Canad. Math. Bull. Vol. 19 (4), 1976

INDUCTIVE LIMITS OF BANACH SPACES

BY

STEVEN F. BELLENOT

ABSTRACT. If X and Y are infinite-dimensional Banach spaces, then Y is the inductive limit of Banach spaces each isomorphic to X.

Several authors ([1], [2], and [3]) have obtained the result that every Banach space is an inductive limit of Hilbert spaces. Valdivia [5] has shown, that if the Banach space E has a weak-star separable dual, then every Banach space is an inductive limit of spaces isomorphic to E. The purpose of this note is to remove the restriction that E has a weak-star separable dual. We need the following facts.

Fact 1. If X is an infinite-dimensional Banach space, then there are

 $\{x_n\} \subset X, \quad \{f_n\} \subset X^* \quad \text{with} \quad ||f_n|| = 1, \quad f_n(x_m) = \delta_{nm}$

and $\{||x_n||\}$ bounded. ([4], p. 10.)

Fact 2. A linear functional F, on Y, is in Y^* if and only if $\{F(y_n)\}$ is bounded for each $\{y_n\} \subset Y$ with $\sum_n ||y_n|| < \infty$. (If ||F|| is not finite one can find (\hat{y}_n) with $||\hat{y}_n|| \le 1$ and $|F(y_n)| \ge 4^n$, from which the Fact follows with $y_n = \hat{y}_n/2^n$.)

THEOREM. If X is an infinite-dimensional Banach space and Y is a Banach space, then Y is the inductive limit of spaces isomorphic to X.

Proof. Let A be the set of continuous linear maps from X to Y. Let ξ (respectively η) be the norm topology (respectively, the inductive limit topology for the maps $T: X \to Y, T \in A$) on Y. By definition of $\eta, \xi \leq \eta$. To show the reverse inequality, we show (Y, η) has the same dual as (Y, ξ) and invoke the barreledness of ξ .

Suppose F is a linear function on Y which is not in Y^{*}. By Fact 2, there is $\{y_n\} \subset Y$ with $\sum_n ||y_n|| < \infty$, and $F(y_n) \to \infty$. Let $\{x_n\}, \{f_n\}$ be as in Fact 1, then the map $T: X \to Y$ given by $T(x) = \sum_n f_n(x)y_n$ is in A. Furthermore, $FT(x_n) = F(y_n) \to \infty$, and F does not belong to the dual of (Y, η) .

REMARK. It suffices to use the nuclear maps for A, rather than all of the continuous linear maps.

Received by the editors April 7, 1976 and, in revised form, May 13, 1976.

S. F. BELLENOT

References

1. S. F. Bellenot, Prevarieties and intertwined completeness of locally convex spaces. Math. Ann. 217 (1975), 59–67.

2. H. Hogbe-Nlend, Topologies et bornologies nucleáires associes applications, Ann. Inst. Fourier, Grenoble 23(4) (1973), 89-104.

3. H. Jarchow and J. Swart, On Mackey convergence in locally convex spaces, Israel J. Math. 16 (1973), 150-158.

4. J. Lindenstrauss and L. Tzafriri, *Classical Banach spaces*, Berlin-Heidelberg-New York: Springer 1973.

5. M. Valdivia, A class of precompact sets in Banach spaces, J. Reine Angew. Math. 276 (1975), 130-136.

DEPARTMENT OF MATHEMATICS FLORIDA STATE UNIVERSITY TALLAHASSEE, FLORIDA 32306 U.S.A.