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1. Introduction. If
e ]

(1.1) f(s) = [ e St F()at s> 0
0
and
k-1 )
a 3 (at!a1 -atx ak-1_ (ak-1)
(1.2) L (6] = "R fo e T x LT (atx)(x)dx,

)

a>0, k=1,2,3,...; where L‘f: is the Laguerre polynomial of

order v, defined by
z -v k
(v), ,_e z d -z ktv
(1.3) Lk (z) = o dzk (e "z ) v > -1,

then we shall show that under certain conditions

lim Llj  [E6)] = (o).
k->c0 !

Following the inversion theory, two representation theorems
are given. The proofs of these theorems follow easily along the
lines of Widder [4, Ch.VII] and are therefore omitted.

The operator (1.2) can be written in different forms. Sub-
stitution of (1.3) in (1.2) and integration by parts yields

The author is indebted to Professor P.G. Rooney for some
helpful comments.
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ak-1 0 k

a __(at) d [ -atx ak+k-1
L, O = r e {) ] ple T 1) dx
X
(1.4)
k ak-1 0
_(-1) (at) -~atx  ak+k-1 (k)
=T Kir(ak-1) fo x £ (x)dx,

provided the intermediate terms obtained by integration by parts
vanish. The inversion operator in this form was given by

A. Erdélyi [1] without developing the resulting inversion and re-
presentation theories. For a =1, itis the Widder-Boas inver-
sion operator (4, §25].

Another form of (1.2) is obtained by observing that if a
function g of xt has derivatives of all orders in both x and t

then
k k
-k 0 -k 0
(1.5) x = g(x, t) =t = g(xt) .
ot ox
-at k+k -
Let g(xt) = e & X(bc)a 1 , a>0, thenby (1.4) and (1.5)

k-1 -k Kk
2 ® ak+k-1

f ak [e-ab{(fx) Jf(x) dx
0 ox

a a
L UG = S

k-1
aa ® -k ak [e-atx ak+k-1

x (tx) £ (x)dx
ot

T k! (ak-1) {)

k-1 K
_a” d {tak+k-1f°°xak-1
T k! -

Tlak-1) Kk .

e_atxf(x)dx} .

The following results are frequently employed in the sequel:

0 k
-zt v_(v) _ I (v+k+1) (z+1)
(1.6) J ot L (tdt= T
0 k! z
(1.7) IL(V) ( )l< eZ/2 T(v+k+1) 0 <
' ko AIs o VT (0<z< w)

See for example [2, Ch. 10, §12(32), and §18(14)].
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2. Existence and Properties of the Operator.

THEOREM 2.1. If F(t)e Li(O,R.) for each R> 0 and

C DN

[t °|F(t) |dt < w,

R )\O
for some )\O > 0, then (1.1) exists for s> 0; if k> ko =73
Lz J[£(.)] exists for each t>0 and
(2.1) L2 [f] = I (ak+k) foo uk (at)ak-1 F(u)du

’ k,t'" ! T k! (ak-1) ak+k :

0 (at+u)
-st '\o
Proof. Since e t attains its maximum at
t= )\Os"1 , it follows that for R > 0

) R -)\O -)\o L] —xo
[ et rmlat< [ [F@ldtre “x s [t C[F(]dt<o.
0 0 R

Hence f(s) =&(F;s) exists for s> 0. By hypotheses and (1.7)

N
with v = ak-1 and z = atx it is easily seen that for k > ko = _a_o
1 ® latx ak-1 (ak-1) ® xu |
T J ¢ (= L, am)]dx [ 77 |F(u)|du
0 0
)‘o a
exists for each t> 0. Therefore, if k> ko = ?, Lk t[f(. )]

exists for each t> 0. Finally, the use of Fubini's theorem and

an application of (1.6) with z = (i -1) and v = ak-1 yields
a 1 ® t ak-1 _ (ak-1)
-atx - -
Lk, t[f] “ T(ak-1) fo e (atx) Lk (atx) f(x)dx

0

(atx)dxf e-qu(u)du

[¢e]
- 1 f e-atx(atx)ak-i Lf{ak-i)
0 0

[ee]

0
f F(u)duf e-atX(1+u/at)(atx)ak-1Ll({ak-“(atx)dx
0 0
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__T(ak+k) f°° «(26)**" ! pu)du
.- 2
KIT(ak-1) Y (atu) 2

The next theorem yields a relation involving the Laplace
transform of the operator.
N -1
-1
THEOREM 2.2. If x f(x)e L (R,®) and x ° £(x)eL, (0,R)

for each R >0 and some )\O > 0, then

(¢ o]
(2.2) g = [ e ™ u g Dau

0

exists for x> 0.

. i _ X -1.a )
(2.3) If in addition k > ko = Lk’o_-i[g(.)] exists for

a >0, L?{ ¢ [£(.)] exists for almost all t> 0, and

(2. 4) R L) LT S I
O ’ b
Proof. Since
R 1/R
f x_1 |£(x)|dx = f v”1 'f(v—i)[dv (v=x-1)
0 0
and
R \ -1 © -\ 1 1
f x © |f(x)|dx = f v Oy’ l[£(v~ )] av
0 1/R

-1
the hypotheses of Theorem 2.1 with R replaced by R are

satisfied by the function x—if(x-1). Hence (2.2) exists for x>0
N

] -1_a
dif k = — - i .
and i > ko 20 Lk,d‘ 1[g(.)] exists for ¢ > 0. Now,
. -1 -
since lf(x )l satisfies the same hypotheses as f(x 1),
ak-1 0 -ax 0
22 k- k-1) ax -xu - -
_ e T x° 1'L(a 1)(é"‘)!dxf e 1If(u 1),du<c>o.
ak k o
¢ I(ak-1) 0 0

Also, by (1.7) with v = (ak-1), z = ats and hypotheses
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f ]f(s)[dsf e-ats_ct(ats)ak-i[Lf(ak’i)(ats)]dt

0 0
o 0 1 T
I (ak+k -ats(= +— ) k-1
5?’.{?@5) [ 1] as {3 e *'2 Tas(ats) at
Claktk) , o0, 7 1(s) | ds
- k! { f * f } 1 o .ak-1, as
' 0 R (3+2) (5 +0)
ak R ak-1 ©
Sr(11<,+k) {Za / s 1(s) |as + 2 — s g(e)|ds ) < .
’ 0 T R

Hence, applying Fubini's theorem twice, we obtain

ak-1 © 2=
0'-11..; e = [ e Gxak‘iLl((ak’“(%f)g(x)dx
’ o I(ak-1) 0
ax
ak-1 0 -5 0
= -———————: f e xak-iLt(ak-i)(i;‘;)dxf e 1f(l:L 1)du
e r(ak-1) 0 0
ax x
ak-1 w0 -2 w - )
= aka e xalk_%_‘l((ak 1)(%)(3 f e s f(s)ds (s=u ")
¢ I(ak-1) O
aetw 0 EBE
= :1; s f(s)ds f e x Lka - (& )dx
o TI(ak-1) O 0
ak-1 o
- (s)ds [ & ¥ ey LB U igig)ar (Eat)
I'(ak-1) 0 o k
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0 [eq)}
1 -ot ~ats ak-1_(ak-1),
ErE—— f e dt f e {ats) Lk (ats)f(s)ds.

T (ak-1) A 0
X
Si o 1L C1[g(L)], o> 0, existsfor k>k =-2, it
ince Lk,tr g(.)], , o L
follows that the inner integral above exists for almostall t> 0

N X
and k>k =—. That is, for k>k = —O, L2 [f(.)] exists
o a 0 a k, t

for almost all t> 0 and

® -0 -1
{) e tL;’t[f(.)]dt=0' Le IREIET

3. Inversion Theory and "Fundamental' Representation
Theorem.

THEOREM 3.1. If the hypotheses of Theorem 2.1 are
satisfied, then at each point t> 0 of the Lebesgue set of F

lim LS [£]=F(t).
K, t
k=>o

Proof. By Theorem 2.1, f(s) = £(F:s) exists; for
X
0 a .
k > ko =N O’Lk, t[f(.)] exists for each t> 0 and

a [£] __I_"(:;xk+k)(a.t)a'k_1 ® uk F(u)du
Lk,t T k! - k+k
T (ak-1) 0 (a.H—u)a
ak-1 t-8 t t+6 )
k+k k
R U Y Ay ey e T
k! I (ak-1)
0 t-§ t t+6 ak+k
(at+u)

= I +I_ +1I_ +1,
1 Pt

; k -ak-k . . .
where t> 5> 0. Since u (at+u) @ is an increasing function
k+\

of u in (o,t-8) and for sufficiently large k, u O(a.t-f-u.)-aknk
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a decreasing function of u for u>t +5§,

a straight forward
calculation shows that both I

and I tend to zero as k-co,
4
Now

ak-1 t+6 k

T(ak+k)(at u
I = ( )(at) f F(u)du
3 k!T (ak-1) ak+k

t (at+u)

k-1  t+6
I (ak+k) (at)? ke h(u)
k! T (ak-1) ft e F (u) du,

where h(u) = log u - (a+1) log (at+u). Since

! a+ti
h'(u) =% atra h'(t) =0

and

h"(u)=-—42- +___a.i-i_2_, h”(t)<0,
u (at+u)

Widder [4, Theorem 2b, Chapter VII, §2, pp.278] applies, so
that

lim I =M a.e.
2
k=

The same argument is applicable to the remaining integral
I, only now Widder [4, Corollary 2b,2, Chapter VII, §2; pp.279]
must be used to obtain

lim I =ﬂ-£-Z a.e.
k 2 2
-+

Hence

a
lim [f]=F(t) a.e.
i Lyt

which proves the theorem.

The following theorem is fundamental in the representation
theory.

THEOREM 3.2. If x - £(x) e L, (R, ) and

453

https://doi.org/10.4153/CMB-1966-054-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1966-054-0

x -1
x O f(x)e Li(O,R) for each R >0 and some \_>0, then

0

-ct
lim f e” LE [f(.)]dt =1f(o) a.e.
, t
k—+w 0
X
Proof. By Theorem 2.2, for k> ko = —ag
* ot _a -1 _a
(3.1) fo e Lk’t[f(.)]dt=(r L o~ 1lel)]
where g(x) is defined by (2.2). Also since
1/R )
- - -1 -1
f u 1If(u 1)ldu= f v If(v)]dv<oo (u " =v)
0 R
and
00 -\ -1 -1 R )\O—i
v “u If(u )Idu=f v If(v)ldv(oo,
1/R 0

Theorem 3.1 with R replaced by R‘1 is applicable to the

- - -1
function u 1f(u 1). Therefore, replacing t by o ~, we obtain

lim L; tle()] =0 tle) a.e.

k—>c !
Hence by (3.1)

Q

lim [ et Li . [E(.)]dt = lim ¢ 2 Lf; cUeg()] =£(0) a.e.

k—=>w 0 k=0 ’

4. Representation Theorems. The following theorems
are now easily obtained from the previous section and some well
known weak compactness arguments (See e.g. [4,p.33]).

THEOREM 4.1. A set of necessary and sufficient con-
ditions for f to have a representation (1.4) with F(t)e L (0, ),
P

p>1, is that
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(4.1) f(x) is continuous in 0 < x < o,

(4.2) f(x)=O(x(1-p)/p), x>0, x—o
and
a
.3 L2 [f]1]L <M,
(4. BRBI

where M is independent of k.

THEOREM 4.2. A set of necessary and sufficient con-
ditions for f to have a representation (1.1) with

ess sup |F(t)] <M

0<t<wm
is (4.1),
-1
(4.4) f(x) =0O(x ") as x=>o, x—= 0+
and
a
. . <M, < .
(4.5) |L (LGOI <M, 0<t<w
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