jt = </?„ K;> in Wr(Pf> Ht) such that

(16) Lt x H, ^ niJt) = Pf' and J, = Hf' (/ = 1, •••,4).

This implies that HjO/Tj = 1. By hypothesis, ^ = / / = H i + 1 for i mod 4.
Hence the conditions (11) hold and we may form the quadrilateral group G defined
by (13). In G we have Ht = ^ _ x ^ J ; n/ i (J ,_,) for all i mod 4, by (16); and
since /f = Hf', (10) holds with n = 4. Hence JU--,JA are hololophic in G by
Lemma 7; and so there is a simple quotient group S = G/N of the form
S = <Jl5 •••, J4>. The relations ./,• = Hf' in (16) show that S has the required form
(15); and L is embedded in S as any one of the subgroups L,- £ J,.

This concludes the proof of Lemma 8.
Since |/C,| = 60 for each /', S is generated by 240 copies of H. Hence l(H)

^ 240 for all infinite H. For any finite K # 1, the group H = K*K is infinite.
Hence l(K) ^ 480. Thus l(K) is finite for all groups K. As noted above, Theorem
B2 now follows as a corollary of Lemma 6.

Another easy deduction from Lemma 8, although it will be superseded by
better results in §4, is that a countable group can always be embedded in some
^-generator simple group. For we have Hi+1 = //,• ^ Jt = <//f, K,-> in the group
S of (15), and hence S = (Hl,Kl,K2,K3,K4.y. Taking H to be an infinite cyclic
group in Lemma 8, and noting that the icosahedral groups Kt can each be gen-
erated by two elements, it follows that S is a 9-generator group.

5. We show finally how to deduce from the original Theorem IV of [1] a
pure embedding theorem for countable groups which is not a direct corollary of
Theorems A and Bl.

For any group G and ordinal a, let

(17) U, and SQ(G)

denote respectively the class of all groups of order at most Na, and the class of all
groups which can be embedded in some quotient group GIN of G. Thus Theorem
IV of [1] implies that
(18) Uo = SQ(F2),

where F2 is the free group of rank 2.
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LEMMA 9. Suppose that the group G has a normal subgroup F such that
\G : F\ is finite and Ux ^ SQ(F). Then Ux ^ SQ(G). More precisely, every group
L in VLX is isomorphic with some M/N, where iVo G and M g F.

PROOF. We may suppose without loss of generality that L is a perfect simple
group. By hypothesis, L e SQ(f) and so L s Co/No for some No <i F and some
subgroup Co of F which contains No. By Zorn's Lemma, we may choose the nor-
mal subgroup Nt of F to be maximal subject to the condition that Co C\ Nx = No.
Then CJN^ s L, where Ct = CQN^ By the maximal property of Nlt every non-
trivial normal subgroup of F/NL must contain CJN^ since by hypothesis L is
simple. Hence CJNl ^ ^{FjNy).

Now let N = n.vs G ^ i - Since \G : F\ is finite, we can choose a minimal expres-
sion JV = Nt n N2 n • • • r\Nrfor N has the intersection of conjugates Ntof Nt

in G. It follows that AT* = N2 O ••• nNr > N = Nt CiN*; where we must take
TV* = F if A^ o G. Hence N*/N = N1N*/N1, which is a non-trivial normal sub-
group of the monolithic group F/Nl. Hence N*/N contains a copy of fiiFjN^;
and so it also contains a copy of L s Cl/Nl. Since N oG and A/* g T7, the lemma
now follows.

COROLLARY 9.1. If a group G has a non-cyclic free subgroup of finite
index, then Uo ^ SQ(G).

For G then has a normal free subgroup F of finite index, with F of rank at
least 2. Hence Uo ^ SQ(F) by (18).

COROLLARY 9.2. Given any groups H and K with \H\ > 2 and \K\ > 1, a
countable group L can always be embedded in some group of the form
J= <

Unlike Corollary 9.1, this is a direct consequence of both Theorems A and Bl.
A quite different proof has been obtained by Schupp [13], using the methods of
'small cancellation' theory11). Here we deduce it from Lemma 9.

PROOF. We may suppose that H and K are either both finite, or both cyclic.
For in the general case, there will always exist subgroups Ht of H and Kt of K
such that l//^ > 2; \K^ > 1, and such that either Hj and K1 are both cyclic, or
else / / t is the 4-group and \Kt\ = 2. Assuming that L ^ Jt = {Hi,Kl}, we can
form the free product J2 of H and Jl with amalgamated Hu and then the free
product J of J2 and K with amalgamated Ku giving L ^ J = <//, K}.

If H and K are both finite, we take G = H*K and F = [H,K] in Lemma 9;
since the rank of F is (|//| - 1)(\K\ -1) ^ 2, the result follows from Corollary 9.1.
In particular, when H = <u> and K = <u>, we obtain an embedding of L in

(i) I am much obliged to Dr J. E. Roseblade for drawing my attention to this work, and
also to the paper [13].
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(w7) for some J = <M,D>, where w = [u,v\. If <f> is an infinite cyclic group, the
subgroup J* = <fu,t>> of <f> x J will then also contain L. Here Iw is of infinite
order. In this way we deal with the case in which one of H and K is an infinite
cyclic group and the other is a finite cyclic group. When both H and K are infinite
cyclic groups, the result is contained in Theorem IV of [1].

Let 33 be any variety of groups; and for any group G let </>(G) be the corre-
sponding verbal subgroup of G, so that <f>(G) ^ H <i G if and only if GjH e 93.

COROLLARY 9.3. Provided that 93 is not the variety of all groups, the group
J and the embedding of L from Corollary 9.2 can always be chosen so thatL^<j>(J).

PROOF. The countable group L x F2 can be embedded in a countable simple
group P ; and by Corollary 9.2, we may suppose that P ^ J = <//, K}. If P n <f>{J)
= 1, then <j>(P) = 1. But F2, and therefore P, contains a free subgroup of infinite
rank; and so <p(P) = 1 would imply that 93 is the variety of all groups, contrary
to hypothesis. Since P is simple, the only alternative to P n <fr(J) = 1 is P ^

4. Proof of Theorem C

1. The basic method is the bilateral construction and the key lemma is

LEMMA 10. Let K1,K2,K3 and L be non-trivial groups such that

(1) \Lx K.l^lK^K,].

Suppose further that there exists a non-trivial group H2 which can be embedded
in K3, a group of the form J2 — {H2,K2} and a finite group H2 such that

(2) J(«i) < |# 2 | , H2x H2^ J2 and <H2,K2}

Then L can be embedded in some simple group of the forms

(3) S = <X1,K2,X3> = <K1,J2>.

PROOF. Let Hx be a copy of H2. Then /(.K^) < |HX|, by (2). It follows from
(1) and Theorem B2, that there exists a perfect simple group Px which contains a
copy of L x K3 and is such that P t I Ht has the form Jx = { i f ^ K j ) .

Since Ht is finite, the base group P"' of J t contains a copy Px of Px con-
sisting of all the constant vectors in ^.{P^yHi). Since P t contains a copy of K3, so
does P\ and we may identify the latter with K3 itself. Since H2 can be embedded
in K3, we have H2 ^ Ht ^ K3 ^ Pt. Here we have denoted the copy of H2 in
K3 by /?!. But [ J / L - P I ] = 1. Hence the subgroup (H^H^ of Jx is the direct
product Hy x / / j , and is therefore isomorphic with the subgroup H2 x H2 of
J2. Thus we may form the bilateral group

(4) G = J1*J2/Hl= H2, H2=HU

which is the free product of J j and J2 with their direct product subgroups amal-
gamated in the obvious way.
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In G, we have Ht = H2 g Jl n^(J2) by (2); and J1 = P1 } Hi = H{'
since Pl is a perfect simple group and Ht # 1. Further, K2 ^ ^ 2 ) by (2), and
so J 2 = <H2,K2> = H2

2 since H2 # 1; and H2 = Hx g / 2 n / ^ J J . Hence
Ji = (J; n/j(J j_i)) J i for each i mod 2; and so J j and J2 are hololophic in G by
Lemma 7. Hence G has a simple quotient group of the form S = <y1; J2>.

Since J j = (H^K^ and Hx = H2i± J2, we have S = (KuJ2y. But
J 2 = <H2,K2> = (Hl,K2y and the subgroup / ^ of J t is contained in the sub-
group X3 of P j . Hence S = (KUK2,K3}; and this completes the proof of the
lemma.

The group 7j is of RP-type. If we take J2 also to be of .HP-type and make a
slight change of notation, we obtain

LEMMA 11. Let H, Kt, K2 and L be non-trivial groups such that

(5) \H x L\ ^ \K^K^;

and suppose further that H has a finite subgroup H2 such that

(6) I(K2) < \H2\.

Then L can be embedded in some simple group of the form

(7) S = (H,KuK2y.

Here H corresponds to the K3 of Lemma 10.

PROOF. Since liKj) is finite (cf. §3.4), we can select a finite group Hx such that
l(Kt) < \Hi\. By (6) and Theorem B2, there is a perfect simple group P2 which
contains a copy of Ht and is such that

(8) J2 = P2l H2 = (H2,K2y where K2 ^ Pf2.

Since H2 is finite, the base group P " 2 of J2 contains a copy P2 of P 2 such that
\_H2, P2] = 1; and P2 contains a copy H2 of / / , . Hence J2 contains the subgroup
H2 x ff2.

We now have /(KO < \H2\ and <^T2,X2> ^ (i(J2) = P^\ The conditions
(1) and (2) of Lemma 10 are all fulfilled with K3 = H; and (7) now follows.

COROLLARY 11.1. Let KUK2 and K3 be non-trivial finite groups such that
I(K2) < \K3\. Then a countable group L can always be embedded in some simple
group of the form S = (KuK2,K3y. In particular, L can always be embedded
in some 3-generator simple group.

This follows from Lemma 11 by taking H = H2 = K3.

2. PROOF OF THEOREM Cl . Now let Ku ••-,KA and L be any non-trivial groups
such that \L\ ^ \KX * ••• *K^\. We may suppose without loss of generality that
\KA ^ l i d for / = 2,3,4. Then
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(9) \(K3*K4) x L\ ^ \K!*Ki\.

We have to show that L can be embedded in some simple group of the form
S = <X1; •••,K4y. By (9) and Lemma 11, it will be enough to prove the existence
of some group of the form H = (K3, K4} which contains a finite subgroup H2

satisfying (6).
If K3 and K4 are both of order 2, we may take H = H2 to be a sufficiently

large but finite dihedral group. If K3 and K4 are not both of order 2, any preas-
signed finite group H2 can be embedded in some group of the form <1C3, K4} by
Theorem A. Alternatively, since subnormal embedding is not required, we may
appeal to Corollary 9.2.

This concludes the proof of Theorem Cl and therewith of the relations

(10) l(K) ^ 4 for all K,

which are an immediate consequence. If we take the three groups H, Kt and K2

in Lemma 11 to be isomorphic, (10) gives

COROLLARY 11.2. /(//) ^ 3 for every group H which has a finite subgroup
of order greater than 4.

The appeal to a general embedding theorem for the final step in the above
proof of Theorem Cl can easily be avoided. If K3 and K4 are both finite, let M be
the subgroup of K3 * K4 which is generated by [K3,.K4] ' together with the p-th
powers of all elements of [K3, K4~\. Then the group K3 * KJM is finite and of the
form <X3,K4>; and since K3 and K4 are non-trivial, its order can be made arbi-
trarily large by a suitable choice of p.

If at least one of K3 and K4 is infinite, we may use the following well known
result

LEMMA. Let K* and K* be the regular representations of the non-trivial
groups K3 and K4 and suppose that K3nK4 = l. Then [K3, Xj] = Alt(K3 U K4),
the group of all even permutations (of finite support) of the set K3U K4.

PROOF. Let 1 # x3 e K3 and 1 # y4 e K4. The hypothesis K3 n K4 = 1 and
an elementary calculation then show that [x*,y*] is the 3-cycle (x3, l,y4). All
3-cycles on K3 U K4 can be obtained from those of this special form by a succession
of at most three transformations by suitable elements of K* and K*. Since the
alternating group is generated by its 3-cycles, and [K*, K%] by the commutators
[**> y*~\' t n e result follows.

If at least one of K3 and K4 is infinite, the group H = (K*,K*} therefore
contains alternating subgroups of every finite degree n. Hence this group H meets
the requirements of the proof of Theorem Cl .

3. An important part of Theorem C2, which concerns embedding in simple
groups with three given subgroup generators, is already contained in Lemma 11.
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The condition (6) there imposed on the group H amounts, in view of (10), to this:
H must have a finite subgroup of order greater than 4. This allows the group J2

of Lemma 10 to be of .RP-type, as provided by Theorem B2. If, as we shall see, we
take for J2 the kind of monolithic group provided by Theorem B3, we obtain a
result similar in form to Lemma 11 except that the condition becomes: H must
have an infinite cyclic subgroup. Only a few groups fail to satisfy one or other of
these two conditions:

LEMMA 12. Let H be a periodic group with no finite subgroup of order
greater than 4. Then \H\ ^ 4.

PROOF. Any two involutions tt and t2 in H must commute, since otherwise
<f1; t2y would be a finite dihedral group of order at least 6. Hence the involutions
in H, if any, generate a normal subgroup M of exponent 2. Clearly |M| g 4.
Since H is periodic, \M\ = 4 implies that H = M; and \M\ = 2 implies that HjM
must be of exponent 2, and so \H\ ^ 4. If if contains no involutions, it must be of
exponent 3 and therefore locally finite, by a theorem of Burnside: cf. [14], 321.
Hence \H\ ^ 3 in this case.

Once Theorem B3 has been proved and the analogue of Lemma 11 deduced
from it, only a small gap will remain in the proof of Theorem C2. This gap can be
bridged by using for J2 the linear fractional group LF(2,41).

4. Let P be any group and 23 any Boolean ring. By a classical theorem of
M. H. Stone, we may assume without loss of generality that SB is a subring of the
Boolean ring of all subsets A,B,-- of some suitable set C; we express this by
writing

(11) » g 2C.

Two elements A and B of 2C will be called orthogonal (in preference to disjoint)
whenever A O B = 0 . Apart from this, we shall use set-theoretical terms and
notations throughout: the sum of A and B is (A OB') U(A' n B ) , where A' is the
complement of A in C; and their product is A n B.

Given xeP and A g C, we define the vector x A e Q = Q(P,C) by

(12) (xA)x = x if cceA; and (xAX = 1 if oceA';

and the Boolean power of P by 23 to be the group

(13) U = U(P,23) = <xA;xeP,Ae%>.

If A 7̂  0, the elements xA(x e P) form a copy PA of P. Since xz = 1 for all
x, we write P 0 = 1. For any x, y in P and any ̂ 4, B in 2C, the relations

(14) xAyB = xAnB.(xy)AnByA,nB
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and

(15) [xA,yB'] = [x,y]AnB

follow immediately from (12). Note that, if 4̂ and B are in 33, so also are the sets
A C\B', A r\B and A' (~\B which appear in (14). There is an evident generalisa-
tion of (14) for a product of any finite number of factors xAyB ••• tD; and this shows
that

(16) U(P,2c) = n0(P,C),

where Qo = ^o(P» Q consists of all those vectors in Q, which have only finitely
many unequal coordinates. Every w j= 1 in £20 has a normal form

(17) w = ( w 1 ) / 4 l (
w 2 ) ^ - K ) ^ .

where Wj,•••,w,, are distinct non-trivial elements of P and A±,--,An are mutually
orthogonal non-empty subsets of C, which we shall the constancy sets of w. The
form (17) is unique apart from the ordering of the factors.

The generalised form of (14) also gives

LEMMA 13.1. wel5 = U(P,23) ;/ and only if all the constancy sets ofw be-
long to SB.

I f© is finitely generated, it is finite; and |23| = 2" for some n. 23 then has a
basis of n mutually orthogonal non-empty elements Au---,An; and (15) shows
that, in this case,

(18) l5 = PAt x PA, x - x PAn-

For general SB, it follows that every finite subset of 15 is contained in some direct
product of the form (18). Thus Boolean powers form a natural generalisation of
direct powers.

In general, £l0 is not normal in £2, nor is Q a Boolean power of P. For example,
the Cartesian power SI = Cl(A, C) of an infinite alternating group A by an infinite
set C is not even periodic; whereas all Boolean powers of a locally finite group,
such as A, are locally finite.

The group U = U(P,93) has a simple abstract definition in terms of generators
and relations. If x and y run independently through P, and A and B through all
pairs of orthogonal elements of SB, then the defining relations are

(19) xAyA = (xy)A, xAxB = xAuB and [ x A , ^ ] = 1.

We omit the proof.
More important is

LEMMA 13.2. Let V = y(P,s3t), where Wis an ideal of $5. Then F < U ; and
is a principal ideal, V is a direct factor of 15.
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When P is a perfect simple group, every normal subgroup of 15 has the form
V — U(P, 91)/or some ideal 91 o/23; and in 15 all subnormal subgroups are nor-
mal, cf. [25], Theorem 5.

PROOF. Vis generated by the elements xA(xeP, Ae91), and 15 is generated
by the elements yB (y eP,Be93). By (15) yllxAyB = xA[x,y]AriB; and here
A n B e 91 for all A e 91 and B e 93, since 91 is an ideal, Noting that (yB) " ' = (y ~ %
it follows that F<iU.

For given A e23, we have X = (A nX)u(A' nX) for all Xe93. The ele-
ments A n I ( l £ S B ) form the principal ideal 91 = (A) determined by A. The
elements i ' n l ( I e S B ) form another ideal 91*, in general not a principal ideal
since A' need not belong to 93; and 93 = 91 © 91* is the direct sum of 91 and 91*.
The generators yx (yeP,Xe35) of Uhave the form yx = yAnXyA'nX', and the
yAnX generate V = U(P,9l), while the yA.nX generate V* = U(P,9I*). Since
91 o9 t* = ( 0 ) , we have V n F* = 1; and since [yAnX,zA,nY] = 1 for all y and
z in P and all X and Y in 93, we have [F , F*] = 1. Hence U = V x F*.

Now let P be a perfect simple group, and let JV o 15 and weN, where w is
given by (17). Here wt + 1 and so the elements [w;,M] with ueP generate P. By
Lemma 13.1, ^ je93; and so uAtel5, and [w,uAl]eN since N<il5. But [w.u^J
= [w;,w]x., since Au---,An are mutually orthogonal. It follows that PA( ^ N
for each i. Since weP^ , x ••• x PAn, we conclude that JV = (_PA;Ae%y, where
91 consists of 0 together with all the constancy sets of the non-trivial elements of
N. In (14), we may choose x and y in P such that the four elements \,x,y and x" 1

are distinct; and it follows that, if A and B are in 91, so is their
sum (A nB')KJ(A' CiB). Since P is perfect, (15) gives

(20) [PA,PB~]=PAnB.

Hence A n B e 91 for all .4 e 91 and B e 93. Thus 91 is an ideal of 93 and
N = U(P,9l).

In a Boolean ring 93, any ideal of an ideal of 93 is itself an ideal of 93. It follows
that, when P is a perfect simple group, every subnormal subgroup of 15 is normal
in 15.

This concludes the proof of the lemma. It is easy to verify that, in the general
case, the quotient group 15/V is isomorphic in a natural way with U(P,93/91).

5. Now let any group H be represented by ring-automorphisms t]* of the
Boolean ring 93:

(21) n* : A-+ An(Ae%,neH).

For any group P, we may then form the semidirect product W = 15H, where
15 = 15(P, 93), with the transformation law

(22) n
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Since the r\* are ring-automorphisms of 93 and {t,r\)* = £*?/* for all £, t] in H, it is
clear that the relations (22) determine a representation of H by automorphisms of
the group 15- We call W the Boolean wreath product of P by H with respect to the
representation (21).

We shall only be concerned with the standard case in which

(23) 93 ^ 2",

so that the elements A of 93 are subsets of H, and the representation (21) is the
natural one for which ZeAn if and only if ty'1 eA (E,,r\eH). 93 is then an H-
invariant subring of 2H: a Boolean ring with the elements of H as right-hand opera-
tors.

We recall from §1.7 the definition: a subset A is offinite index in H whenever

(24) H = A£1KJAS2V- VA{H

for some finite set of elements £u ••-,<!;„ in H. If 93 is H-invariant and contains an
element A of finite index in H, then H e93, and so 93 is a Boolean algebra with H
as its unit element. The group of constant vectors

(25) P = PH

is then contained in 15.

LEMMA 14.1. Let P be a perfect simple group, A any subset of finite index
in H and

(26) 15 A = Z5(P,%A), RA = 15AH,

where 93 A is the Boolean ring generated by all the translates An{r\ e H) of A. Then

(27) 15A = < P , , ; i ) e H > andRA = <PA,H}.

PROOF. Let X and Y be any subsets of H. Since P is perfect, we have

by (14) and (15). Assuming (24), it follows that the group V = <P^,;>;ei/> con-
tains P. If Px and P y are both contained in V, then P X n y = [Px .^r ] S V and
PA. ^ Vsince(Px,F)=PxxPx,. But 23A is a Boolean algebra and is the smallest
system of subsets of H which contains all the An and is closed with respect to in-
tersection and complementation in H. Hence V = 15A = <Px;Xe93/1>.

Clearly 93A is H-invariant and so H normalizes 15A. Thus RA is the semidirect
product of 15A by H. By (22),

(29) n-
1

Hence 15A = (PAf and RA = < x , >

We have chosen the notation RA for this Boolean wreath product, in
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preference to WA, because the analogy with the standard restricted product
R = P I H = <P, H} is particularly close. Indeed the base group of R is precisely
U(P,23O). where 23 0 is the ring of all finite subsets of H.

With the notation and assumptions of Lemma 14.1, we have

LEMMA 14.2. (i) For any neH and we\5A, the normal closure N ofnw in RA

contains rj.

(ii) If £,eH and is such that A (~\ A'£ is of finite index in H, then

PROOF, (i) We may suppose that n # 1 and w # 1. Let the normal form of
w be (17). Then Ate^8A and PA{ ^ 15A for each i = 1,••-,«, by Lemma 13.1.
Since w,- # 1 and P is a perfect simple group, we may choose u and v in P such
that [WJ,M, v] # 1. Here u and v may depend on i. Writing uH = u for any ueP,
we have [f/w,M] = [yv,u], since [H, P ] = 1 by (22). But P £ 15A since A is of
finite index in H. Hence N contains [nw,u, vAi~] = [wt, u, v\Al, which is a non-
trivial element of PA.. By Lemma 13.2, N n n x = U(P, 20 for some ideal % of
S^ . Hence ^f G % for each i, and weN. This gives neN as stated.

(ii) For any w e P and <J G // , the transformation law gives

(30) [UA,€] = "AnA'S UA'nAf

Here AnA'£e<BA; and [uA,^] £ <£*"> n U ^ = U(P,21) for some //-invariant
ideal 21 of S A , by Lemma 13.2. Taking u ^ 1 in (30), it follows that AnA'£e 21.
If £ is such that A nA'£ is of finite index in i i , then 21 contains the unit element
H of 23^; and so 21 = 23^ and 15A ^ <{R-4>.

It is easy to see that, when P is a perfect simple group, P is hololophic in 15A.

6 Now let H = <T> be an infinite cyclic group. We wish to construct a
semidirect product J2 = Hn(J2), where n(J2) = P? and P 2 is a copy of a given
perfect simple group P. It is also required that \H,P2] = 1 for some copy P2

of P contained in /i(J2)- If M ^ ) is t o n a v e t n e form U(P, 23) for some if-invariant
Boolean ring 23, then 23 must be countably infinite and characteristically-simple
since it must have no H-invariant ideals distinct from itself and the zero ideal.
To within isomorphism, only three such rings 23 exist; we may take them to be

230, the system of all finite subsets of H, which makes U(P,23O) the direct
product of Ko copies of if, and leads to the restricted wreath product P l H;

231, the free Boolean ring with Ko generators, which like 23O fails to have a
unit element; and which is the direct sum of Ko ideals each isomorphic with

232, the Boolean algebra obtained by the standard process of adjoining a
unit element to 231-

It is necessary to have n(J2) = U(P,232). A natural definition of 232 is as
the u -closure of the system of all residue classes
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(31) 2rZ + n ( r ^ O , neZ),

where Z is the ring of rational integers. With 332 i° this form, there is a natural
representation of H in which the generator x is represented by the automorphism

(32) T* :2rZ + n->2rZ + « + l.

But every element A # 0 in 332 is here the union, for some r = r(A), of a cer-
tain number of residue classes mod 2r; and this implies that, with the representa-
tion (32) (PA)H is the direct product of finitely many copies of P, and so is a
proper subgroup of U(P,232). Hence we must choose a different representation of
H or else another form for 232. We shall therefore proceed indirectly.

Let F be the set of all integers of the form

(33) rtfc,r) = (4fc)!(r + i ) ,
where r is any integer and k any positive integer; and let A consist of the elements
aneH (neZ) defined by

(34) an = T2 4 B + ' if « e T, and an = T24" if n £ T.

Thus A nearly coincides with the subgroup <T24">. Since a~lan + l is always one
of T23, T24 or T25, we have

(35) H = U Ax\
i = 0

so that A is of finite index in H. Also

(36) Ax' n AxJ = 0 if 0 < |i - j \ < 23.

Let Ak consist of those an for which n = y(k, r) for some r e Z . By (33) and
(34), Ak is a coset of the subgroup of index 24(4fc)! in H. Hence Ak is of finite
index in H. We shall show that

(37) Ak^AnA'i, where £ = T(4t)I.

For suppose not. Then an£~v = xmeA for some aneAk. Here m = 1 mod 24,
and hence Tm e 4̂, for some /, by (34). Hence we obtain a relation of the form

24y(fc,r)-(4/c)! =

for some integers r and s. Such a relation is impossible. If / 3: k, it would make
an odd multiple of (4k)l equal to an even multiple; and if / < k, it would make
an even multiple of 12(41)! equal to an odd multiple. These contradictions prove
(37).

Now let $BX, isA and RA be defined as in Lemma 14.1, but with H = <T>
and A given by (34). As before, P is any perfect simple group. Since A is of finite
index in H, we may use Lemmas 14.1 and 14.2 and obtain

LEMMA 14.3. Let N<iRA. Then either 15A ^ N or else N g 13A
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PROOF. Suppose that JV ^ 13A. Then r\w e N for some r\ / 1 in H and some
w e 13A. Then r\ e JV by the first part of Lemma 14.2. For a sufficiently large value
of k, the element £ in (37) is a power of ?;. Since Ak is of finite index in H, so also
is AnA'£ by (37). Hence U^ g <£*-*> ^ JV, by the second part of Lemma 14.2.
Lemma 14.3 now follows.

Now let JV be any normal subgroup of RA which is maximal subject to the
condition N nP = 1. The lemma shows that JV < UA, and 15 JN is a chief fac-
tor of RA. If we define

(38) J2 = RAjN, P2 = NP/AN and P2 = NFjN,

it now follows that J2 is monolithic, with n(J2) = 15JN. JV n P x # 1 would
imply that PA ̂  N and hence U^ ̂  JV by (27). Since this is not the case, it
follows that P2 , and similarly P2, are copies of P. We may identify H with
JVH/JV to obtain [ # , P 2 ] = 1- The relation ^ 2 ) = P" then also follows
from (27).

7. PROOF OF THEOREM B3. We are given groups K ^ 1 and L such that
ILJ ^ I K * K\ . We have to fit K and L into the group RA considered in the
preceding section by making a special choice of the perfect simple group P .
By (10), we may suppose that

(39) L | P = (K, , . . . ,K 4 )

where Ku ••• ,K4 are four copies of K. We may further suppose, by Lemma 4
that P contains a commutator

(40) c

where b(1), ••-,bw are suitable elements of K.
For each y e K, let y* be the vector in 13A defined by

(41) ^ = (71)^2)^3)^3(^7.

By (36), the sets A, Ax, Ax3 and Ax1 are orthogonal in pairs, and so the vectors
y* form a copy K* of K which is contained in 15A. If y ¥= 1, we have

[y*,-PJ = l>i , i>L = ^ ,

since yt is then a nontrivial element of P. Since PAr^N = 1, it follows that

(42) K*nJV = l.

The common support of the vectors y* # 1 of K* is the set

(43) B = AKJAxKJAx*\JAx1.

Let A* = BriBx~1n Bx~ 3 O B T - 7. Clearly A ^ /I*. But A* is the union of the
256 sets of the form X = Ax' HAx""1 nAxy~3 n ^ r * " 7 , where <x,P,y,5 take
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independently the values 0,1,3 and 7. If either a = 0 or p = 1, then X ^ A. But
if both a ^ 0 and p ¥= 1, then Ax" is one of AT, AT3 or At1, while Ax^~l is one of
-dr"1, 4 T 2 or Ax6. By (36), A' = 0 in all these cases. Hence A* g X, and
so we have

(44) A = BnBx'1 O B T " 3 O B T " 7 .

This shows that the support of the vector

c* = [fc(1)',T()(2)'T-1,T3i(3)'T-3,T7t(4)> T ~ 7 ] is contained in A. By (41), each of
the four components of c* is constant on A; and we have in fact c* = cA, using
(40). Since c ^ 1, this shows that

(45) P / 1 n ( X * f # l .

An argument similar to the proof of Lemma 2.3 shows that PA O (K*)H <J P^.
For, by (39) and (41), given ueP, the group < K * , T K * T " 1 , T 3 X * T ~ 3 , T 7 K * T " 7 >

contains a vector y = t;(u) such that va = u for all a e /I. Since PA is simple, we
therefore have PA g (K*)ff; and so

(46) 15A = (K*)H,RA = (H,K*}.

By (42), we may identify K with the isomorphic subgroup NK*/N of n(J2)
and obtain /i(72) = KH. Since L is embedded in P by (39), this completes the proof
of Theorem B3.

Theorem B3 may be extended to cover other infinite groups H besides Z a .
For example, if H is oligolithic i.e. has a finite set of elements £; ^ 1 such that
1 # M -a /f always implies that f, e M for some i, then we may give these £f

the role of the elements £ = T(4*)! in the above proof, and use Lemma 3.5 to
provide a suitable subset A.

8. PROOF OF THEOREM C2. We begin by deducing the theorem from Lemma 11
(in which we take H = K3) and the two parts of the following lemma, which will
then remain to be proved:

LEMMA 15. Let Klt K2> K3 and L be any non-trivial groups; and suppose
that either (i) K3 is non-periodic and \L X K3\ ^ IK^*.^!, or else (ii) max
(|K2|,|K3|) is 3 or 4 and |L| ^ [iCj * Ĵ "i|- Then L can be embedded in some
simple group of the form S = (KUK2,K3}.

We recall the hypothesis of Theorem C2. Ku K2, K3 and L are non-trivial,
as in Lemma 15 and (with H = K3) in Lemma 11, and the desired conclusion is
the same as in both lemmas; but in the theorem we are given only that

(47) | I | g Ka = |X1*X2«X3-|,

that not all three K( are of order 2, and that when a > 0 at most one Kt is of
order 2. :
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If a > 0, we may suppose \Kt\ = Ka; and if a = 0, we may suppose that
|.K\| ^ max (\K2\, \K3\), without loss of generality. This ensures that \L X K3\
^ \Ki * Kt\ and the hypothesis of the theorem ensures that max (\K2\, \

K3\) > 2.

Suppose first that max (|.K2|> \K
3\) ^ 4. The result then follows from Lemma

15 (ii). In the contrary case we may suppose that |-K3| > 4. By Lemma 12, K3 is
either non-periodic and the result follows from Lemma 15 (i); or else K3 has a
finite subgroup of order greater than 4, and the result follows from Lemma 11
(with H = K3), since l(K2) g 4 by (10).

This completes the deduction of Theorem C2.

We now prove the first part of Lemma 15. By Theorem B3, there is a group
of the form J2 = (H2, K2}, where H2 is an infinite cyclic group, with the following
properties: (i) J2 is the semidirect product H2[i(J2); (ii) n(J2) = P2

2 where P2 is a
perfect simple group which may be supposed to contain a finite subgroup of order
greater than 4; and (iii) n(J2) contains K2 and also a copy P2 of P2 such that
[H2,P2] = 1. Hence P2 has a finite subgroup H2 such that KK,) < \H2\, using
(10); and J2 contains the subgroup H2 x H2. Since (R2,K2} ^ n(Jz), all the
conditions (2) of Lemma 10 hold. Also H2 can be embedded in K3, since K3 is
non-periodic, by hypothesis. Lemma 15 (i) now follows from Lemma 10.

9. It only remains to prove Lemma 15 (ii); and again we use Lemma 10, but
now with

(48) J2 = LF(2,41) = PSL(2,41).

We note first the needful properties of J2, for which cf. [15], particularly Theorems
6.13, 8.5 and 8.27; or the account in [19], Chapter 20.

(a) J2 is simple and of order 2pqr, where p = 41, q = 20, r = 21.
(b) J2 has cyclic subgroups P, Q, R of orders p, q, r respectively.
(c) Each non-trivial element of J2 lies in exactly one conjugate of one of

P, Q or R.
(d) The normalizers of Q and R in J2 are dihedral groups of orders p - 1 and

p + 1, and they are maximal subgroups of J2.
(e) J2 is generated by any two distinct conjugates of P.
(f) Any two non-trivial cyclic subgroups of the same order are conjugate in

J2 (a corollary of (c)).

Let the elements a and T of J2 be defined by za = z + 1 and ZT = — 1/z, for
any point z on the projective line of p + 1 points. Then a is of order p and we may
take P = <o->. The involution i maps the unique fixed point oo of P onto 0.
Hence T does not normalize P, and so

(49) J2 = <<7,t>,

by(e):cf. [16], 93.
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To deduce Lemma 15 (ii) from Lemma 10, we may suppose without loss of
generality that \K2\ ^ |K3|. Hence \K2\ is 3 or 4. To satisfy (2), we have two alter-
native choices for the subgroup H2 x H2 of J2: either as a subgroup of Q with
\H2\ = 2 and \ff2\ = 5, or else as a subgroup of R with \H2\ = 3 and \H2\ = 7.
We require H2 to be embeddable in K3; and so if \K3\ is 2 or 4, we must choose
the first alternative; while if \K3\ = 3, we must choose the second. In either case,
we have l(Kt) ^ 4 < \ff2\, by (10).

It only remains to show that J2 has the form (H2,K2y with a suitable choice
of K2 for each of the six possible combinations of \H2\ = 2 or 3 and \K2\ = 3 or
4. Since J2 = n(J2) by (a), all the conditions of Lemma 10 will then hold, and
Lemma 15 (ii) will follow. Writing Zn for the cyclic group of order n and £>„ for
the dihedral group of order n, we need only verify

LEMMA 16. The group J2 = LF(2,41) is of the six forms (Z2,Z3y, <JL3,Z3y,
<Z2,ZA}, <Z2,Z>4>, <Z3,Zt} and <Z3,D4>.

PROOF. By (49), we have

J2 = <T,TO-> = <(7T,T<X> = <TO-17,T>-

Here T is of order 2, xa and ax are of order 3 and, as follows easily from 172 = 2
mod 41, T<7 17 is of order 4. This gives the first three forms of the lemma.

By (d), the normalizer of Q in J2 is a D40, which contains subgroup £>4; and
by (f), all involutions in J2 are conjugate. Hence the last two forms of the lemma
may be obtained from the first by choosing a Z4 or a D4 which contains T. Finally,
let the involutions Tt and x2 generate the normalizer D42 of R. By (f), J2 contains
a DA of the form <T 2 ) T 3 > . By (d), D42 is a maximal subgroup of J2 , and cannot
contain <T 2 ) T 3 >. Hence J2 = <TI ,T 2 ,T 3 > has the form (Z2,D4y.

This completes the proof of Lemma 16, and therewith of Lemma 15 (ii) and
of Theorem C2. We note the corollary of Theorem C2:

(50) l(K) ^ 3 if |X| # 2.

5. Simple groups generated by two given finite groups

1. In the remarkable paper [17] of 1953, Camm proved the existence of
2Ko non-isomorphic 2-generator simple groups. Each of her groups is the fres pro-
duct with an amalgamated subgroup of two copies of the free group of rank 2,
and is torsion-free. We confine our attention here to simple groups of the form
S = (H,K}, where H and K are given finite groups with \H\ > 2 and | x | > 1;
and to the question whether every countable group L can be embedded in some
such S. We shall obtain a positive answer to this question for many such pairs
H and K, and this implies the existence of 2s ° non-isomorphic simple groups
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S = <H, K}, since a given S has only countably many finitely generated sub-
groups. But in every case, at least one of the groups H and K has to be non-cyclic
monolithic, so that our simple groups—unlike those of Camm—all appear to
require at least 3 generators.

The reason for this is the character of the quadrilateral construction of § 3.3
and the bilateral construction of §4.1. In the notations of those sections, we ob-
tain simple groups of the forms

(1) S = </1 ; /3> and S = <K,,/2>.

In the first of these, Jl and J3 are opposite sides of a quadrilateral which has to be
completed by sides J2 and / 4 = /4(L), the given countable group L being em-
bedded in JA, while J2 can be chosen independently of L. In the second form, the
side J1 = yx(L) of the bilateral has to contain both Kt and L, but here K^ can be
any non-trivial finite group. But the J2 of the second form is subject to more
stringent requirements than the 7j and J3 of the first form.

The monolithic groups required to complete these constructions, viz. Jz and
/4(L) in the first form and J^L) in the second, are in the main those of J?P-type
provided by Theorem B2. Obviously, an appeal to Theorem B3 would allow more
general results to be obtained. It seems more interesting to show that the sides of
RP-type can often be replaced by finite simple groups: cf. the role of LF(2,41) in
the proof of Theorem C2.

2. For this purpose, alternating groups are adequate, as is shown by

THEOREM Dl . Let H and K be finite groups which have subgroups Hx ^ H
and Kt ^ K such that

(2) | / f! | .= m > 2 a n d | X 1 | = n > 1;

and let Aq be the alternating group of degree q. Then for infinitely many values
of q there are embbedings of H and K in Aq such that

(3) HnK = \and(HuKly = Aq.

Given a finite group L, there is a least integer q0 = qo{L) such that Aq contains
copies of L for all q ^ q0. It follows from the theorem that L can always be em-
bedded in some finite simple group Aq of the form <//, K}.

PROOF. Without loss of generality, we may suppose that H1 and Kt are chosen
as small as possible, consistently with (2). Interchanging H and K if necessary, we
may therefore assume that either

X t = <f> s Z2, m = 4 and n = 2;

and Kx = <t> and m ^ n.

(4)

or else

(4)*

Hi

H, =
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Let

(5) q = 1 + (m + n - 2)r, where r = l\U x K\l,

and / is a positive integer. By a theorem of Dirichlet, we may suppose that

(6) q is a prime,

since this is the case for infinitely many values of /.
It will be enough to show that H1 and Kt can be embedded in Aq, each in its

r-fold regular representation in such a way that Aq = (H^K^. For by (5), r is
an even multiple of \H\ and so the embedding of H t can be extended to an embed-
ding of H in Aq in its 2/m|/C|-fold regular representation, with the same support as
that of Hx. This support consists of rm symbols and no x # 1 in Hwill fix any of
them. Similarly, the embedding of Kt can be extended to an embedding of K in
Aq in its 2/n|H|-fold regular representation, with the same support as that of Kx.
This support consists of rn symbols and no y # 1 in K will fix any of these. The
supports of H t and Kt cannot be the same since r does not divide q, and so the
relation H CiK = 1 is assured.

Four cases need to be distinguished.
(i) Suppose that (4) holds. We take the q = 4r + 1 symbols permuted by

Aq to be a;, bt,citd( (i = 1 , - - , T ) together with d0, and represent H t and Xx as
follows:

r r r

(7) s i = I I (ai>bi)(Ci,di); s2 = f\ («i»ci)(^i'^;); ' = Y[ (ai>^i-i)-

This makes <HX, K^ transitive on the q symbols. By (6), it is therefore a primitive
permutation group. It is easy to verify that s^ consists of r — 1 cycles of order 4
and one cycle each of orders 2 and 3; and more precisely that (stt)* is the 3-cycle
(d0,aubl). By a well known theorem it follows that Aq = <H1,K1>: cf, [18],
Theorem 13.3; or [19], §160.

In the remaining three cases (4)* holds, so that H1 and Kt are cyclic.
(ii) Let m > 3 and n > 2. Then we take

r r

(8) s = f ] (aj.^.Cj.dj.A',) and t = ]\ (a^^b^e,, Yt).

Here Xt stands for a sequence (empty when m = 4) of m — 4 symbols, and Y;
for a sequence of n — 3 symbols which do not enter into the calculations. It is to
be understood that the symbols involved are all distinct unless the contrary is
explicitly indicated. It follows that <s, t} = (^H^K^ is again a primitive per-
mutation group permuting the q = 1 + (m + n — 2)r symbols transitively, and
contained in the alternating group Aq on these symbols. Writing c0 = a0 for
convenience, we have
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s~2ts2 = fl

An easy calculation shows that [f, s2] consists of r — 1 cycles of order 5 and a
single cycle of order 3; more precisely, \t,s2]5 is the 3-cycle {bue±,d^). Hence
<i/1 ; Kty = Aq for the same reason as in case (i).

(iii) Next let m > n = 2. Then we take

r r

(9) s = f[ (.a,+ 1,bt,c,,Xd and « = n («I.*I).
i = l i = l

using the same convention as in the previous case. Xt is now a sequence of m — 3
symbols. Here <s, i> is a primitive group of degree q = 1 + m/\ It is easy to check
that [/, s] consists of r — 2 cycles of order 3 and one cycle each of orders 2 and 4.
Writing u = [_t,s~\6, we have in fact u = (a1,bl)(cl,c2), so that sus~l = (ai,a2)
(bub2). This gives v = [u^'1]2 = (aub1)(a2,b2). Hence {HuKl} contains the
transitive subgroup (sus"1,!)) of order and degree 4. By a theorem of Marggraff,
it follows that {HuKi'y coincides with the alternating group i4gon the q symbols
of its support: cf. [18], Theorems 13.4 and 13.5.

(iv) It only remains to consider the case m = n = 3. Here q = Ar + I and
we take the support of Aq to be the same as in case (i), and

(10) s = fl (a,,bt,dd, t = n («i,c«,4-i)-

Then s't~s has r — 2 cycles of order 3 and 4 cycles of order 2. More precisely,
writing u = (s't~s)3, we have u = {c^d^ia^CiXa^b^Jib^d,). This gives
[w,s] = (aubuc2Xdr_ubr,ar,br-udr). Hence the primitive group (HuKl} of
degree # contains the 3-cycle [ S , M ] 5 = (a1,bi,c2). As in cases (i) and (ii), this
implies that (H^K^ = Aq.

The proof of Theorem Dl is now complete.

3. We give next an elementary proof of Theorem B2 for the important case
of finite H, which will prepare the way for a useful though marginal improvement.
It is probable that the hypothesis l(K) < \H\ of that theorem could be weakened
to l(K) ^ \H\. By (10) and (50) of §4, we know that l(K) g 3 if \K\ > 2 and
1(K) ^ 4 if \K\ = 2; but the interesting cases \H\ = 4, \K\ = 2 and \H\ = 3,
\K\ > 2 remain to be covered.

LEMMA 17. Let H and K be non-trivial groups such that |// | = n is finite;
and let

(11) P = <Ku-,Km

where P is a perfect simple group which is generated by m copies Kt of K. Then
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K can be embedded in PH in such a way that R = <//, K} provided that one of
the following conditions holds: (i) m < n; or(ii)m — n,but no automorphism
of P induces a non-trivial regular permutation of degree m on the m groups

PROOF. Let G = H*K. Then F = KH is the free product of the n conjugates
Xc(Ce//). Since m ^ n in both cases, there is a homomorphism 9 of F onto P.
Let M be the kernel of 9 and N = n^HM;. Then M<: F and so N<s G = FH.

For each £, F/M? is isomorphic with the perfect simple group P. Hence F/N is
the direct product of r copies of P, where r is the smallest number of conjugates Mc

of M which have N as their intersection. Since the direct product of r CDpies of P
has exactly r maximal proper normal subgroups, it follows that r = | G : NG(M) |
is the total number of conjugates of M in G. If r = n, then GIN is isomorphic
with R in an obvious way; and it will have the form <//, K} provided that M n Xc

= 1 for at least one Z,eH, since G = <//,X?>. Thus we have only to show that,
in each of the two cases, 9 can be so chosen as to map at least one of the conjugates
X ; isomorphically into P and to make r = n.

In case (i), we have a spare conjugate of K and can afford to make Ke = 1.
Let 9 map each of the other « •- 1 conjugates Xc (1 # £ e H) isomorphically onto
one of the groups Kit •••,Km, taking care that each Kt is the image under 9 of at
least one Xc. Then Xc will be the only one of the n conjugates of K under H to be
contained in M?. Hence the M? (£ e M) are all distinct and r = n.

In case (ii), where m — n, we may number the elements of H as ^ (t = 1, •••, n) .
Let 0 map X?I isomorphically onto Kt for each i. Suppose if possible that r < n.
Then W = M for some >/ # 1 in 7J. The inverse image of Xf under 9 is MK-',
and 9~in9 is an automorphism of P which maps X; isomorphically onto Xj(l),
where the non-trivial regular permutation i -> j (0 of 1.2, ••-,« is determined by
the relations £,»/ = £y(i). The existence of such an automorphism is contrary to
hypothesis, and we conclude that r = n in this case also.

This concludes the proof of the lemma.
Let L be any group such that

L ^ P and m = l(K). If l(K) < \H
\ | | Then we may choose P so that
= n, case (i) of Lemma 17 gives Theorem B2

for finite H.
If \ll\ = 4 and P = (Kt, •••,X4>, a regular permutation of order 2 of the iC;

must either interchange <Xl5 K2> with <K3, X4>, or else <J£2, X3> with <XX, X4>,
or possibly both. Case (ii) of Lemma 17 will therefore certainly apply whenever

(12) <KUK2} % <K3,K4} and <K2,K3> % {Kt,K4}.

If |H| = 3 and P = <X,,K2,K3>, the lemma will apply for a similar reason
whenever

(13) <KUK2> % <K2,K3>.
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These remarks will be used in the proof of the following result, which supplements
Theorem B2:

LEMMA 18. Let L be any countable group; and let H and K be finite groups
such that either (i) \H\ = 3 and \K\ > 2, or else (ii) \H\ = 4 and \K\ = 2. Then
there is a perfect simple group P which contains L, and an embedding of K in
the base group PH of R = P l H such that R = <tf, K}.

PROOF OF CASE (i). Here we use the bilateral construction. Let G be any finite
group with \G\ > 3. Then l(K) < \G\ by §4, (50), since \K\ > 2. By Theorem B2,
we can embed L in a perfect simple group Pt which is generated by 3 copies of K
in such a way that Jt = PtlG has the form <G,K1>, where K s X t g P?.
There will then be another copy Rt of K, contained in the group P1 of constant
vectors in P°. Hence Jx contains the subgroup G x Jf,.

By Theorem Dl , there is a finite alternating group J2 = </C2, ^ ) > where K2

and K3 are two further copies of K, such that J2 contains a subgroup K2 x G,
with G = G. For the degree q of J2 infinitely many values are available. Hence we
may suppose tha t / 2 is not isomorphic with the subgroup <^ l 5 Rxy ofJ^

We now form the bilateral group Jx *J2jG = G, R^ = K2, Since Rx ^ y,{Jx)
=P 1

c , / i = GJl and J2 = fi(J2), we have in this bilateral group the relations

(A n / i ( / 2 ) ) J l = G J l = J, and (J2 O K A ) ) ' 2 = Ki2 = J2\

and so its subgroups JL and J2 are hololophic by Lemma 7. Hence there is a simple
quotient group of the form P = <.J1,J2} = (KUK2,K3}. By our choice of qr,

R1y%J2 = <K2,K3>,

so that (13) holds. Hence case (i) of Lemma 18 follows from case (ii) of Lemma 17.

4. For economy, we combine the proof of Lemma 18 (ii) with that of the
following theorem, which employs the quadrilateral construction:

THEOREM D2. Let L be any countable group, and let Jt and J3 be finite
groups with subgroups H^H^i — 1,3) such that

(14) 1 # Hi ^ niJilHtnfii = 1 andJi = Ht'(i = 1,3).

Suppose further that Hx and H3 are not both of order 2, and that either

(15) /(Hj) < \H3\;or \R3\ = 3 , ^ 1 > 2; or \R3\ = A,\H,\ = 2.

Then L can always be embedded in some simple group of the form

(16) s = <y1;y3>-

Obviously (14) implies that Ht ^ 1 and H3 ^ 1. The second and third alter-
natives in (15) correspond to the two parts of Lemma 18. We shall first prove the
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theorem under the assumption of the first or the second alternative in (15). We
can then prove Lemma 18 (ii) and this will allow the proof of Theorem D2 to be
completed.

PROOF. Let H2, H2< H* and H± be copies of ffu H3, H3 and Hl9 respectively.

If /(«!) < \R3\, then l(HJ < \H4\; and so, by Theorem B2, there is a perfect
simple group P 4 such that JA = P^l H4 has the following properties :

(17) L g P4, BA :g MA) and / 4 =

Alternatively, if \H3\ = 3 and \Ht\ > 2, then |ff4| = 3 and |//4 | > 2; and so (17)
holds for a suitable P 4 by Lemma 18 (i) which has already been proved. In both
cases, H4C\H4 = 1 and / 4 = H4".

By hypothesis, fft and H3 are not both of order 2. By Theorem Dl, there
is therefore an alternating group of the form/ 2 = (H2,H2y with H2 C\H2 = 1;
and J2 = n(J2). We may now complete the quadrilateral to form the group

G = Jt *J2 *J3 * / 4 1 Hl = H2, H2 = H3, ff3 = H4, Hx = H,.

By (14) and (17), we then have (7, n/i(/ (_1)) ' / '= /,- for each i mod 4; and so the
/ ; are hololophic in G by Lemma 7. Hence L is embedded, as a subgroup of / 4 , in
a simple quotient group of G of the form S = </i, •••,/4>. But / 2 = <.H2,H2)
= <HUH3} and / 4 = <H4,.«4> = (H^Hi} are both contained in <JUJ3>,
and (16) now follows.

This proves Theorem D2 under the first two alternatives in (15). Under the
third alternative, |/73| = 4 and \Ht\ = 2, i.e. |fJ4| = 4 and \ff4\ = 2; and the
existence of a suitable P 4 satisfying (17) will follow, once case (ii) of Lemma 18
has been proved. The remaining part of the proof of the theorem can then proceed
exactly as under the first two alternatives. Thus it only remains to prove Lemma
Lemma 18 (ii); and by Lemma 17, it will be enough to show that a countable group
L can always be embedded in some perfect simple group P which is generated
by four involutions T1( ••• ,T4 such that

(18) <TlfT2> t <T3,*4> atld <T2'T3> % <*1>*4>;

cf. (12) above.
To prove this, let J^ = (01,0-2) and J3 = <<T3,(T4> be dihedral groups of

orders 10 and 14, the ot being involutions. Thus c, = oxo2 is of order 5 and
i; = <73ff4 of order 7. Taking H1 = <ffl>, H3 = <(T3>, Rt = <£> = ^1) and H3 = <n}
= fi(J2), the conditions of Theorem D2 hold. We are under the first alternative
in (15), since /(// t) ^ 4 < |/?3| = 7. Hence L can be embedded in a simple group
of the form St = (o1,o2,o3,o4.} with J^ = (ouo2y % (o3,o^) — J3 . But we
have no information about the subgroups (o2,o3y and (,ol7o4y of S1, except
that they are necessarily dihedral. We use Sj as the starting point of a bilateral
construction.
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Let Tt = <T2,T4> be a copy of J3, where T2 and T4 are involutions and
£ = T2T4 is of order 7; and let Gt = S1 I 7 \ . By Theorem B2, there is an involu-
tion t1eS1

Tlsuch that Gt = { T i , ^ ) . To be precise, we may take the support
A of the vector tx to consist of the elements 1, C, C2 and £3 of Tu the corresponding
coordinates of Tj. being o^, <73, <74, er2 respectively. Since 1 ̂  [o-1( <72] = [ru C3*^-3]
is a non-trivial element of Sx n<T^'>, we obtain the relation G = (T1,?ly in the
usual way. Since A ^ <£>> At2 f^A = AzA nA = 0 ; he r e Ax2 = Sup T " and
A-cA = Sup rl4. Hence [ T ^ T " ] = [ T ^ T ? ] = 1 and so

(19) (ti.^Sdi.OsD.,

the octic group.
On the other hand, the group St of all constant vectors in the base group

S\l of Gx contains a copy 7^ = <ff3,ff4> of T j ; and ^ = <73(74 is the C-coordinate
of T j ^ and also the £2-coordinate of d3zl. Hence the dihedral groups <T1,a3>
and <T1,6:

4> are of order at least 14. Note also that Gt contains the subgroup
7\ x Tv

Now let G3 = S3lT3 = < T 3 , T 3 > be a copy of G^ with S3 s Sj, T3 s Tj
and T3 an involution in the base group Sj3. Then G3 contains a subgroup T3xT3,
where T3 ^ Tt and is contained in S j 3 = fi(G3)- Hence we may form the bilateral
group

In G, r x = f 3 g Gx n^(G3) and so (Gjt O/i(G3))
Gl = rf1 = Gt; and similarly

(G3 n^Gj))03 = G3. Hence Gx and G3 are hololophic in G, by Lemma 7; and so
G has a simple quotient group of the form P = (GUG3}. Since T3 = Tt g Gt

and G3 = < T 3 , T 3 > , it follows that P = <G 1 ,T 3 > = <TLT2.T3.T4>.
The subgroups <T2, T3> and <T3, T4> of P are contained in the base group of

G3. They are the subgroups of G3 which correspond to the subgroups <T15 a3>
and <T!, ff4> of Gx. Hence they are of order at least 14, and so (18) follows from
(19). L is embedded in P as a subgroup of St ^ Gx.

The proof of Lemma 18 and Theorem D2 is now complete.

5. Taking Jt ^ J3 in Theorem D2, we obtain the

COROLLARY. Let J be a finite group with subgroups H and ft such that

(20) H g n(J), H nff = landJ = HJ; and either

(21) \H\ > 1. \H\ > 3, or \H\ > 2, \ff\ = 3.

Then l(J) = 2.

For by (50) of §4, we have l(H) < \B\ whenever |fl| > 2 and \H\ > 3. The
remaining cases are covered by the second and third alternatives in (15).

It would be tedious to discuss the conditions (20) and (21) in detail, but a few
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points may be made. They imply that J is monolithic; that J is not nilpotent i.e. is
not a prime-power group with cyclic centre: that \n(J)\ > 2; and that J is not one
of the dihedral groups of order 2-3".

Of the 80 monolithic groups of order not exceeding 60, just 49 are nilpotent.
Of the remaining 31, three have centre of order 2 viz. the binary tetrahedral group
of order 24, its central product with a Z 4 and the binary octahedral group —both
of these being of order 48. If we exclude these three groups and also the dihedral
groups of orders 6, 18 and 54, there remain 25 groups J with | j | g 60 all of which
satisfy the conditions (20) and (21) for a suitable choice of H and H, and for
which therefore l(J) = 2.

Some general classes of finite groups with I = 2 may be noted:

(1) The simple groups of composite order. For these we may take B to be a
Sylow subgroup of order greater than 4 and H to be a Sylow subgroup belonging
to a different prime from H.

(2) The symmetric groups of degree q ^ 4. If q > 4, we can choose H — <f>
where t is a transposition and H = Aq. If q = 4, we must take |/?| = 4, |if| = 6.

(3) The soluble monolithic groups / such that [M, J ] = M, where M = fi{J)
excluding only the dihedral groups D2_3II. If if is a system normalizer of J, then
H nM = 1 and J = HJ: cf. [15], Theorem 11.10; and the conditions (20) and
(21) will be satisfied with H = M unless \H\ = 2 and \M\ = 3. In the latter case,
the Fitting subgroup F of J must be a 3-group. Since J is soluble, we have
Cj{F) ^ F: cf. [15], Theorem 4.2 b); and if F is cyclic, this would imply J £ D2 3B

for some n. This case being excluded it is easy to show that F contains a cyclic
subgroup Mt^ M such that ^ 1 = 3 and M? = Mt. With H = M as before,
we may satisfy the conditions of the corollary by replacing the system normalizer
H b y < f l , M 1 > s D 6 o r Z 6 .

(4) The soluble monolithic groups J such that [M,J] = 1, |M| = p > 2
and \J : J'\ prime to p. Except when \j\ = 2 • 3" we may take H to be any Sp.-
subgroup of J. Again H n M = 1 and J = HJ, so that H = M = /i(J) is again a
suitable choice. In the exceptional case we may take H to be one of the dihedral
subgroups which J then contains.

It may be of interest to remark that /(S) = 2 also for all countably infinite
simple groups S, except possibly when S is torsion-free and has the peculiar prop-
erty that any two of its non-trivial subgroups have a non-trivial intersecion.
(Whether there exist simple groups with this peculiar property is problematic.)
The proof follows similar lines to that of Theorem D2, but the quadrilateral sides
of RP-type may need to be supplemented by sides of 23P-type as provided by
Theorem B3.

6. The other main result of §5 is similar to Theorem D2, but requires the
bilateral construction. This is
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THEOREM D3. Let K ^ 1 and J be finite groups and let L be any countable
group. Suppose that J is either (i) a simple group of composite order, or else (ii)
has a direct-product subgroup H x H such that

(22) H ^ fi(J), \ff\ >2andJ = HJ.

Then L can always be embedded in some simple group of the form

(23) S = <J,K>.

Conditions (22) imply that H ^ 1; and a simple group of composite order
clearly satisfies them provided it has a subgroup H x Hwith \H\ > 1 and \ff\ > 2.
For example, consider the simple group J = LF(2,p), where p is a prime greater
than 3. J has cyclic subgroups of orders $(p — 1) and %{p + 1), and therefore J
fails to satisfy (ii) only when one of these two numbers is a power of 2 and the other
is a power of 3. The only values of p for which this occurs are the Fermat primes
5 and 17 and Mersenne prime 7. The corresponding simple groups, of orders 60,
2448 and 168, contain D4's but no other genuine direct products.

But we do not need to examine the finite simple groups in detail. Instead
we prove

LEMMA 19. Suppose that the finite group G has no direct-product subgroup
H x H with \H\ > 1 and \R\ > 2, and no tetrahedral subgroup. Then G is
soluble.

PROOF. For odd primes p, the Sp-subgroups of G must be cyclic, since other-
wise G would contain a subgroup Zp x Zp: cf. [15], 310, 8.2 Satz. Let S be any
S2-subgroup of G. If S is either cyclic or normal in G, then G is soluble, by the
Holder-Burnside Theorem: cf. [15], 420, 2.11 Satz.

Let T be a non-trivial subgroup of S; and suppose, if possible, that T* = T
for some element xeG whose order is an odd prime p. Let Tt be a minimal charac-
teristic subgroup of T. Then T t is of exponent 2; and \Tt\ is 2 or 4, since other-
wise G would contain a subgroup Z2 x D4. Also Tf = Tv If [T"x,x] = 1, G
would contain a Z2 x Zp; and if not, then \T^ = 4, p = 3 and <T,,x> is tetra-
hedral. In either case we obtain a contradiction of the hypothesis of the lemma.
Hence NG(T) is a 2-group. But if T is a maximal intersection of S with one of its
conjugates in G, then NG(T) cannot be a 2-group. We conclude that S = NG(S)
is disjoint from all its conjugates in G. By a theorem of Frobenius, it follows that
G = SN, where N <i G and S nN = 1: cf. [15], 495. Since all the Sylow sub-
groups of N are cyclic, G is therefore soluble.

In particular, if J is a simple group of composite order, then J has subgroups
H and H which either satisfy the conditions (ii) of Theorem D2, or else are such
that
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(22)* | # | = 3, \H\ =2,H^ fi(J) and HJ = J,

where <//, H} — A4 is a tetrahedral subgroup of J, with HE = /4^ s D4.

7. PROOF OF THEOREM D3. We now write J2, H2, H2 for the groups J, H, H of
the theorem, including those in (22)*; and KY for K. To apply the bilateral construc-
tion we have to find a suitable mate Jx for J2. We require that Jt shall contain L
and also have subgroups Hlt H^ such that

(23) J, = (HUK{> = H{\ Ht =g n(Ji) and (H^H^ s <.H2,H2y,

where it is to be understood that in the isomorphism Ht maps onto H2 and ^
onto J72.

If these requirements are satisfied, the construction can proceed exactly as in
§4.1 We form the bilateral group G = J1*J2/Hl = H2, Hy = H2. In G we have
Ht= H2^ n(J2) by (22) or (22)*, and so (J t O/i(J2))-'' = J j by (23); while
H2 = 5 , | /i(Jx) by (23), and so (J2 rii^Jjf2 = / 2 by (22) or (22)*. Hence Jv

and / 2 are hololophic in G by Lemma 7; and so there is a simple quotient group of
G of the form S = <Jl5 J2>. Since J j = iHuKty by (23), and / ^ = H2 g J2 ,
this gives S = <X1( J2> = (J,K}, as required; and L is embedded in S as a sub-
group of Jt.

Except when \Ht\ = 3 and l ^ l = 2, we may satisfy (23) by taking
Jt = Pt I Ht for a suitable perfect simple group Pt. This follows from Theorem
B2 and Lemma 18. Here (22) holds but we must take care that Pt contains not only
L but also a copy of the finite group H2. The group of constant vectors Pt in
Pf' will then contain a subgroup ff1 s H2 such that <H1,^1> is the direct pro-
duct Ht x Hi.

Theorem B2 covers the case 1^1 > 3, \Ki\ > 2, since then l(Ki) < \Hi\ by
§4, (50). The two parts of Lemma 18 cover the cases \Ht\ = 3, l ^ l > 2 and
| i / j | = 4, |Xj | = 2. This leaves only the exceptional case \Hi\ = 3, \Kt\ = 2
mentioned above.

8. To cover this case we prove

LEMMA 20. Let L be any countable group. Then there exists a group of the
form J = <u, by, where u is of order 3 and b is of order 2, such that

(24) L g J = <«, uft>, <«, a> s Z6 and <«, j8> s ^ 4

/or suitable chosen involutions a and /? in n(J).

As before, Z6 is the cyclic group of order 6 and A4 is the tetrahedral group.
We may satisfy (23) by taking Jt = J,Ht = <w>, .K^ = <b> and # j = <<x> or

>, according to whether (22) or (22)* holds.

PROOF. By §4, (10), there is a perfect simple group P such that
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(25) L^P = ia1,--,a4y and [ffj,^] # 1,

where the ot are involutions. The relation \_<rl, <x4] # 1 may be obtained by a suita-
ble numbering of the <sr Let

(26) C = <£>, R = P< C a n d M = <«,T!>,

where £ is of order a prime p ^ 11 and ẑ  is an involution which transforms R as
follows:

(27) r ^ r 1 and (»")<< = »«,-. (i = l , - , p )

Here « is any vector in the base group P° ofR. Thus T2 = TX£ is also an involution,
D2p = <T!,T2> is dihedral, and M is the non-standard wreath product of P by
D2p with respect to the representation of degree p.

We now define a third involution zzePc: A = Sup T3 is to consist of the four
elements £, <J2, £3 and £4, the corresponding coordinates of T3 being au a2, er3, ff4.
Since p ^ 11, /4 n ^ " 3 contains only {;andso [£x3£,~l, ^ 4 T 3 ^ ~ 4 ] = [(T1,(T4] ^ 1
by (25). Since the coordinates of T3 generate P, the usual argument based on
Lemma 2.3 and the simplicity of P gives

(28) R = <£, T3> and M = <Tl, T2, T3>.

Writing H = <u>, we take b to be the vector in the base group MH of M l H
given by

(29) 6 = (t1,ta,T3),

the coordinates being in the order 1, u, u2. We have to show that the group J
= <u, by satisfies (24).

In P0, we have Sup z\l = A'1 and Sup T3
2 = A~lt; by (27). Since p ^ 11, we

have ^ n ^ l " 1 = AnA~l£ = 0. Hence all the coordinates of [ t j .T3] and
[T 3 ,T 2 ] are involutions, and so [ T 1 5 T 3 ] 2 = [ T 3 ) T 2 ] 2 = 1. But in MH, the vector
ubu~l has coordinates (T2,T3,TX). This gives, with the usual convention,

(30) [6,Hftu-1]2 = [T1,T2]2 = ^ 2 # l .

By (28) and (29), the coordinates of b generate M. Writing K = <fc>, it follows
that M O [i7, K] <a M by Lemma 2.3. But C=<£2> ^ [/f, K] by (30); and CR=R
since P is perfect. Combining these three relations and noting that R ^ M and
[ H , X ] < J = <if,X>, we obtain

(31) RH^[H,K].

But Tt = T2 and T3 = 1 mod RH and so JjRH is a tetrahedral group by (29).
Hence J = HJ = {u,ub} by (31).

Since ix(R) = Pc and iy transforms R by an outer automorphism, we have
H(M) = Pc. Hence n(J) = (PC)H by Lemma 2.4; and so it contains the elements
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(32) a = axa\a\ and /? = axa\.

Since ax, a\ and <r"2 all commute, a and /} satisfy (24).

The proof of Lemma 20 is now complete, and with it also the proof of Theo-
rem D3.

In conclusion we note, for comparison with those mentioned in §5.5 above,
some of the groups J which satisfy the conditions (ii) of Theorem D3. They include
the symmetric groups of degree q ^ 5, in which we can take H = <f> and H
= <M>, where t is a transposition and u is a 3-cycle commuting with t. The finite
groups J = PlH of RP-type (with H # 1) also satisfy (ii), with H = .P the group
of constant vectors in PH. Another interesting example is the ternary Hessian group
J = AQH, a subgroup of the holomorph of the non-Abelian group A of exponent
3 and order 27, Q being the quaternion group and QH the binary tetrahedral group
of order 24. fi(J) = A' is the centre of J and is the only possible choice for ft.

But the conditions (ii) of Theorem D3 are in general more exacting than those
of the Corollary to Theorem D2. Of the 25 groups of order at most 60 which
satisfy the latter, only one satsisfies the former. This is the group J = </l, T> of
order 54 with T2 = 1 and <f = t,~x, r\z — rj'1, where A = <£,f/> is the Fitting
subgroup of the ternary Hessian group mentioned above.

6. Transitive subgroups of wreath products

1. By a transitive subgroup of a transitive permutation group W we shall
mean throughout any subgroup of W which is transitive on the full set Sup W
of symbols permuted by W. (This is a different convention from that sometimes
used, e.g. in the discussion of case (iii) in §5.2, where a transitive subgroup merely
means any subgroup which is transitive on its own support.)

Let Y and Z be transitive groups, with Sup Y = B and Sup Z = C; and let

(1) W = Wr(7,Z) = CIZ, where Q = Q(Y, C),

be the natural complete wreath product of Y by Z. For convenience of reference,
we recall here some remarks made in §1.9 and 1.3. W is a transitive permutation
group with support B x C. Its elements tjC (r\ efi,£ e Z) act as follows:

(2) {b,cW = {bnncQ (beB,csC).

Each 'point' (b, c) lies on a unique 'line' Lc = (B, c) consisting of all the points
(b1, c) with b' e B; and the family of 'parallel' lines Lc forms a system of imprimi-
tivity for W.

For each ceC, we have a direct decomposition

(3) n = Yc x Mc,

where Yc is a copy of Y and r\ e Yc if and only if r\c. = 1 for all c' # c; while
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neMc if and only if nc = 1. Further,

(4) r'YcC=YcC and rxMcC = McC (ceC,teZ).

The restricted wreath product R = Y I Z is the semidirect product DZ, where

(5) D = Dr Yc = {Ycf and R = < 7C, Z> (c 6 C).

Here it is relevant that Z permutes C transitively. If u = nl, e R, where n e D and
£eZ, then Sup n is finite; and so

(6) |«| = Y 17 r,e = H
CEC

is a well defined element of thcAbelian group Y/Y'. If v = >;*£* is also in R, we
have m> = ^(O/'C"1')^*. Since [>/*| = IC'f'C"1! by the transformation law, this
gives

(7) \uv\ = j«| • \v\ (u,veR):

The homomorphism u -* |w| of R maps Z trivially and maps each Yc onto 7/Y'.
Its kernel is ZR = Z[D, Z] cf. Lemma 2.2. Hence

(8) Y/Y' s

LEMMA 21. For guuen 6 e B and ceC, let J = St^(ft,c) and H = St^(Le)
be the stabilizers in W of the point (b, c) and the line Lc, respectively. Then

(9) n H : J x Y and IT^.H a Z.

The notation here is that explained in §1.9.

PROOF. Let Y(6) = Sty(fc) and Z(c) = Stz(c) be the stabilizers of b in Y and
of c in Z, respectively; and let yc

(i>) be the subgroup of Yc which corre-
sponds to the subgroup Yw of 7. By (2) and (3), we have

H = QZ(C) = McZ
ic) x Yc and J = MCZ(C) x Y?\

since the elements of McZ
(c) fix every point of the line Lc. Given b' eB, there is

an element P'eYc such that {b,c)ji' = (b',c), since 7 is transitive on B. The
elements ft', one for each b' eB, form a transversal to J in ff; and the one-to-one
mapping <j> of B onto the cosets of J in H defined by <j)(b') = Jfi'{b' eB) gives
the required relation <j>~1Y<f> = UH:J.

Similarly, for each c'eC we choose an element y ' e Z such that cy' = c'\
and the elements y' form a transversal to H = QZ(c)in W = Q.Z. The one-to-one
mapping ^ of C onto the cosets of H in W defined by ip{c') = Hy'{c'eC) then
gives \j/~1Z\l/ = n^.H.

2. Now let H be a subgroup of any group G and let tc (c e C) be a transversal
to H in G. For any x e G , the permutation nG:H(x) : Hy -* Hyx of the cosets
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Hy of H in G may then be transcribed into the permutation t(x) of C defined by
the rule

(10) ct(x) = c' if and only if tcxte7
 xe H.

t is a transitive representation of G by permutations of C and clearly

(11) n C : H » t(G).

The kernel of t is

(12) KG(H) = fl Hx.
xeG

t does not depend on the choice of the transversal elements tc in their respective
cosets Htc, but only on the implied labelling of these cosets by the elements of C.

The theorem of Frobenius referred to in §1.9 may be stated in several
equivalent ways, FI — Fil l .

FI. Let Z be any permutation group on C which contains t(G), and let 9
be any homomorphism of H into Y. Then there is a homomorphism 6* of G into
W = Wr(7, Z) defined, for each xeG, by

(13) 0*(x) = f/C, where f = t(x) and nc = 0(tcxQl) (ceC);

and the kernel of 9* is KG(M) where M is the kernel of 9.

This version expresses the method of induced representations: cf. [15],
413; [21], §6.

If \G : H| is finite, then C is finite since \C = \G : H\; and W coincides
with R = Yl Z. From (7) we obtain in this case the transfer homomorphism—•
of G into YjY' viz.

(14) x ^ |0*(JC)| = Y [ I WcxQ1) (x e G, C = *(*))•
ceC

Next, let J be a subgroup of H and let sb (b e B) be a transversal to / in H.
Then the elements

(15) ub,c = sbtc (be,ceC)

form a transversal to J in G. By the labelling of these transversals, the representa-
tions nH:J of H and nG:J of G can be transcribed into representations s of H and
u of G, s(H) being transitive on B and u(G) transitive on B x C.

Assuming that s(H) ^ Y and t(G) ^ Z, where Y and Z are permutation
groups on B and C respectively, we then have

FII. The induced homomorphism s* of G into W = Wr(7,Z) coincides
with u, i.e. for xeG,

(16) u(x) = <T£, where £ = t(x) and <TC = s(tcxt~^) {ceC).
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PROOF. Let b e B, c e C. Rule (10) applied to the transversal (15) shows that
(b, c)u(x) = (&', c') if and only if sbtcxt^1s^1 ej. This condition is equivalent
to (i) tcXtJ1 e H i.e. c' = c£, and (ii) bs{tcxt~.1) = b'. Comparison with (2) shows
that u(x) is the element cr£eW defined by (16).

Besides (11) we have UH:Jx s(H) and UG.jXu(G). Since the representa-
tions s, t and u are transitive, the relations s(H) j£ Y and t(G) g Z, which imply
u(G) g W by FII, and the definition of 'trans' given in §1.9, allow us to restate
FII in more qualitative terms as

Fi l l . / / UHJ trans Y and UG:H trans Z, then UG:J trans W = Wr(V,Z)
For convenience of reference, we note here some obvious properties of the

relations x and 'trans'. Proofs are superfluous.

LEMMA 22. 1. « is an equivalence relation, and 'trans' is a transitive
relation.

2. Let F be a transitive permutation group and let A be any one of the
stabilizers in F. Then n r . A « F.

3. Let £ = Sym A be the group of all permutations of the set A and let H
be a subgroup of the group G. Then IIG.H trans Z if and only if \G : H\ = \A\.

4. If Gi is a subgroup of G such that HGt = G, then n G l . H l trans I1G : H,
where Hj = G^ H.

5. If F is regular as well as transitive, then n G : H trans F if and only if H o G
and G/H s F.

3. PROOF OF THEOREM El. Let F 1 ; ••-,Fr be transitive permutation groups and
Sup F, = A( (i = 1, ••-,/•). Then the natural complete wreath product W = Wr
(Fj, •••, Fr) is a transitive permutation group with Sup W = A = At x ••• x Ar.
As noted in §1.9, this kind of wreath multiplication is associative. Hence, when
r > 2, we have

(17) W = Wr(Fj, WJ, where Wt = Wr(F2, - , F r ) ,

on the understanding that the support A of W is to be identified in the obvious
way with the set

(18) B x C, w h e r e B = A t a n d C = A 2 x ••• x A r .

Let G be any group with a chain of subgroups H = Ho g Hv ^ ••• ^ Hr

= G such that

(19) XG(if) = 1 and nat:Bl_, trans F; (i = 1, - , r).

Then G s IIG:H. If r = 2, we have IIG.H trans W by Fi l l . If r > 2, we may assume
inductively that n G : H l trans Wx: and again Fi l l gives n G : H trans W by (17). It
follows by induction on r that G is isomorphic with a transitive subgroup of W.

To prove the converse part of the theorem, we may clearly suppose that G
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itself is a transitive subgroup of W, and have to infer the existence of a chain of
subgroups satisfying (19). Given b e B and ceC, consider the stabilizers J = Jo

= Stw(b,c) and Jt = S t ^ L J , where Lc consists of all the points (b',c) with
b' e B. Let H = Ho = J n G. Then # = StG(*>, c) and so XG(H) = 1 since G is
transitive on B x C. For the same reason, JG = W; and so .^G = W and J/f t

= J l t where Ht = G O J t . By Lemmas 22.4 and 21, we have

(20) I lH i : H trans II,,. j « r x , and n C : H l trans n1V:Jl x W^.

When r = 2, it follows that G satisfies (19), with H2 = G.
If r > 2, let M = KC(JJx). The relation IlC : H l trans Wt from (20) shows that

GjM is isomorphic with a transitive subgroup 6fWlt the subgroup //j/M corre-
sponding to the stabilizer in the image group of the point ceC = Sup Wv From
this, we may assume inductively that there is a chain of subgroups Ht ^ H2 §;
••• P , = G such that n H l / M : H | . l / M trans r f(J = 2,—,r). Since nH i / M : H. . l / M

«n H ( . H | _ , , these relations together with the first relation in (20) show that G
satisfies (19).

This completes the proof of Theorem El.
In general, the theorem cannot be said to give conditions for the embedding

of a group in a join of given groups, and it is therefore peripheral to the main
concern of the paper. Only when the given groups Tt are all finite will W coincide
with the natural restricted wreath product R = F\ l F2 I • • • I Fr, which has the
form

(21) i? = < F 1 , - , F r > ,

by (15) and its inductive generalization.
Two special cases of the theorem may be noted. The first, in which the F,

are chosen maximally i.e. as symmetric groups Z, = Sym At, is familiar from the
theory of imprimitive permutation groups: a group G can be embedded as a tran-
sitive subgroup in W r ^ , ^ , •••,£,) if and only if it has a chain of subgroups
H = Ho g Ht g ••• ^H, = G such that KG(H) = 1 and \Ht : Ht_t\ = \A,\
for each i = 1, •••, r. This case corresponds to Lemma 22.3.

The opposite extreme is when the F; are all regular as well as transitive. This
case corresponds to Lemma 22.5, and appears to have been overlooked, although
special instances are well known. We state it as

THEOREM E2. A group G can be embedded as a transitive subgroup in the
regular wreath product W = Wr(F1,---,Fr) if and only if it has a series of sub-
groups H = H0<iHi<3 ••• -ea/f, = G such that

(22) KG(H) = 1 and HJH^ S r , (i = 1, • • •, r)

As remarked in §1.9, the theorem of Kaloujnine and Krasner is the special
case r = 2 but with the unnecessary assumption H = 1 in place of KG(H) = 1:
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cf. [15], 99, 15.9 Satz; or [22], 100, III. 5. k. Also well known from the work of
Kaloujnine [24] on the Sylow subgroups of the finite symmetric groups is the case
where |F;| = p is a given prime for all i.

It should be noted that the regular wreath product W in Theorem E2 is
isomorphic with the repeated standard wreath product of the given groups
Fx, • ••, Tr, provided that this is defined inductively, as in §2, by

If the standard product W r C r ^ r ^ T j ) is to be equated with Wr(r 1 ( Wr(r 2 , r 3 ) ) ,
the latter must be defined with respect to the natural representation of Wr( r 2 , r 3 )
on the set F 2 x F 3 as support.

4. We shall now use Frobenius' result FI (for the case where H <a G) to throw
light on the relation «a2.

First, let G be any group with subgroups M and H such that

(23) M*aH<iG and KG(M) = I.

Then FI gives an embedding of G in the standard wreath product.

(24) W = Wr(L, T), where L s H/M and F = G\H.

We take 9 to be a homohorphism of H onto L with M as kernel. Then the embed-
ding of G in W is 9*, defined as in (13)

Let tx(cc e F) be a transversal to H in G. We may suppose that 11 = 1. Every
element of G is then uniquely expressible in the form uta (u e H, a e F). Let

(25) ca,t = UtfQ
l (a, Per).

Then the cXiB are elements of H by (23); and caA = c1>/? = 1 for all a,/? in F, since
tt = 1. Let Ta be the automorphism of H defined, for each a e F, by

(26) tf-^tjit;1 (ueH).

By (13), the vector part of the element 9*(uta)e Whas the y-coordinate OityUtj'^1).
Hence the embedding 9* is given explicitly by

(27) 9*(utx) = M*c(a)a, where u* = 0*(u) (u 6 H,ae F);

and the vectors u* and c(a) in Q = Q(L, F) have as y-coordinates the elements

(28) u* = 6(1**) and c<«> = 0(cv,J (y e F).

It follows from FI without further calculation that, for all w, v in H and a,/J in F,

(29) u*c(a)a • p*cw/? = w*c(^)aiS, where w = uf'X.?.

since utavtf - wtx0 by (25).
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In the Kaloujnine-Krasner Theorem, M = 1 and 6 is the identity mapping
of H = L; and the usual proofs of it are equivalent to deriving (29) directly from
(28). This method has the merit of giving at the same time a proof of Otto Schreier's
Existence Theorem for extensions of H by F; and it applies equally well under
the present weaker assumption that

(30) r\Mx-~l=i.
oie r

The theorem in question may be stated as follows, H and F being any given groups.
Let 6 be a homomorphism of H into L with kernel M, and let r a (aeF) be

automorphisms of H and the caj (a,/? E F ) elements of H satisfying (30) and also
the congruences

(31) '<£, = cV:Xcvx.ec~rt and vT"z* = c7it[v
tr'c~^ mod M

for all vsH and a, ft, y in F. Then the elements u*c(a)a (w eH,oceF)of W = Wr
(L, F) defined by (28) form an extension G* of H by F such that QG* = W and
ClCiG* = H* s H; and the elements sa = c(°°a (a e V)form a transversal to H*
in G* such that

(32) V/AV = (ca,/j)* and sxu*s~1 = (ux')* (a, J? in T,ue H).

The verification is immediate. The y-coordinate of the vector

u*c{a). a{v*cm)0L~l . ( c ^ r 1 is

by (28), the transformation law and (31). This gives (29) and shows that G* is a
group, the inverse of u*c(a)a being v*c(a~ ̂  x~i where o is determined from uvT"cx,x-1
= 1. Clearly fiG* = Pf and so G*jH* ̂  F ; and H*, which consists of all u* with
u e H, is isomorphic with /f by (28) and (30), since u* = 1 implies that wTv e M for
all yeT. The statements concerning the transversal elements sx follow from(31).

5. We now consider the special case where

(33) L < J 2 G, H = LG, F = G/H and A = NG{L)jH.

Let X be a transversal to A in F. We may suppose that 1 e X. By definition of

(34) H = Dr t^Lt,. = L x M and XG(M) = 1,

where M is the direct product of all the conjugates of L in G other than L itself, and
ttfeX) is a transversal to NG(L) in G, with ^ = 1. Further NG(L) = LCa(L);
and since every 7 e F is uniquely of the form 5£ with S e A and £ e X, we may com-
plete the definition of a transversal f y(y e F) to H in G by taking

https://doi.org/10.1017/S1446788700018073 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700018073


492 P. Hall [59]

(35) tti = tttt and ta e CG(L) (5eA,£e X).

By (34), each ueH is uniquely of the form ulu2 with uxeL, u 2 e M ; and
6{u) = «! defines 0 as a homomorphism of H onto L. The induced embedding 6*
of G in W = Wr(L, F) is defined by (27) and (28), and we shall write G* = 0*(G),
H* = 6*(H) etc. It will be convenient to use the notations of §4.4 (12) for certain
vectors in Q = fi(L, F). We recall that if x e L and A is any subset of F, then
the vector xA has the constant value x on A and is trivial elsewhere.

Now let yeL and neX. By (28) and (35), the <5£-coordinate of (t~lytn)* is
0(ytntf't~s'). \f £, ^ n, then j ^ ' e M - a NG(L), and so this ^-coordinate is trivial;
but if f = >/, it reduces to y since f,, e CC(L). Hence (t,~ V'I , )* = ^A,. and so

(36) L* = LA,H* = Q O G* = Dr LA? = DA and W = fiG*.

Thus /f* coincides with the base group DA of the restricted wreath product R&

= <L4, F> of L by F with respect to the representation nr.A of F. Since i?A occurs
in this way as a subgroup of the standard wreath product W, we may conveniently
call it a substandard wreath product.

(36) contains the first part of

THEOREM E3. If the groups G,L,H,T and A satisfy (?>?>), then G can be em-
bedded in the standard wreath product W = Wr(L, F) as a subgroup G* satis-
fying (36).

Conversely, let G* be any subgroup of W such that

(37) W = QG* and Q n G* - £>4,

and let Z be the centre of Q = Q(L,F). Then

(38) LA^2G*gZWA,

where WA = nAf.

We recall that QA consists of all vectors in Q which are constant on each coset
of A so that WA is the complete wreath product of L by F with respect to the
resentation nr.A. Note also that Z = f^Z^F), where Zt is the centre of L.

PROOF OF THE CONVERSE : Let yv e G* where y e F and veQ. Given £ e X, we
have ^y'1 = Srj for some £e A and rjeX. Since LA,, ^ DA~=i G*, it follows that
(LAliy S DA. If 1 ft y G L, the vector (yA,)?" = (yAl,./ = (yAiy has the support
A£. But the only elements of DA whose support is contained in A£ are those of
LA«. Hence (yAi)

v is constant on A£, and so y"' = y0' for all a,/? in A£. Since y is
any non-trivial element of L and £, any element of X, it follows that

(39) vxvp l e Zx whenever ai?~x e A (a, j8 e F).
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Hence veZ£lA and so G* ^ FZOA. Since ZoW, this gives G* ^ ZFOA =
as required.

We have shown incidentally that, for any yveG* and neX, we have (LA,)y"
= LA? where £ e A?/y. Taking r\ = 1, it follows that the subgroups LA?(£ e X) form
the complete set of conjugates of LA in G*, since W = HG* = G*Q by (37); and
^A = (^A)°* is their direct product. Further, N^L^) g AQ and, as we have shown,
G* g FZfiA. Hence NC.(LA) ^ AQ n F Z Q A = AZfiA. But [A,LA] = [Z,LA~\ = 1
and LA is a direct factor of QA. Hence NG.(LA) = L&CG.(L&). Thus LA<i2 G*.

This completes the proof of Theorem E3.

A corollary, which is not difficult to prove independently, is

LEMMA 23. Let L<x2G and suppose that L has trivial centre and only
finitely many conjugates in G. Then G is isomorphic with the substandard res-
tricted wreath product RA of L by F with respect to the representation 7tr.A.
Here F and A are defined by (33).

PROOF. We have G ^ G*, where G* satisfies (38), by Theorem E3. By hy-
pothesis, the centre Zj of L is trivial, and so Z = 1. Also |F : A| = |G : NG(L)\ is
finite, and so fiA = £>A and WA = RA. Thus (38) gives G* ^ RA = DAF. But
G* o n = DA by (36), and QG* = £2F. Hence G* = RA.

The lemma may be regarded as a splitting theorem: it implies that, under the
given conditions, G splits over H = LG.

6. Finally, as an application of the transfer (14) we prove

LEMMA 24. Let L~o2G = G' and suppose that L has only finitely many
conjugates in G. Then L is the product of its centre and its derived group.

PROOF. In FI, we take H = Y — NG(L) and 9 to be the identity mapping of
H. By hypothesis, \G : H\ is finite, so that (14) applies. Since G = G', the image of
G in the transfer homomorphism must be trivial, so that (in the notation of FI)

(40) Y\ tcxtc^sH', where C = '(*),
CBC

for all x e G. But L<\2G and so LGis the direct product of the conjugates of L in
G and is contained in H. Hence £ = 1 for all x e L. Since # = NG(L), we have
(for x e L ) tcxt~le CG(L) whenever tc $H. We may take t1 = 1 as the representa-
tive of the coset H, and conclude from (40) that xeH'CG(L) for all x e L But
H = LCG(L) since L<i2G, and so H' g L'CC(L). Hence L = L'(L n CC(L)),
which is the result stated.

COROLLARY. Let L be a finite group which is not the product of its centre and
its derived group, and let P and Q be non-trivial perfect finite groups. Then there
is no finite group of the form J = <P,Q> such that L-=a2 J.
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By Theorem A, we know that L < J 2 J f° r some J = <P, Q>; and the corollary
states that any such J must be infinite. This is in contrast with Theorem Dl which
shows that L can always be embedded in some finite simple group of the form

In [4], Theorem 3, Dark showed that D6, the smallest non-Abelian group,

cannot even be subnormally embedded in any finite perfect group. However, the

subnormal—and indeed the normal — subgroups of finite perfect groups are less

severely limited in character than their «=a2-subgroups. Given any integer d 2; 0,

let Gd be a non-trivial finite perfect monolithic group which has a normal soluble

subgroup Nd of derived length d. (We could take Go to be the icosahedral group.)

If p is any prime not dividing \Gd\, then Gd has a faithful irreducible representation,

of some degree m, over the field of p elements. The corresponding semidirect pro-

duct Gd+1 = GdM, where M = n(Gd+1), is then also perfect and monolithic and

of order pm|Gd|. The normal subgroup Nd+t = NdM of Gd+1 is then soluble and of

derived length precisely d + 1. Thus d can be arbitrarily large.
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