ON A THEOREM OF ISEKI

by PETER KESSLER

(Received 4 March, 1969)

1. The purpose of this paper is to generalize a result of K. Iseki [1]. In his note, Iseki proves that, in a normal space S, for every countable discrete collection $\mathscr{H} = \{H_1, H_2, \ldots\}$ of sets from S, there exists a countable collection $\mathscr{U} = \{U_1, U_2, \ldots\}$ of mutually disjoint open sets from S such that $\overline{H}_i \subset U_i$ for every *i*.

In this paper we consider almost discrete, separated and completely separated collections of sets from a topological space. It is shown that the analogous property holds for almost discrete collections in a normal space, and for separated collections in a completely normal space. The well-known property that a topological space is normal if and only if any two closed disjoint sets are completely separated, is here expressed in terms of completely separated discrete collections.

2. Definitions. Let S be a topological space. We denote by $\mathscr{H} = \{H_{\alpha} : \alpha \in \Omega\}$ an arbitrary collection of sets from S. For a collection \mathscr{H} , we denote by \mathscr{H} the collection of closures of sets from \mathscr{H} . Open collections, i.e. collections of open sets, will be denoted by \mathscr{U} , \mathscr{V} .

A collection $\mathscr{H} = \{H_{\alpha} : \alpha \in \Omega\}$ is called *discrete* if it satisfies the following two conditions:

- (1) $\overline{H}_{\alpha} \cap \overline{H}_{\beta} = \emptyset$ for every $\alpha, \beta \in \Omega, \alpha \neq \beta$;
- (2) for an arbitrary subset Γ of Ω , $\bigcup_{\alpha \in \Gamma} \overline{H}_{\alpha} = \overline{\bigcup_{\alpha \in \Gamma} H_{\alpha}}$.

If \mathscr{H} is discrete, then $\widetilde{\mathscr{H}}$ is also discrete. For every discrete collection \mathscr{H} , $\bigcup_{\alpha \in \Omega} \overline{H}_{\alpha}$ is a closed set in S.

From the above definition, with some modifications, we get the following definition for almost discrete collections:

A collection $\mathscr{H} = \{H_{\alpha} : \alpha \in \Omega\}$ is almost discrete if, for every $\alpha \in \Omega$,

$$\overline{H}_{\alpha} \cap \overline{\bigcup_{\substack{\beta \in \Omega \\ \beta \neq \alpha}} H_{\beta}} = \emptyset.$$

It follows that, for such a collection, for every $\alpha', \alpha'' \in \Omega$ with $\alpha' \neq \alpha''$, we have $\overline{H}_{\alpha'} \cap \overline{H}_{\alpha''} = \emptyset$. Every discrete collection is almost discrete, but it is very easy to verify that the converse is not true. From the definition it follows that, if \mathcal{H} is almost discrete, then $\overline{\mathcal{H}}$ is almost discrete.

A collection $\mathscr{H} = \{H_{\alpha} : \alpha \in \Omega\}$ is separated if, for every $\alpha \in \Omega$,

$$H_{\alpha} \cap \bigcup_{\substack{\beta \in \Omega \\ \beta \neq \alpha}} \overline{H_{\beta}} = \emptyset.$$

Every almost discrete collection is separated, but the converse is not true. Every collection of mutually disjoint open sets is separated. If $\mathscr{H} = \{H_{\alpha} : \alpha \in \Omega\}$ is separated, then, for every $\alpha \in \Omega$, we have $\overline{H}_{\alpha} \cap \bigcup_{\substack{\beta \in \Omega \\ \beta \neq \alpha}} H_{\beta} = \emptyset$, i.e. the sets H_{α} and $\bigcup_{\substack{\beta \in \Omega \\ \beta \neq \alpha}} H_{\beta}$ are separated in the usual sense for

every $\alpha \in \Omega$. The condition $\overline{H}_{\alpha} \cap \bigcup_{\substack{\beta \in \Omega \\ \beta \neq \alpha}} H_{\beta} = \emptyset$ for every $\alpha \in \Omega$, does not imply that the collection

is separated.

For countable collections we introduce the concept of completely separated collection in the following way:

A countable collection $\mathscr{H} = \{H_1, H_2, ...\}$ is completely separated if, for every sequence $a_1, a_2, ...$ of real numbers, there exists a continuous function f on S such that $f(H_i) = a_i$ for every i.

Two completely separated sets in the usual sense form a completely separated collection. Every countable completely separated collection is discrete.

3. Normal spaces. In a normal space, the following additional properties hold for almost discrete collections:

LEMMA. 1. Let S be a normal space. If, for every almost discrete collection $\mathscr{H} = \{H_{\alpha} : \alpha \in \Omega\}$, there exists a collection $\mathscr{V} = \{V_{\alpha} : \alpha \in \Omega\}$ of mutually disjoint open sets such that, for every $\alpha \in \Omega$, we have $\overline{H}_{\alpha} \subset V_{\alpha}$, then there exists an almost discrete collection $\mathscr{U} = \{U_{\alpha} : \alpha \in \Omega\}$ of open sets such that $\overline{H}_{\alpha} \subset U_{\alpha}$ for every $\alpha \in \Omega$.

Proof. For every $\alpha \in \Omega$, let U_{α} be an open set such that $\overline{H}_{\alpha} \subset U_{\alpha} \subset \overline{U}_{\alpha} \subset V_{\alpha}$; then $U_{\alpha} \cap \bigcup_{\substack{\beta \in \Omega \\ \beta \neq \alpha}} \overline{U}_{\beta} = \emptyset$. But, since $\overline{U}_{\alpha} \subset V_{\alpha}$ and $\bigcup_{\substack{\beta \in \Omega \\ \beta \neq \alpha}} \overline{U}_{\beta} \subset \bigcup_{\substack{\beta \in \Omega \\ \beta \neq \alpha}} \overline{V}_{\beta}$, it follows that $\overline{U}_{\alpha} \cap \bigcup_{\substack{\alpha \in \Omega \\ \beta \neq \alpha}} \overline{U}_{\beta} = \emptyset$. Hence $\mathscr{U} = \{U_{\alpha} : \alpha \in \Omega\}$ is almost discrete.

THEOREM 1. A topological space S is normal if and only if, for every countable almost discrete collection $\mathscr{H} = \{H_1, H_2, \ldots\}$, there exists an almost discrete collection $\mathscr{V} = \{V_1, V_2, \ldots\}$ of open sets such that $\overline{H}_i \subset V_i$ for every i.

Proof. The condition of the theorem is evidently sufficient for normality of S.

For necessity, let S be a normal space and let $\mathcal{H} = \{H_1, H_2, ...\}$ be a countable almost discrete collection of sets from S. We prove the following assertion P(n):

P(n): There exist open sets $V_1, V_2, \ldots, V_n, V^{n+1}$ such that

(a)
$$\overline{H}_i \subset V_i$$
 for $i = 1, 2, ..., n$,
(b) $\bigcup_{k=n+1}^{\infty} H_k \subset V^{n+1}$,
(c) $V_k \cap V_i = \emptyset$ for $i < k \le n$ and
(d) $\bigcup_{i=1}^n V_i \cap V^{n+1} = \emptyset$.

PETER KESSLER

For n = 1, the sets \overline{H}_1 and $\bigcup_{k=2}^{\infty} H_k$ are closed and disjoint in S. Hence there exist open

sets V_1 and V^2 such that (a) $\overline{H}_1 \subset V_1$, (b) $\bigcup_{k=2}^{\infty} H_k \subset V^2$ and (d) $V_1 \cap V^2 = \emptyset$.

We assume that P(n) is valid for n. There exists an open set U^{n+1} such that

$$\bigcup_{k=n+1}^{\infty} H_k \subset U^{n+1} \subset \overline{U^{n+1}} \subset V^{n+1}.$$

Then $\overline{U^{n+1}}$ is a normal subspace of S and $\mathscr{H}_{n+1} = \{H_{n+1}, H_{n+2}, \ldots\}$ is almost discrete in $\overline{U^{n+1}}$. There exist the sets V_1^{n+1} and V_2^{n+1} , open in $\overline{U^{n+1}}$, such that $\overline{H_{n+1}} \subset V_1^{n+1}$, $\bigcup_{k=n+2}^{\infty} H_k \subset V_2^{n+1}$ and $V_1^{n+1} \cap V_2^{n+1} = \emptyset$. Then there exist W_1^{n+1} and W_2^{n+1} , open in S, such that $V_1^{n+1} = U_1^{n+1} \cap W_1^{n+1}$ and $V_2^{n+1} = \overline{U^{n+1}} \cap W_1^{n+1}$ and $V_2^{n+1} = U_1^{n+1} \cap W_1^{n+1}$. Now let $V_{n+1} = U_1^{n+1} \cap W_1^{n+1}$, $V_1^{n+2} = U_1^{n+1} \cap W_2^{n+1}$. The sets $V_1, V_2, \ldots, V_{n+1}, V_{n+2}^{n+2}$ satisfy P(n+1).

In this way we construct a sequence of open sets V_1, V_2, \ldots with the required properties, i.e. $\overline{H}_i \subset V_i$ $(i = 1, 2, \ldots)$ and $V_i \cap V_j = \emptyset$ $(i \neq j)$. The theorem follows then from Lemma 1. As a consequence we obtain Iseki's theorem:

THEOREM 2 (Iseki). A topological space S is normal if and only if, for every countable discrete collection $\mathscr{H} = \{H_1, H_2, \ldots\}$, there exists a countable discrete collection of open sets $\mathscr{U} = \{U_1, U_2, \ldots\}$ such that $\overline{H}_i \subset U_i$ for every i.

Now let ξ be the collection of countable collections of mutually disjoint sets from a topological space S which satisfies the following conditions:

(a) If $\mathscr{H} \in \xi$, then $\overline{\mathscr{H}} \in \xi$,

(b) for every $\mathscr{H} = \{H_1, H_2, ...\}$ from ξ , there exists a collection of open sets $\mathscr{U} = \{U_1, U_2, ...\}$ from ξ such that $H_i \subset U_i$ for every *i*.

Such a collection ξ contains, as it is easy to verify, only almost discrete collections. The following theorem holds:

THEOREM 3. A topological space S is normal if and only if ξ consists exactly of all countable almost discrete collections.

For completely separated collections the following theorem holds:

THEOREM 4. A topological space S is normal if and only if every countable discrete collection of sets from S is completely separated.

Proof. For collections of two sets, this is Urysohn's lemma. Therefore it follows immediately that the condition of the theorem is sufficient for normality of S.

For necessity, let S be normal, and let $\mathscr{H} = \{H_1, H_2, ...\}$ be a discrete collection in S. There exists a discrete collection $\mathscr{U} = \{U_1, U_2, ...\}$ of open sets such that $\overline{H}_i \subset U_i$. Let $a_1, a_2, ...$ be an arbitrary sequence of real numbers. For every pair (H_i, U_i) , there exists a continuous function f_i such that $f_i(H_i) = a_i$ and $f_i(S - U_i) = 0$. We consider then $f = \sum_{i=1}^{\infty} f_i$.

Evidently $f(H_i) = a_i$. It is easy to verify that the function f is continuous.

112

4. Completely normal spaces. A similar characterization with separated collections is possible for complete normality.

THEOREM 5. A topological space S is completely normal if and only if, for every countable separated collection $\mathscr{H} = \{H_1, H_2, \ldots\}$, there exists a countable separated collection $\mathscr{U} = \{U_1, U_2, \ldots\}$ of open sets such that $H_i \subset U_i$ for every i.

The proof of Theorem 5 is analogous to the proof of Theorem 1, and is here omitted.

Let ξ' be the collection of all countable collections of mutually disjoint sets from a topological space S which satisfies the condition:

If $\mathscr{H} = \{H_1, H_2, \ldots\}$ is from ξ' , then there exists a collection $\mathscr{U} = \{U_1, U_2, \ldots\}$ of open sets from ξ' such that $H_i \subset U_i$ for every *i*.

Every collection from ξ' is separated, and the following theorem holds:

THEOREM 6. A topological space S is completely normal if and only if ξ' consists exactly of all countable separated collections from S.

REFERENCES

1. K. Iseki, A note on normal spaces, Math. Japon. 3 (1953), 45.

UNIVERSITY OF CRAIOVA CRAIOVA, ROUMANIA