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Abstract

Objective: The rapid onset of coronavirus disease 2019 (COVID-19) created a complex virtual
collective consciousness. Misinformation and polarization were hallmarks of the pandemic in
the United States, highlighting the importance of studying public opinion online. Humans
express their thoughts and feelingsmore openly than ever before on socialmedia; co-occurrence
of multiple data sources have become valuable for monitoring and understanding public
sentimental preparedness and response to an event within our society.
Methods: In this study, Twitter andGoogle Trends data were used as the co-occurrence data for
the understanding of the dynamics of sentiment and interest during the COVID-19 pandemic
in the United States from January 2020 to September 2021. Developmental trajectory analysis of
Twitter sentiment was conducted using corpus linguistic techniques and word cloud mapping
to reveal 8 positive and negative sentiments and emotions. Machine learning algorithms were
used to implement the opinion mining how Twitter sentiment was related to Google Trends
interest with historical COVID-19 public health data.
Results: The sentiment analysis went beyond polarity to detect specific feelings and emotions
during the pandemic.
Conclusions: The discoveries on the behaviors of emotions at each stage of the pandemic were
presented from the emotion detection when associated with the historical COVID-19 data and
Google Trends data.

The novel coronavirus disease 2019, COVID-19, impacted the daily lives and careers of millions,
resulting in a flood of information and intense dialogue. Along with the public health crisis, the
pandemic triggered economic and social disruption. In the United States, conversation
surrounding the virus was also marred by political polarization. It is vital for governments and
public health agencies to understand the nature of the public discourse surrounding COVID-19
to guide educational campaigns and inform public policy research.

Traditionally, stance has been evaluated with surveys, but there are several shortcomings
(ie, high costs, poor response rate, limited sample size, dishonest answers, and closed questions).
The growing flow of information on the Internet, commonly known as Big Data, provides a new
resource for meaningful insights in the digital age. Athique (2020) notes “[t]here has never been
a time in which media systems have been able to convey such detailed and universal coverage of
a historical event in real time, with the added capacity to keep us all in touch and to give us a
voice too.”1 Big Data, unlike survey research, relies on structuring large volumes of user-
generated data. “Big Data allows us to finally see what people really want and really do, not what
they say they want and say they do.”2 Sources like social media and search engines have become
powerful tools for analyzing real-time changes in public attitude.

Social media houses much of the sharing and consumption of news and information in the
modern media environment. The demographics of users on apps like Facebook, Instagram,
Twitter, and WhatsApp have historically been characterized by a younger audience, but social
media platforms have lately become more representative of the general population. The past
decade has seen a 2-fold increase in ages 50 and older who report using at least 1 app.3 The
growth of social media has also seen a decrease in the number of people who look to traditional
media outlets for news. Two-thirds of American adults say that they “often” or “sometimes” use
social media for news and approximately 1 in 5 say that it is their primary source of news.4,5

Twitter was a significant platform for sharing and responding to public health information and
misinformation during the COVID-19 pandemic.

People on Twitter tend to be more news-focused than those on other platforms. Roughly
three-quarters of Twitter users find their news on the site and two-thirds of users describe
Twitter as “good” or “extremely good” for sharing health news.5 Rufai and Bunce6 remark that

https://doi.org/10.1017/dmp.2023.101 Published online by Cambridge University Press

https://www.cambridge.org/dmp
https://doi.org/10.1017/dmp.2023.101
https://doi.org/10.1017/dmp.2023.101
mailto:han.yu@unco.edu
https://orcid.org/0000-0003-0639-4445
https://doi.org/10.1017/dmp.2023.101


Twitter is a “powerful public health tool for world leaders to rapidly
and directly communicate information on COVID-19 to citizens”.
On the other hand, Shahi et al.7 assert that more than 4 in 5 tweets
may contain false claims. Due to the high volume and velocity
of data production on social media, there is a reduced ability to
distinguish facts from noise. Roozenbeek et al.8 state that
“increased susceptibility to misinformation negatively affects
people’s self-reported compliance with public health guidance
about COVID-19, as well as people’s willingness to get vaccinated
against the virus and to recommend the vaccine to vulnerable
friends and family.” Infield4 also maintains that American adults
who rely on social media as their primary source of information
were the most likely to believe misinformation, and the least
engaged and least knowledgeable of current events. The
confusing nature of information-sharing on social media may
have resulted in individuals misinterpreting or disregarding
public health data.

Google search data provides useful insights into understanding
the discourse around COVID-19. “People’s search for information
is, in itself, information.”2 Google Trends measures Web-based
interest in topics by collating search data. “Google Trends has
served and still serves as an excellent tool for infoveillance and
infodemiology : : : newspapers and newscasts can influence Web
queries, it provides a way to quantify the Web interest in a specific
topic more efficiently than any other methods historically used
(eg, population surveys).”9 A total of 83% of Americans use Google
as their main search engine, making Google the most popular
search engine in the United States.10 Due to its widespread usage in
the United States, Web-based interest is an important factor in
studying COVID-19 discourse—providing an insight into the size
of the conversation about the pandemic.

With Twitter and Google Trends, a predictive model was
developed for sentiment analysis with historical COVID-19 data,
such as cases and deaths, through a machine learning approach.
With the rapid spread of misinformation during the pandemic, it
remains to be known how COVID-19 health and policy
information impacted changes in public opinion.

Literature Review

Twitter is a valuable source of big data due to its accessibility,
widespread usage, availability of open-source code, and unidi-
rectional structure.11 COVID-19 discourse has recently been
examined on Twitter by means of frequency analysis of likes,
comments and retweets, word-cloud mapping, stance detection,
sentiment analysis, and network modeling.6,12–14 A growing body
of researchers have shown that sentiment analysis and topic
modeling can be used to successfully investigate emotions and
sentiment using natural language processing.13,15–17 Schweinberger
et al.15 chose to model topics and sub-topics across different
phases of the pandemic. Singh et al.18 demonstrated that Twitter
conversations may be used to predict the spread and outbreak of
COVID-19. Hu et al.13 and Hussain et al.16 generated word
clouds, analyzed the geo-temporal patterns of Twitter sentiment
related to COVID-19, and linked changes in sentiment to key
events and topics. Ahmed et al.19 also generated word clouds and
conducted a sentiment analysis to study the effects of lockdown
and reopening procedures.

Google Trends is commonly used in conjunction with Twitter
and/or health data for health research. For the MERS outbreak in

2015, Shin et al.20 found high correlations between the number of
confirmedMERS cases and Twitter sentiment and Google interest.
For the COVID-19 pandemic, Diaz and Henriquez21 compared
Twitter sentiment and Google interest with fluctuations in the
stock market and number of people under lockdown. Mavragani
and Gkillas22 investigated the relationship between Google Trends
data and COVID-19 cases and deaths. Turk et al. created a
predictive model for COVID-19 cases using Google Trends and
virtual consultation data. Alshahrani and Babour23 used Twitter
and Google Trends to analyze search behaviors and predict new
COVID-19 cases.

Zhang et al.,24 furthermore, demonstrated that machine
learning, specifically a unigram random forest (RF) model, is a
powerful tool to predict coronavirus sentiment. RF regression
models tend to outperform classical approaches in analyzing
highly non-linear and complex relationships.25 Cornelius et al.26

used RFs to predict COVID-19 patientmortality. Iwendi et al.27 used
RF models to predict severity of COVID-19 cases using patient
geographical, travel, health, and demographic data. RFs are also able
to produce a summary of the importance of predictors. A thorough
search of relevant literature did not yield any studies that have
directly examined the effect of historical COVID-19 records (ie,
cases, deaths, vaccinations, positive tests, hospitalizations, school
closures, travel bans, etc.) and Google Trends data in determining
social media sentiment. RFs are a useful tool to develop a model of
using COVID-19 public health data and Google interest to predict
Twitter sentiment over the course of the pandemic.

It is important to note that negative and positive events are not
treated equally in public discourse. Individuals have been known to
perceive negative experiences more intensely than positive ones.28–
30 There may be evidence that negative events are more contagious
than positive events.28 On the other hand, certain key topics
relating to the pandemic may be perceived more positively than
expected. Yousefinaghani et al.31 show that vaccine-related tweets
tend to be more positive than negative. Stay-at-home tweets are
also shown to be more positive than negative.32 In the context of
the prolonged stress experienced by many during the pandemic,
higher levels of resilience may be associated with an increase in
positive emotions.33 The complex nature of COVID-19 discourse
suggests that negative sentiment may not have been the dominant
emotion expressed on Twitter.

Research Questions

Q1: What were the public positive and negative sentiments on
Twitter in the United States during COVID-19 pandemic?

This question is investigated by comparing the 8 twitter
emotion types and their dynamics over time using the data from
January 1, 2020, to September 1, 2021, in the United States. The
exploratory study determines whether the public sentiment was
evenly split between positive and negative sentiment, and that all
emotions were equal, or some emotions were more common than
other. For example, fear likely dominated the conversation because
of the various economic, social, and health challenges experienced
due to COVID-19 in the United States.

Q2: How did Google Trends and real-time historical COVID-
19 data relate to sentiment on Twitter in the United States during
COVID-19 pandemic?

This question is investigated by comparing Twitter emotion
data and Google Trend emotion data and their dynamics over time
using data from January 1, 2020, to September 1, 2021. The analysis
examines the relationship of Google Trends and historical
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COVID-19 data to sentiment and emotion on Twitter over the
period studied in the United States. For example, rapid increases in
cases and deaths were likely significantly related to changes in
sentiment and emotions on Twitter.

Data Collection

Twitter data was sampled daily from January 1, 2020, to September
1, 2021, for tweets residing in the United States using the full
archive search Twitter API. Zepecki et al.34 outlined a methodo-
logical framework to retrieve Internet data for health research,
suggesting that interest be measured in respect to a list of top
queries. After an exploratory analysis, Twitter and Google APIs
were queried using the list of keywords “covid”, “coronavirus”,
“covid19”, “corona”, “pandemic”, “quarantine”, “lockdown”, and
“outbreak”. These terms were the most frequently used in
discussions of COVID-19 on social media platforms. They were
determined through topic analysis of all tweets over a period, as
demonstrated in the studies by Schweinberger et al.15 and Hu
et al.13 Future studies may first do a relevant topic analysis, then
pull relevant tweets for a more representative sample. A unigram
(1-word) method was chosen because of its optimal use in RF
models.24 A total of 2,500,000 tweets were pulled, and just under
900,000 unique tweets were identified for this study.

Shortly after COVID-19 was discovered, there was little
discussion about the virus. Some days, therefore, have a small
number of tweets which leaves the subsequent analysis vulnerable
to sampling error. To avoid this, sampling was constructed at 3
locations throughout each day as outlined by Kim et al.35 Geo-
tweet information is provided when users activate location access
and provide a finer geographical scale; however, not all users
activate this function. According to Twitter, only 30-40% of tweets
contain information about profile location.36 It was deemed that
geographical analysis was not generalizable enough, so state-level
and city-level granularity was not included in this study. Tweets
were preprocessed to remove retweets, references to screen names,
hashtags, spaces, numbers, punctuations, URLs, retweet headers,
time codes, stop-words, and duplicate tweets.

Google Trends data were obtained using the Trends API and
gtrendsR endpoint in R. Google Trends returns data in daily
granularity only if the timeframe is shorter than 9 mo, so daily
estimates for each month and monthly data for the entire time
frame were retrieved, and daily estimates for each month were
multiplied by the weight calculated from monthly data to calculate
daily estimates from January 1, 2020, to September 1, 2021. Google
Trends estimated interest is shown in Figure 1.

Historical data about the virus were supplied by Our World
in Data from the COVID-19 Data Repository by the Center for
Systems Science and Engineering at John Hopkins University,
government sources, and peer reviewed research. This dataset
includes confirmed cases, confirmed deaths, vaccinations,
hospital and intensive care unit (ICU), tests and positivity,
the reproduction rate of the virus, policy responses, and other
variables of interest. Missing data were substituted with
estimated values from near neighbors as outlined by Kang.37

(2013). New cases and new deaths over time are visualized in
Figures 2 and 3, respectively.

Data Summary

The summary statistics of each variable included in this study,
including historical COVID-19 health and policy data, Twitter

sentiment (positive, negative, trust, surprise, sadness, joy, fear,
disgust, anticipation, anger), and Google Trends interest, are given
in Table 1. Note that vaccinations and boosters contained many
null values because vaccines were only available later in the
pandemic.

Methods

Corpus-linguistic techniques were used to create a word cloud of
most used words in sampled tweets. The National Research
Council Lexicon dictionary (NRC-Lex) was used to conduct
sentiment analysis. The NRC-Lex dictionary is based on the 8
emotion classifications (joy, sad, anger, fear, trust, disgust,
surprise, anticipation) and sentiment (positive or negative).
Frequencies of each emotion and sentiment were obtained in
time series.

Sentiment prediction was achieved using RF models. Twitter
sentiment counts, Google Trends estimated interest, and historical
COVID-19 data were aggregated by day, and 10 RF models were
developed for each sentiment type. A training dataset was formed
with two-thirds of the data, and a test set was formed with the
remaining rows. Mean absolute percentage error (MAPE) was
calculated for training and test sets. Important parameters can be
calculated for RFmodels based on node purity and minimal depth.
Both indexes are effective, but node purity was chosen as the
primary method for this study. Unimportant variables were
discarded to prevent overfitting, and a new model was
appropriately refitted for each sentiment type using the most
important variables. Including relevant variables improves the
performance of RFs.

Random Forests

RFs are a substantial modification of bootstrap aggregation
(bagging). Bagging is a variance-reduction technique for an
estimated predictive function, formed by building a large collection
of de-correlated trees with each generated tree being identically
distributed, then averaging the resulting trees.38 Trees are ideal
candidates for sentiment analysis because they can capture
complex interaction structures inherent in the highly correlated
text data. Trees have relatively low bias if grown sufficiently deep.
However, trees are notoriously noisy and thus need averaging.
Using stochastic perturbation and growing and averaging trees on
samples avoid overfitting. The algorithm is as follows.

After Bth recursion, tree sequences fTðx; �b Zð ÞgBb¼1 are grown,
the RF predictor at a single target point x is

Algorithm of RF

1. For b= 1 to B:
(I) Draw a bootstrap sample Z� of size N from the training data.
(II) Grow an RF tree Tb to the bootstrapped data, by recursively

repeating the following steps for each terminal node of the
tree, until the minimum node size nmin is reached.
i. Select m variables at random from the p variables.
ii. Pick the best variable as split-point among the m.
iii. Split the node into 2 daughter nodes.

2. Output the ensemble of trees fTbgBb¼1.
3. f̂ Brf (x)=

1
B

P
B
b¼1 Tb(x).
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Figure 1. Google Trends interest over time in the United States.

Figure 2. New COVID-19 cases over time in the United States.

Figure 3. New COVID-19 deaths over time in the United States.
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f̂ Brf ðxÞ ¼
1
B

X
B
b¼1

Tðx; �b Zð ÞÞ;

where �b parameterizes the bth RF tree in the sequence in terms of
split variables, cutpoints at each node, and terminal-node values.

Increasing B does not cause the RF to overfit as

f̂rf ðxÞ ¼ E�jZT x; � Zð Þð Þ ¼ lim
B!1

f̂ Brf xð Þ

with an average over B realizations of θ(Z) and the distribution of
θ(Z) is conditional on the training data Z. Using full-grow trees
results in one less tuning parameter and seldom costs much. The

robustness is largely due to the relative insensitivity of mis-
classification cost to the bias and variance of the probability
estimates in each tree. Let ρ(x) is the conditional sampling
correlation between any pair of trees used in the averaging,

� xð Þ ¼ corðTðx; �1ðZÞ;Tðx; �2ðZÞÞ;

where �1(Z) and �2(Z) are a randomly drawn pair of RF trees
grown to the randomly sampled Z. σ2(x) is the sampling variance
of any single randomly drawn tree, σ2(x)=Var(T(x; θ(Z)).

Table 1. Summary statistics

Min 1st Qu Median Mean 3rd Qu Max

Date 2020-1-1 2020-6-1 2020-10-31 2020-10-31 2020-4-1 2021-8-31

Total cases 0 1816679 9167578 15334936 30593758 39321999

New cases 0 21735 44345 64568 75008 303008

Total deaths 0 108445 231515 296881 552577 640859

New deaths 0 352 845 1052 1440 4441

Total cases per million 0 5457 27537 46063 91897 118114

New cases per million 0.00 65.3 133.2 194.0 225.3 910.2

Total deaths per million 0.0 325.7 695.4 891.8 1659.8 1925.0

New deaths per million 0.0 1.1 2.5 3.2 4.3 13.3

Reproduction rate of COVID 0.00 0.87 1.00 1.02 1.14 3.65

ICU patients 0 0 8419 9034 13479 28891

ICU patients per million 0.0 0.0 25.3 27.1 40.5 86.8

Hospitalized patients 0 0 30283 35452 47215 133253

Hospitalized per million 0.0 0.0 91.0 106.5 141.8 400.3

New tests 0 414634 868519 877732 1326296 2323355

Total tests 0 19696742 155419699 205510660 386391223 534538919

New tests per thousand 0.00 1.25 2.61 2.64 3.98 6.98

Total tests per thousand 0.00 59.16 466.85 617.31 1160.63 1605.63

Positive rate 0.000 0.042 0.054 0.063 0.092 0.206

Tests per case 0.0 9.3 15.6 16.5 21.9 56.0

Total vaccinations 0 0 0 83213272 153631404 370212027

People vaccinated 0 0 0 48447862 99565311 205026070

People fully vaccinated 0 0 0 36759492 56089614 174121529

Total boosters 0 0 0 8287 0 995715

New vaccinations 0 0 0 607443 990875 4629928

Total vaccinations per hundred 0.0 0.0 0.0 24.7 45.7 110.1

People vaccinated per hundred 0.0 0.0 0.0 14.4 29.6 61.0

People fully vaccinated per hundred 0.0 0.0 0.0 10.9 16.7 51.8

Government stringency index (policy response) 0.00 56.02 65.28 57.34 71.76 75.46

Absolute cumulative excess mortality -13814 121838 288041 339819 614172 720824

Anger (Twitter) 8 492 570 555 642 942

Anticipation (Twitter) 34 697 794 786 944 1232

Disgust (Twitter) 8 373 428 424 492 767

Fear (Twitter) 21 773 896 919 1071 1597

Joy (Twitter) 19 490 562 548 671 954

Sadness (Twitter) 15 619 705 695 798 1227

Surprise (Twitter) 11 377 437 426 498 1355

Trust (Twitter) 27 797 924 912 1079 1568

Negative (Twitter) 33 1196 1353 1344 1535 2253

Positive (Twitter) 50 1261 1468 1460 1758 2502

Est. interest (Google Trends) 0.087 7.617 13.797 16.060 19.194 100
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Then

Varðf̂rf xð ÞÞ ¼ � xð Þσ2 xð Þ:

The conditional covariance of a pair of trees fits at x is zero due
to the fact that the bootstrap and feature sampling is independent
and identically distributed (i.i.d). On many problems, the
performance of RFs is very similar to boosting, and they are
simpler to train and tune. Hastie et al.39 made grand claims that
RFs are “most accurate”, “most interpretable”, and the like with
very little tuning required.

Sentiment Analysis

To address the first research question, frequency counts from the
sentiment analysis of sampled tweets using the terms “covid”,
“coronavirus”, “covid19”, “corona”, “pandemic”, “quarantine”,
“lockdown”, and “outbreak” were totaled independent of time to
produce the findings in Figure 4. Figure 4 shows that, over the
course of the period studied, sentiment tended to be more positive
than negative. Fear was the most popular emotion, followed closely
by trust. Other emotions were less common, including antici-
pation, sadness, anger, joy, surprise, and disgust.

Another perspective on sentiment is given with the word cloud
in Figure 5, which shows the most popular words in the Twitter
sample. The most popular words were “quarantine” and “trump”.
Figure 5 also portrays how words were associated with emotions
from the sentiment analysis. Note, this word cloud was weighted
toward the keywords that were used, and did not include all
popular words due to spacing constraints.

The temporal trajectories of observed and predicted sentiment
are also plotted over the time. Figure 6 used the complete dataset,
Figure 7 used the training dataset for the RF (420 observations),
and Figure 8 used the predicted values of each RF model. Green
signifies positive sentiment, while red is negative sentiment. The
other colors—purple, orange, glue, aquamarine, chartreuse, black,
yellow, and pink—correspond to trust, surprise, sadness, joy, fear,
disgust, anticipation, and anger, respectively. Notably, all senti-
ment types tended to follow similar trends.

Visually, it appears that the predictive models performed quite
well, matching with the actual data. The MAPE and the reported
percentage of variation explained, quantified how well the RF
models fit the data. MAPE was produced for both the training and
the test sets to investigate overfitting and generalizability in
Table 2. A MAPE score of less than 20% was considered excellent,
while scores from 20% to 30% were considered good. The MAPE
for the test set was consistently 2 to 3 times higher than the training
set indicating overfitting, however, the MAPEs for all training and
test sets had relatively low values. Additionally, the percentage of
variation explained was adequate for all models. The surprise
sentiment model performed the worst.

The important variables for each RF model are now detailed for
each sentiment type with plots of observed and predicted
sentiment provided for reference.

Results

Positive Sentiment Random Forest

The variable importance plot for positive sentiment RF are shown
in Figure 9. As a proof of concept, minimal depth and frequent
interactions are also plotted to compare important variables
decided by node purity and are shown in Figures 10 and 11. With
cross-validation of the mean of minimal depth distribution and
interaction (Figures 10 and 11), among all the variables, “date”,
“total_cases_per_million”, “total_cases”, and “est_hits” are impor-
tant ones for positive sentiment RF.

Node purity and minimal depth provided similar results for
deciding important variables. Interaction methods were deemed
too complex to interpret and were not used for the analysis. The
observed and predicted positive sentiments over time are shown in
Figure 12. Positive sentiment increased during the start of the
pandemic, then was stable later; another wave was observed
starting in 2021.

Figure 4. Emotion type for COVID-19 tweets.

Figure 5. Word Cloud for emotional terms in the United States.
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Figure 6. Trajectories of observed sentiment counts over time in the United States.

Figure 7. Trajectories of training data from observed sentiment counts over time in the United States.

Table 2. RF model performance for sentiment types

Sentiment type MAPE training set MAPE test set %Var explained

Positive 4.60% 10.41% 84.98%

Negative 5.16% 12.61% 79.13%

Trust 4.84% 11.53% 83.04%

Surprise 5.97% 14.73% 65.07%

Sadness 5.59% 15.16% 81.26%

Joy 4.63% 10.82% 80.51%

Fear 4.74% 12.17% 86.77%

Disgust 6.47% 15.61% 76.8%

Anticipation 4.43% 10.65% 81.44%

Anger 5.67% 14.56% 79.21%

Disaster Medicine and Public Health Preparedness 7
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Negative Sentiment Random Forest

The variable importance plot for negative sentiment RF are shown
in Figure 13. “est_hits”, “date”, “total_cases”, and “total_cases_
per_million” are the important variables for negative sentiment
RF. Notably, Google Trends interest appears to be the most
important variable for prediction.

The observed and predicted negative sentiment over time are
shown in Figure 14. The negative sentiments increased at the
beginning of the COVID-19, with fluctuation over time.

Positive and negative emotions exhibit distinct trend patterns
over time (see Appendix). Sentiment frequency over time diagrams

were redrawn to better illustrate trend patterns. All positive
sentiments, including trust, surprise, joy, and anticipation,
dramatically increased at the start of COVID-19 in 2020, and
fluctuate over time, with a second peak observed at the start of
2021, but the overall shape is flat (Figure 15). Nonetheless, negative
emotions such as sadness, anger, and disgust increased rapidly at
the start of the pandemic, with a minor drop later, and then
remained stable with a degree of fluctuation, before continuing to
rise and reaching a peak in late 2021 (Figure 16). Of interest, fear
sentiment appears in the first wave at the start of COVID-19, then
falls noticeably, and then returns with a spike at the end of 2021,
but at a lower level than the initial jump (Figure 17).

Figure 8. Trajectories of predicted sentiment counts over time in the United States.

Figure 9. A variable importance plot for positive sentiment RF using node purity.
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Figure 10. A variable importance plot for positive sentiment RF using distribution of minimal depth and its mean.

Figure 11. A variable importance plot for positive sentiment RF using interaction.
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Figure 12. Observed (left) and predicted (right) positive sentiment vs time.

Figure 13. Variable importance plot for negative sentiment RF using node purity.

Figure 14. Observed (left) and predicted (right) negative sentiment vs time.
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Discussion and Conclusions

The number of people using social media platforms and search
engines has increased dramatically during the digital age. The
consumption of news on social media has grown, bringing both
lower engagement and a diminished understanding of current
events. In the United States, the Internet became a significant
source of misinformation during COVID-19 amid social,
economic, and public health crises. Twitter and Google Trends
provide valuable insights into public discourse surrounding
COVID-19. This study presented the results of a sentiment
analysis of tweets, Google Trends interest, and historical COVID-
19 health and policy data over the course of the pandemic and built
a predictive model for sentiment.

Sentiment analysis revealed that people mentioned “quaran-
tine” and “trump” the most. These were some of the most
important topics during the pandemic; however, they were
weighted toward the keywords in the tweet sample. For example,
“quarantine” may not have been as important as the word cloud
represented because it was also one of the keywords used to find
relevant tweets. Positive sentiments were more common than
negative sentiments, while fear and trust were the most common
emotions. The sentiment analysis in the present study agreed with
Hu et al.,13 Hussain et al.,16 and Ahmed et al.19

Google Trends interest showed a sharp peak at the beginning of
the pandemic, which seemed to be related to the first peaks in
COVID-19 cases and deaths. This indicates that people in the
United States searched for COVID-19 primarily at the beginning
of the pandemic as cases and deaths were first appearing. Google
Trends estimated interest agreed with analyses by Mavragani and
Gkillas,22 Turk et al.,40 and Alshahrani and Babour.23

RF models were used to predict sentiment types. The most
important factors for all models were date, COVID-19 cases,
COVID-19 deaths, and Google Trends estimated interest. These
models showed that Google Trends and public health data were
both important indicators for changes in sentiment. For positive
sentiment, the most important factor was date, but for negative
sentiment, the most important factor was Google Trends interest.
This makes sense given the relationship of Google Trends
interest to COVID-19 cases and deaths. The number of people
vaccinated did not affect sentiment as much as the number of
cases or deaths. Vaccinations were undervalued in the present
analysis—due to the large time range there are too many zero
values to notice an effect. It is worth noting that, for fear and joy
sentiments, COVID-19 tests were also an important variable.
Positive emotions during COVID-19 might be linked to
the recovery progress, vaccine development, new hopes of
technologies development, and resilience.33

Anger, disgust, and sadness sentiments increased during the
pandemic, indicating that people in the United States emotionally
were not expecting such a long duration of the pandemic. Fear
sentiment shows a big wave at the beginning of COVID-19 since
2020, later on drops gradually, then has a big jump at the end of
2021. Fear sentiment cannot last long, but if the event is
persistent, it will come back later. Joy is a kind of positive
sentiment, so like the positive sentiment trend, it demonstrated a
flat and wavy behavior, reflecting hope at the beginning of 2020
when COVID-19 starts, and at the beginning of 2021.
Anticipation, surprise, and negative sentiments showed a series
of fluctuation waves. This appears to indicate that people were
invested in analysis and information seeking behaviors as
evidenced by Google Trends interest.

Figure 15. Sentiment trend patterns over time for positive emotion: trust, surprise,
joy, and anticipation.

Figure 16. Sentiment trend over time patterns for negative emotion: sadness,
disgust, and anger.

Figure 17. Sentiment trend pattern over time for negative emotion: fear over time.
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However, there were several limitations. Twitter tends to
represent a younger audience, and does not include the entire
conversation surrounding COVID-19. In addition, elderly,
poor, and underprivileged members are underrepresented on
the Internet. More work needs to be done to smooth the noise
in sentiment scores. The present analysis only accounts for the
keywords used to query Twitter and Google, and do not
represent all possible topics. For a more representative sample,
we may have sampled from all available tweets/searches and
identified those that were related to COVID-19 using topic
analysis. Future research may also use a different sentiment/
emotion database to acquire a more diverse look than the 10
sentiment types in this study.

In this study, “vaccine(s)”was not included for key word search.
Sentiment related to vaccines is an important aspect of the
public’s perception of the pandemic, as the widespread avail-
ability and acceptance of vaccines is seen as key to controlling the
spread of the virus and eventually bringing the pandemic to an
end. However, the decision was made not to include vaccines in
queries to maintain a clear interpretation of the relationships
between overall sentiment of COVID-19 on Twitter and the
predictors. Vaccine sentiment may have introduced nuanced
correlations in the presence of misinformation and politics.
Future study would conduct a topic analysis in depth to identify
terms relating to COVID-19 and stratify keywords into sub-
topics including vaccines.

The current research focused on text-based emotion
analysis at this stage, because text is still the primary choice
for people to express their feelings toward other persons,
events, or things. However, a multi-platform approach, such as
using CrowdTangle, for richer sources of information can be
valuable to analyze emotions. A multi-platform approach may
have provided a more comprehensive view of public sentiment.
For future research, we will consider incorporating data from
additional platforms for the analysis in context for the data
noise such as sarcasm and irony.

Extracting emotions behind text is still an immense and
complicated task in current literature. The study contributes to
existing literature by directly examining the effect of health data
and Google Trends interest to Twitter sentiment over the duration
of the pandemic. The information from this study can be used to
acquire a better understanding of COVID-19’s emotional impact
on people and communities, as well as their fears, concerns, and
coping mechanisms. Furthermore, tracking the emotional patterns
of COVID-19-related tweets over time can offer a more thorough
picture of how public views and perceptions of the pandemic
are changing. Overall, monitoring COVID-19-related tweets for
emotion change can support public health research and help
inform strategies to address the impacts of the pandemic on
individuals and communities.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/dmp.2023.101
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