
37

Gluonia correlators

37.1 Pseudoscalar gluonia

We shall be concerned with the correlator:

χ (k2) =
∫

dx eik.x i〈0|T Q R(x) Q R(0)|0〉 , (37.1)

where Q R(x) is the renormalized gluon topological density which mixes under renormal-
ization with the divergence of the flavour singlet axial current J 0

µ5R mix as follows [129]
(see Section 10.3.3 in Part III):

J 0
µ5R = Z J 0

µ5B

Q R = Q B − 1

2n f
(1 − Z )∂µ J 0

µ5B , (37.2)

where:

J 0
µ5B =

∑
q̄γµγ5q

Q B = αs

8π
Tr Gµν G̃µν (37.3)

and we have quoted the formulae for n f flavours. The correlation function χ (k2) obeys the
inhomogeneous RGE [260]:

(
µ

∂

∂µ
+ β(αs)αs

∂

∂αs
− 2γ

)
χ (k2) = − 1

(2n f )2
2β (L)k4 . (37.4)

The anomalous dimension is:

γ ≡ µ
d

dµ
log Z = −

(αs

π

)2
. (37.5)

The extra RG function β (L) (so called because it appears in the longitudinal part of the
Green function of two axial currents) is given by

1

(2n f )2
β (L) = − 1

32π2

(αs

π

)2
[

1 + 29

4

(αs

π

)]
. (37.6)
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Fig. 37.1. Feynman diagrams corresponding to the OPE of the gluonium correlator: (a) perturbative;
(b) two-gluon condensate; (c) three-gluon condensate; (d) four-gluon condensate.

The RGE is solved in the standard way, giving

χ (k2, αs ; µ) = e−2
∫ t

0 dt ′γ (αs (t ′))
[
χ (k2, αs(t); µet )

−2
∫ t

0
dt ′′β (L)(αs(t ′′))e2

∫ t ′′
0 dt ′γ (αs (t ′))

]
, (37.7)

where αs(t) is the running coupling. The different QCD diagrams contributing to the cor-
relator are shown in Fig. 37.1.

The perturbative expression for the two-point correlation function in the M S scheme is
[455]:

χ (k2)P.T. � −
( αs

8π

)2 2

π2
k4 log

−k2

µ2

[
1 +

(αs

π

) (
1

2
β1 log

−k2

µ2
+ 29

4

)
+ · · ·

]
(37.8)

The non-perturbative contribution from the gluon condensates (coming from the next
lowest dimension operators in the OPE) is [382]:

χ (k2)N.P. � − αs

16π2

[(
1 + 1

2
β1

(αs

π

)
log

−k2

µ2

)
〈αs G2〉 − 2

αs

k2
〈gG3〉

]
. (37.9)
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Fig. 37.2. Feynman diagrams corresponding to the OPE of the meson-gluonium correlator: (a) per-
turbative; (b) diagram which mixes with (a) under renormalization; (c) quark condensate; (d) gluon
condensate.

37.2 Pseudoscalar meson-gluonium mixing

Let us consider the off-diagonal two-point correlator:

�−
gq (q2) =

∫
dx eiq.x i〈0|T Q R(x) ∂µ Jµ

5 (0)|0〉 (37.10)

shown in Fig. 37.2.
Its QCD expression reads [458]:

(8π )2�−
gq (q2) = αs

(αs

π

) 3

π2
m2

s q2 log −q2

ν2

[
log −q2

ν2
− 2

3

(
11

4
− 3γE

)]

− 8αs

(αs

π

)
ms〈s̄s〉 log −q2

ν2

+ 2
(αs

π

)
〈αs G2〉

(
m2

s

q2

)
log − q2

m2
s

, (37.11)

where one can notice that the mixing from the OPE vanishes in the chiral limit. However,
one should notice that this mixing acts on the gluonium propagator, that is, it affects the mass
splitting but not its decay width which is governed by a three-point function. Unfortunately,
several authors mix these two features in the literature. This feature may justify why the
lattice prediction in the world without quark can give a prediction that is almost compatible
with the experimentally observed gluonium candidate.
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37.3 Scalar gluonia

We shall be concerned with the correlator:

�s(q2) ≡ 16i
∫

d4x eiqx 〈0|T θµ
µ (x)θµ

µ (0)†|0〉 , (37.12)

where θµν is the improved QCD energy-momentum tensor (neglecting heavy quarks) whose
anomalous trace reads, in standard notations:

θµ
µ (x) = 1

4
β(αs)G2 + (1 + γm(αs))

∑
u,d,s

mi ψ̄ iψi . (37.13)

Its leading-order perturbative and non-perturbative expressions in αs have been obtained
by the authors of [382]. To two-loop accuracy in the M S scheme, its perturbative expression
has been obtained by [455], while the radiative correction to the gluon condensate has been
derived in [456]. Using a simplified version of the OPE:

�s(q2) =
∑

D=0,4,···
CD〈OD〉 , (37.14)

one obtains for three flavours and by normalizing the result with (β(αs)/αs)2:

C0 = −2
(αs

π

)2
(−q2)2 log −q2

ν2

{
1 + 59

4

(αs

π

)
+ β1

2

(αs

π

)
log −q2

ν2

}

C4〈O4〉 = 4αs

{
1 + 49

12

(αs

π

)
+ β1

2

(αs

π

)
log −q2

ν2

}
〈αs G2〉

C6〈O6〉 = 2αs

{
1 − 29

4
αs log −q2

ν2

}
g3 fabc〈GaGbGc〉

C8〈O8〉 = 14
〈 (

αs fabcGa
µρGbρ

ν

)2 〉 − 〈 (
αs fabcGa

µνGb
ρλ

)2 〉
. (37.15)

37.4 Scalar meson-gluonium mixing

Let’s consider the off-diagonal two-point correlator:

�+
gq (q2) =

∫
dx eiq.x i〈0|T J2g(x) J †

q (0)|0〉 , (37.16)

where:

J2g = αs G2 , Jq = 2mq̄q . (37.17)

Its perturbative QCD expression reads [458]:

�+
gq (q2) = αs

(αs

π

) 3

π2
m2

s q2 log −q2

ν2

[
log −q2

ν2
− 2

3
(4 − 3γE )

]
. (37.18)

The evaluation of the quark and gluon condensates is very similar to the case of the
pseudoscalar channel, which the reader can easily evaluate as an exercise. The result
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+ + . . .

Fig. 37.3. Feynman diagrams corresponding to the OPE of the tri-gluonium correlator: (a) perturbative;
(b) gluon condensate.

indicates that the mixing also vanishes in the chiral limit like in the case of the pseudoscalar
channel.

37.5 Scalar tri-gluonium correlator

Here, one studies the correlator in Fig. 37.3 associated to the interpolating trigluon current:

J3g = g3 fabc〈GaGbGc〉 (37.19)

Its QCD expression reads [457]:

ψ3(q2) = −α2
s

{
3αs

10π
q8 log −q2

ν2
+ 18πq4〈αs G2〉

− 27

2

(
q2 log −q2

ν2

)
g3 fabc〈GaGbGc〉 + αsπ

336 × 64 (φ7 − φ5)

}
, (37.20)

with:

φ5 = 1

16
Tr〈GνµGµρGρτ Gτν〉

φ7 = 1

16
Tr〈GνµGνρGµρGµτ 〉 . (37.21)

37.6 Scalar di- and tri-gluonium mixing

We shall be concerned with the off-diagonal correlator:

ψ23(q2) ≡ i
∫

d4x eiqx 〈0|T J2g(x)J3g(0)†|0〉 . (37.22)

Its QCD expression reads [457]:

ψ23(q2) = α2
s

{
log −q2

ν2

[
9

4π3
g2q6 − 9

4π
g2〈G2〉q2

]
− 24πg〈 fabcGaGbGc〉

}
. (37.23)
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37.7 Tensor gluonium

We shall be concerned with the two-point correlator:

�T
µνρσ ≡ i

∫
d4x eiqx 〈0|T θ g

µν(x)θ g
ρσ (0)†|0〉

= 1

2

(
ηµρηνσ + ηµσηνρ − 2

3
ηµνηρσ

)
ψT (q2) , (37.24)

where:

θ g
µν = −Gα

µGνα + 1

4
gµνGαβ

Gαβ . (37.25)

and:

ηµν ≡ gµν − qµqν

q2
. (37.26)

To leading order in αs and including the non-perturbative condensates, the QCD expres-
sion of the correlator reads [382]:

�T (q2 ≡ −Q2) = − 1

20π2
(Q4) log

Q2

ν2
+ 5

12

g2

Q4
〈2O1 − O2〉 , (37.27)

where:

O1 = ( fabcGµαGνα)2 and O2 = ( fabcGµνGαβ)2 . (37.28)

Using the vacuum saturation hypothesis, one can write:

〈2O1 − O2〉 � − 3

16
〈G2〉2 . (37.29)

37.8 Tensor meson-gluonium mixing

We shall be concerned with the off-diagonal two-point correlator:

�T
gq,µνρσ ≡ i

∫
d4x eiqx 〈0|T θ g

µν(x)θq
ρσ (0)†|0〉

= 1

2

(
ηµρηνσ + ηµσηνρ − 2

3
ηµνηρσ

)
�T

gq (q2) , (37.30)

where

θq
µν(x) = i q̄(x)(γµ D̄ν + γν D̄µ)q(x) . (37.31)

Here, D̄µ ≡ �Dµ − Dµ is the covariant derivative, and the other quantities have already
been defined earlier. Taking into account the mixing of the currents, one obtains [452]:

�T
gq (q2 ≡ −Q2) � q4

15π2

(αs

π

) (
log2 Q2

ν2
− 91

15
log

Q2

ν2

)
− 7

36
log

Q2

ν2

(αs

π

)
〈G2〉 .

(37.32)
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Fig. 37.4. Lowest order tachyonic gluon contribution to the gluonic correlator. The cross in the internal
gluon propagator corresponds to the tachyonic gluon mass insertion λ2.

37.9 Contributions beyond the OPE: tachyonic gluon mass

As we have seen previously, there are also contributions beyond the SVZ-expansion. We
shall first be concerned with the two-point correlator:

�s(Q2) ≡ i
∫

d4x eiqx 〈0|T J2g(x)(J2g(0))†|0) (37.33)

associated to the scalar gluonium current:

J2g = αs
(
Ga

µν

)2
. (37.34)

Its evaluation leads to:

1

π
Im�s(s) ≈ (parton model)

(
1 − 6λ2

s
+ · · ·

)
. (37.35)

The tachyonic gluon contribution comes from the diagram in Fig. 37.4.
Thus, one can expect that the λ2 correction in this channel is relatively much larger since

it is not proportional to an extra power of αs . Let us consider now the case of the tensor
gluonium with the correlator:

ψT
µνρσ (q) ≡ i

∫
d4x eiqx 〈0|T θ g

µν(x)θ g
ρσ (0)†|0〉

= ψT
4

(
qµqνqρqσ − q2

4
(qµqνgρσ + qρqσ gµν) + q4

16
(gµνgρσ )

)

+ ψT
2

(
q2

4
gµνgρσ − qµqνgρσ − qρqσ gµν + qµqσ gνρ + qνqσ gµρ

+ qµqρgνσ + qνqρgµσ

)

+ ψT
0

(
gµσ gνρ + gµρgνσ − 1

2
gµνgρσ

)
, (37.36)

where θ
g
µν has been defined in Eq. (37.25). A direct calculation gives the following results
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for the structure functions ψT
i and their respective Borel/Laplace transforms:

π2ψT
4 = lµQ

15
+ 17

450
− λ2 1

3Q2
===⇒ 1

15

(
1 − 5

λ2

M2

)
, (37.37)

π2ψT
2 = Q2lµQ

20
+ 9Q2

200
+ λ2

(
lµQ

6
− 2

9

)
===⇒ − M2

20

(
1 − 10

3

λ2

M2

)
, (37.38)

π2ψT
0 = Q4lµQ

20
+ 9Q4

200
+ λ2 Q2

(
lµQ

4
− 1

12

)
===⇒ M4

20

(
1 − 5

2

λ2

M2

)
. (37.39)

If, instead of considering θ
g
µν , we would introduce the total energy-momentum tensor of

interacting quarks and gluons θµν , then various functions components of ψµνρσ are related
to each other because of the energy-momentum conservation. Indeed, requiring that

ψT
µνρσ qµ ≡ 0

we immediately obtain:

ψT
2 = 3

4
Q2ψT

4 and ψT
0 = 3

4
Q4ψT

4 ,

and, as a consequence, the following representation of the function in Eq. 37.36:

ψT
µνρσ (q) =

(
ηµρηνσ + ηµσηνρ − 2

3
ηµνηρσ

)
ψT (Q2) , (37.40)

where:

ψT (Q2) ≡ Q4 3

4
ψT

4 (Q2), ηµν ≡ gµν − qµqν

q2
. (37.41)
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