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1. Introduction

Let A be a lattice in «-dimensional Euclidean space En. For any
lattice there is a unique minimal positive number n such that if spheres
of radius [i are placed at the points of the lattice then the entire space is
covered, i.e. every point in En lies in at least one of the spheres. The density
of this covering is defined to be 6n(A) = Jnfi

njd(A), where Jn is the volume
of an w-dimensional unit sphere and d(A) is the determinant of the lattice.

The density of the thinnest lattice covering of En by spheres is the
minimum of 6n(A) over all lattices A and will be denoted by 0n.

This minimum may be interpreted in terms of positive definite
quadratic forms. If / is any positive definite w-ary quadratic form with
determinant D then the inhomogeneous minimum of /, m(f), is defined by

fn(f) = max min f(l-\-A),

where I ranges over all integral points.
If A : § = Tx (x integral) and f(x) = x'Ax, where A = T'T, i.e.

/(x) = §'§, then A and / are an associated lattice and form [4] and it can
be shown that

e (A) = J^m{f)^n

As {m(f)}in/Di is a function from the ^n(n-\-l)-dimensional space of
coefficients of /, it will be denoted by <f>(a), a = (an, a22, • • •, ann,
an> ai3> * - '» an-i. n). where

«=1 1=1
aiixixi

Thus A yields the minimum of dn(A) if and only if its associated
form / yields a minimum of <f>(a).

The form / is called extreme if <f>(a) is a local minimum, i.e. sufficiently
small variations in a do not decrease (f>(a). This corresponds to a local
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180 T. J. Dickson [2]

minimum of 9n(A) in the space of lattices. / is called absolutely extreme if
<f>(a) is an absolute minimum.

<f>(a) is invariant under an equivalence transformation (integral
unimodular transformation) and is unaltered by multiplying / by an
arbitrary positive constant. Hence the property of being extreme is shared
by the class of forms consisting of all forms equivalent to a multiple of
some one form of the class.

Bleicher [3] proved that the class of forms represented by
n n n

1=1 » = 1 3=1

is extreme for all values of n.
It has been proved [1], [2], [5] that this form is absolutely extreme

for n = 2, 3, 4, giving

In 5A/5 2
0, = = 1 • 21, 0, == -^— n == 1 • 46, 0, = n2 === 1 • 77.

2 3V3 24 4 5i /5
Barnes [2] has shown that this is the only class of extreme forms for

n = 2, 3. No other extreme forms have yet been found for any n.
It is the purpose of this paper to show that, when n = 4, <f>(a)

has a minimum at a0 = (2, 2, 2, 2, a, —1, — 1 , — 1 , — 1 , 1—a), where
a = ^(5—y/13), i.e. the following quaternary form is extreme:

(1) /„(*) = 2 V z*-2 ^ *i
t= l »=1,2

2. Associated parallelohedra

The set of points of space which are at least as near to the origin
as to any integral point I (with the metric defined by /) form a closed
bounded convex parallelohedron 77. II is thus the intersection of the half
spaces f(x) ga f(x—l), where I runs through all integral points.

In fact, only a finite number of these inequalities, i.e. only a finite
number of integral points, is necessary to define 77.

Voronol ([6], p. 277) established the following criterion to determine
which points are required: a point I ( ^ 0) is necessary to define II if and
only if the minimum of f(x) over x = / (mod 2) is attained only at x = ± / .
This means that at most 2(2n—1) inequalities are required.

The planes f(x) = f(x±l), where I satisfies the required condition,
thus form the faces of 77.

We can see from the definition of 77 that

L
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[3] An extreme covering of 4-space 181

m{f) = max/(jr),
is/J

and as 77 is convex,
n m(f) = max/(*) over all vertices of 77.
d
>f Now 77 is defined by f(x) <̂  f[x±l),

i.e. 2\l'Ax\ ^ VAl = /(/), where A = (atI),
i.e. 2\l'y\ 5S /(/), where ^ = -4*.

Also /(x) = y'A~xy = F(y) where F is the form inverse to /, so that
tn(f) = max F(y) over all vertices of 77.

For convenience in the work that follows, in place of F(y) we shall
use the form F*(y) = y'A*y where A* = DA-1, i.e. ^4* is the matrix of
cofactors of .4.

Thus

*»(/) = max —g-L
and

4. (a) = max

*) where the maxima are taken over all the vertices of 77.
re

3. The form f0

Voronoi [7] showed that any quaternary positive definite quadratic
form is equivalent to a form belonging to one of 3 domains in the 10 dimen-
sional space of the coefficients of /. These domains may be specified by '.he
set of integral I required to define 77.

Any form in the third Voronoi domain can be written as
in
ed
Uf

where ?.t ̂  0, for all i, and

ne
For any form in the interior of this domain (i.e. Xt > 0 for all i) the

required set of integral / is

,n, (1, 0, 0, 0) (0, 1, 0, 0) (0, 0, 1, 0) (0, 0, 0, 1) (1, - 1 , 0, 0)

(1, 0, 1, 0) (1, 0, 0, 1) (0, 1, 1, 0) (0, 1, 0, 1) (0, 0, 1, - 1 )

(1, 1, 1, 0) (1, 1, 0, 1) (1, 0, 1, 1) (0, 1, 1, 1) (1, 1, 1, 1)
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and II has 30 faces and 120 vertices. (If / lies on the boundary of the
domain, IT may have fewer faces, and vertices).

The form (1) above can be written as

-x 3 - a ; 4 ) 2 ] + ( 2 a -

Since (1—a) > 0 and (2a—1) > 0, a0 is an interior point of the third
Voronoi domain.

There are sets of vertices for which F* (y) has the same value regardless
of /. These are called congruent vertices. If x is a vertex defined by the
4 planes, f(x) = f{x—l{) (i = 1, • • •, 4), say x corresponds to the set
(0, llt l2, l3, h)- Then a vertex is congruent to x if it corresponds to
the set ±(—I, lj^—1, 12—1, h—l, h—l) where * = /,. for some i. Thus
there are 12 different sets of congruent vertices so we must find the
maximum of F*(y) over these 12 sets. Voronoi called these 12 sets of
vertices I, II, III, etc. and we will refer to these throughout.

Let

**(«> = — o i —

where y is a vertex of type X, so that

<f>(a) = m a x <j>x{a).
x

Voronoi also constructed a table ([7], p. 173) indicating which planes
intersect at each vertex. The integral I are numbered in the order above
and each of the planes Vy = ± i / ( ' ) is referred to by the appropriate
number (marked with a dash when the negative sign is required).

Now for the form being considered,

A=A0 =

A* = A* =

- 2
a

— 1
. —1

(2-a)

a
2

- 1
- 1

I
— 1

2
1 - a

" 2
1-a

1
1

j-

— 1
1-a

2.

1 - a
2
1
1

1
1
2
a

1
1
a
2

and D = Do = (2-a)2(l+c
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The inequalities defining 77 are then

1, 2, 3, 4 \yt\ ^ 1 ; * = 1, 2, 3, 4

5 I2/1-2/2I ^ 2 - a

6, 7, 8, 9 \yt+y,\ ^ 1 ; * = 1,2, / = 3, 4

10 |y,-y«| ^ 1+a

i i , 12 l2/i+2/2+2/,l ^ i+« ; * = 3, 4

13, 14 l2/i+2/3+2/4l ^ 2 - a ; * = 1, 2

is I2/1+2/2+2/3+2/4I ^ i-

Making use of the Voronoi table [7 p. 173] we can calculate the value
of F*{y) at all vertices.

For example:
Vertex of type I: defined by inequalities 3, 4, 13, 14 i.e. the vertex

is the intersection of planes

Vz = 1. y« = 1. 2/i+2/3+2/4 = 2 - a ,

2/2+J/3+2/4 = 2 - a .

These give
2/i = —a. 2/2 = —«. 2/3=1. ?/4 = 1 at vertex,

whence x

F*(y) = (2-a)( l + a ) [ -2a 3 +6a 2 -6a+4]

Continuing in this way, we find that for vertices of types I, II, VI:

and for vertices of other types

Hence

a) 2 ( l -a ) = F*

[as a < -7, 4(1-a2) > 2],
thus

and so

1 Here and in subsequent calculations we simplify by using the relation a1—5a+3 = 0.
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184 T. J . Dickson [6] 
For the associated lattice A, 

6(A) = j <f>(a0) = 1-93, 

which is fairly close to the absolute minimum. 

4 . P r o o f of e x t r e m i t y 

a0 yields a minimum of <f>(a) if, for every sufficiently short vector 

£ = ( e l l > £ 2 2 > £ 3 3 > e 4 4 > e 1 2 > £ 1 3 > £ 1 4 > E23' e 2 4 ' e 3 4 ) > 

there is some X such that 

& r ( * o + £ ) ^ ¿1 («<>)• 

We show that in fact there is some X such that 

(2) <f>x{aQ+e) > <Ma0). 
unless e is a multiple of a0. It is obvious that X can only be I, II or VI. 

We establish (2) in the following steps: 

S t e p (A). It will be shown that the sum of the directional derivatives of 

& ( a ) < «£n(a) a n d ^vi(a) evaluated at a0 is zero for any given direction. 

S t e p (B) . It will be shown that the sum of the second order terms in the 
Taylor series in e for <f>1(a0-\-e)-\-<f>n(a0-{-£)+<l>-vl(a0-\-e) is a positive semi-
definite quadratic form. 

S t e p (C). It will be shown that the above semi-definite form can be zero 
only when e = ka0. 

If e is in such a direction that one of the directional derivatives of 
&( a )> ^ n ( a ) o r <£vi(a) i s positive then (2) is automatically satisfied. If 
none is positive and (A) is true then they must all be zero. 

If this is the case and (B) and (C) are true, then, unless £ = ka0 the 
sum of the second order terms must be positive for one of the three functions 
and hence (2) is still satisfied for all sufficiently small €. 

If e = ka0, the quadratic form is a multiple of the given form and 
<f>(a0) is unchanged. 

P r o o f o f s t e p (A). It suffices to establish (A) for the 10 independent 
directions given by the unit vectors, i.e. for e = e (1, 0, • • •, 0) etc. The 
calculations are similar in all cases (by the symmetry of the form in x1, x2 

and in x3, xi we need in fact only perform 5 calculations) and it will suffice 
to give the details only for e = e (I, 0, • • •, 0) . 
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and

So for a = a0

A*

The

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

A =

+c;
"2+c a

a 2
— 1 —1
— 1 —1

"0 0
0 (1+a) (3—c
0 (l+a)e

.0 (l+a)«

inequalities defining 77 are

I2/1I ^ i + i «
I2/2I ^ 1

I2/3I ^ 1

I2/4I ^ 1
|yx—ya| ^ 2—a+£e

|y!+y,| ^ 1+ie
|y1+y4| ^ l+ |e
I2/2+2/3I ^ 1

l2/2+y4l ^ 1
|y8—y4| ^ 1 + a

1̂ 1+̂ 2+2/31 ^ l+a+£e
Iyi+y2+y*l ^ i+a+ie
12/1+2/3+̂ 1 ^ 2—a+i£

12/2+^3+^1 ^ 2 - a

I2/1+2/2+2/3+2/4I ^ !+-2£-

—1 — r
— 1 —1

2 1—a
1-a 2.

0 0

3B (2a—l)e
(2a- l )e 3e

now:

Consider the vertex of type I defined by 3, 4, 13, 14.

yx = - a + | e , y2 = - a , y3 = 1, y4 = 1.

By examining the extra terms introduced by the e, we obtain,

F*{y) =
+3e+3e-a(l-a)(2-a)(l+a)£
+ (2-a) (l+a)«+ (2-a) (l+a)e
-4a(l+a)£+2(2a-l)e+0(£2)
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A similar calculation for a vertex of type II (1, 2, 11, 15) yields

By the symmetry of the given form in the variables x3 and xA, F*(y)
for a vertex of type VI (1, 2, 12, 15) is equal to the above value for type II.

Also D = D0+2(2 — oc)(l+ac)e, and so

14. ^Z i e+O(e2))
^ 2 ( l a ) ( l + o c ) ^ ^ '

2e

and
f _ 2 a + l

<f>n(a0+e) — <f>vl(a0+e) = <f>{a0)

Thus

2e

since 5a 2 -25a+15 = 5(a 2 -5a+3) = 0.
Thus (A) is proven for e = e(l, 0, 0, • • •, 0).

PROOF OF STEP (B).

The coefficients of e^, s\2, ene22, etc. will be calculated separately.
The terms are of two types

(i) Terms of the form Ke2
u.

There are 10 terms of this form for which the calculations are similar
(by symmetry we need in fact perform only 5 calculations).

Let e = e (0, 0, • • •, 0, 1, 0, • • •, 0). Then for a = ao+e, let F*(y)
be equal to
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(a) F%{l+be+b'e2+O(i?)} at a vertex of type I,
(b) F^l+cs+c's^+O^)} at a vertex of type II,
(c) F%{l+de+d'e2+O(e?)} at a vertex of type VI;

and let D = D0{l+fs+f'e2}.
Then

2 <f>xi*o+£) =

But from (A) we have f (b-\-c+d) = f/, so that

By varying e above we can obtain the term in e2
u for all i, j . It will

suffice to give details only for the term in e^.
If e = e (1, 0, • • •, 0), then from above calculations we have:

2 3a—1

a)
2a+l

A calculation of the £2 terms of F*(y) for the 3 vertices gives

1

8(l-«)

Substitution of these quantities in (3) gives, on simplification

Z - 1 , II, VI

Thus the coefficient of £2
X and, by the symmetry of the form, also fi|2,

in the required Taylor Series is

(ii) Terms of the form Ke^e^, ij =£ M.
There are 45 terms of this form for which the calculations are similar

(by symmetry we need, in fact, perform only 17 calculations).
Let e = (0, • • • 0, e, 0, • • • 0, r\, 0, • • •, 0). Then, for a = ao+e let

F*(y) be equal to
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(a) F*{lA-be+b't]+b"erj} at a vertex of type I, 
(b) F*{lA-ce+c'T]-i-c"ei]} at a vertex of type II , 
(c) F*{l+de+d'ti+d"sri} at a vertex of type VI; 

and let D = D0{1+ / e + / ' ? y + / " « ; } , neglecting in each case terms involving 
eTt]' where m a x (r, s) ^ 2. 

Then 

1 <f>x(*o+£) = H(a0)[l+{i(b+c+d)-^f}e 
x-i.ii.vi +{f(ft'+c'+rf')—f/'^+lf^'H-cc'+A?') 

+§(6"+e"+i")-t/"+¥//'-i/(*'+«'+<'') 
-£/'(&+*+<*) WI+ ' • •• 

But from (A) we have: %(b+c+d) = f/ and f (fc'-f-c'+d') = f/', so 

3^(«0)[l + {f(66'+cc'+da') 
that 

(4) X-1, II, VI 
+ f ( 6 " + c " + r f " ) - f / " - ¥ / / > ] + 

B y varying e we can obtain the term in £,,£», for all i, j , k, I. It will 
suffice to give details only for the terms in ens22-

If e = (e, ?7, 0, • • • 0) then from the earlier calculations given in the 
proof of (A) and from the symmetry of the form in x1 and x 2 we already have 

V = 
3a—1 

2 ( l - a 2 ) 
c = c' = d = d' = 

2 a + l 
4 ( l - a 2 ) 

Now 

A = 

• 2 + £ a — 1 — 1" 
a 2+rj — 1 — 1 

— 1 — 1 2 1—a 
— 1 — 1 1 - a 2. 

and ^4* = 4 * + 

- ( 3 - « ) ( l + a t o 
0 ( 3 _ « ) ( l + a ) « 

( ! + « ) « 

(! + «)« 

( 1 + a ) , 
(!+«)« 
3 f + 3 ? / - | - 2 ^ 

( 2 « - l ) ( 8 + , ) 
— (1—a)«7 

( l + a ) « 
( 2 a _ !)(£+,/) 
— (l-a)fi»? 
3£+3?7+2e^ 

The inequalities defining II are now 

1 ^ I +\B 

2 |y,| ^ 
3 ^ 1 
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4
5

6

7

8

9

10

11

12

13

14

Iftl ^ 1
I2/1-2/2I ^ 2

l2/!+2/3l ^ 1

I2/1+2/4I ^ 1
l2/2+2/sl ^ 1
I2/2+2/4I ^ 1
|y3-2/4| ^ 1

I2/1+2/2+2/3I

I2/1+2/2+2/4I

12/1+2/3+^1

12/2+2/3+2/41

:-a+£(£+>7

+£«
+i«
+i»?
+h
+«
^ l+a+^(
^ l+«+|(
^ 2-a+ie
^ 2-a+|>j

Consider a vertex of type I (3, 4, 13, 14) where

Vi = —«+9"£. V» = —<x+i?7, w, = 1, v± = 1-

Then

6" = - ^ [-2a(3-a)(l+a)+4+i(l-ot)(2-a)(l+a)

26—9a

8(2-a)(l+a)

by choice only of terms involving er] in the calculation of F*(y).
Similarly

C" = d" « 2 6 ~ 5 »
8 ( 2 -

A simple calculation gives

/ / ic% \ ft 1 \ * /

Substituting in (4) gives

plus terms involving £r»7* where max (r, s) 5; 2.
Thus the coefficient of %«2 2 in the Taylor's series is

xi 1 7 a ~ 6
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IO US I I ! C<1 <M C9 <M I

+ + » a s I I I I »

| | « | | S ? I I <M
8 «. I «_•* I + >O CM I

S "5 " "? ' ? IO^ -~TJ<OS00 '8^
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I I I I I I I I I I
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O> O I
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I I I
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I I • *
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"• I I I » I t -H | II I I I
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[13] An extreme covering of 4-space 191

On completing these calculations the required sum of the second order
terms for any e is a multiple of

h(e) = e'Me,

where M is the upper matrix on page 12.

Note that Ms = 0 if

e = K(2, 2, 2, 2, «, - 1 , - 1 , - 1 , - 1 , 1-a)
(5) =Ka0.

Let M* = T'MT where T ••=

-I
0
0
0
0
0
0
0
0

. 0

0
1
0
0
0
0
0
0
0
0

0
0
1
0
0
0
0
0
0
0

0
0
0
1
0
0
0
0
0
0

2(2-a)
2 (2-a)
2(2-a)
2 (2-a)
(2-a)
-(2-a)
-(2-a)
-(2-a)
-(2-a)

0

1
0
1
0
0

- 1
0
0
0
0

1
0
0
1
0
0

- 1
0
0
0

0
1
1
0
0
0
0

- 1
0
0

0
1
0
1
0
0
0
0

- 1
0

1
1
1
1
1

- 1
- 1
- 1
—1

1

Then M* is the lower matrix on page 12.
Now the sum of the elements in each row of M* is zero. Also all elements

are negative except those on the diagonal.
Hence

h*{x) = x'M*x = 2 ?«(*, -* , ) ' ; Pt, > 0 for all *, /.

Thus h* (x) is a positive semi-definite form and, as M* is congruent to
M, h(e) is also positive semi-definite. Thus (B) is proved.

PROOF OF STEP (C).

As h* obviously has only one independent zero then h also has only one.
We have already shown (5) that this occurs when e = ka0.

5. Discussion

Since no criteria are known for extremeness, the above verification is
necessarily direct and cumbersome. Some such criteria must be found for
work on this problem to proceed much further.

The presence of quadratic irrationals in the coefficients of the above form
shows that any criterion for extremeness cannot be linear, as it is for the
dual problem of lattice packing of spheres in n-space.
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In 4 dimensions we now have two extreme forms, one in each of the
first and third Voronoi domains. It is possible that there is also an extreme
form in the second domain, similar to the above.

Bleicher ([3], p. 649) made the conjecture that any extreme form prob-
ably gives rise to a primitive parallelohedron with all its vertices lying on
a sphere, i.e. such that <f>x(*) has the same value for all X. However, the
above form shows this conjecture to be false since we now have an extreme
form with <j>xW) greater for 3 types of vertices than it is for the other 9.
The author has verified that there are in fact no forms in the third Voronoi
domain which give rise to a primitive parallelohedron with <f>x{*) constant
for all vertices.

Finally, the author would like to thank Professor E. S. Barnes for his :

helpful suggestions towards the preparation of this paper. i
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