MULTIPLICATION OF OPERATORS BY C^{∞} FUNCTIONS

BY
\section*{HARRIS S. SHULTZ}

Let \mathscr{D}_{+}(respectively, \mathscr{D}_{-}) denote the set of all complex-valued infinitely differentiable functions defined on the reals whose supports are bounded on the left (respectively, right). Under addition and convolution \mathscr{D}_{+}is a commutative algebra. We define P to be the family of all the operators A mapping \mathscr{D}_{+}into itself such that

$$
A\left(\phi^{*} \psi\right)=\phi^{*} A(\psi) \quad\left(\text { all } \phi, \psi \in \mathscr{D}_{+}\right)
$$

We may make P into a vector space by defining addition and scalar multiplication in the usual way. In [3] it is shown that P is algebraically isomorphic to the space \mathscr{D}_{+}^{\prime} of distributions having left-bounded support; the operator $\{F\}$ corresponding to any $F \in \mathscr{D}_{+}^{\prime}$ is given by

$$
\{F\}(\phi)=F^{*} \phi \quad\left(\text { all } \phi \in \mathscr{D}_{+}\right) .
$$

Consequently, each $A \in P$ is linear.
The space P is sequentially complete when endowed with a locally convex topology defined simply in terms of the ordinary pointwise convergence of functions. We define the product $\alpha \cdot A$ of an infinitely differentiable function α and an element A of P, and, using the sequential completeness, show that $\alpha \cdot A$ belongs to P. If A is the operator defined by a locally integrable function f then $\alpha \cdot A$ is simply the operator of the pointwise product αf of the functions α and f. The differentiation operator D belongs to P. We show that multiplication by $-t$, where t is the real variable, corresponds to the algebraic derivative, that is, to differentiation with respect to D.

We shall use the following notation: If f is any function defined on the reals and t is any real number, we denote by f_{t} the function defined by

$$
f_{t}(\tau)=f(t-\tau) \quad(-\infty<\tau<\infty)
$$

Then $F^{*} \phi(t)=\left\langle F, \phi_{t}\right\rangle$ for all $F \in \mathscr{D}_{+}^{\prime}$, all real t and all $\phi \in \mathscr{D}_{+}$. For any $\phi \in \mathscr{D}_{+}$and any real number t the equation

$$
\rho_{\phi, t}(A)=|A(\phi)(t)| \quad(A \in P)
$$

defines a seminorm $\rho_{\phi, t}$ on the space P. We endow P with the locally convex topology defined by the family of seminorms $\left\{\rho_{\phi, t}: \phi \in \mathscr{D}_{+},-\infty<t<\infty\right\}$. It is clear that if $A_{n}(n=0,1,2, \ldots)$ is a sequence in P then $A_{0}=\lim A_{n}($ as $n \rightarrow \infty)$ if and only if $A_{0}(\phi)(t)=\lim A_{n}(\phi)(t)$ for all $\phi \in \mathscr{D}_{+}$and all real t.

Theorem 1. The space P is sequentially complete.
If α is any infinitely differentiable function and if $A \in P$ we denote by $\alpha \cdot A$ the rule which assigns to any $\phi \in \mathscr{D}_{+}$the function $(\alpha \cdot A)(\phi)$ defined as follows:

$$
(\alpha \cdot A)(\phi)(t)=A\left(\alpha_{t} \phi\right)(t) \quad(-\infty<t<\infty)
$$

Theorem 2. If f is a locally integrable function then $\alpha \cdot\{f\}=\{\alpha f\}$ for all infinitely differentiable functions α.

Proof. For $\phi \in \mathscr{D}_{+}$and $-\infty<t<\infty$,

$$
\begin{aligned}
(\alpha \cdot\{f\})(\phi)(t) & =\{f\}\left(\alpha_{t} \phi\right)(t) \\
& =f^{*}\left(\alpha_{t} \phi\right)(t) \\
& =\int_{-\infty}^{\infty} f(t-u) \alpha_{t}(u) \phi(u) d u \\
& =\int_{-\infty}^{\infty} f(t-u) \alpha(t-u) \phi(u) d u \\
& =(\alpha f)^{*} \phi(t) \\
& =\{\alpha f\}(\phi)(t)
\end{aligned}
$$

Theorem 3. If A belongs to P then $\alpha \cdot A$ belongs to P for all infinitely differentiable functions α.

Proof. Let $\delta_{n}(n=1,2, \ldots)$ be a " δ-sequence" in \mathscr{D}_{+}. Then

$$
A(\psi)(t)=\lim _{n \rightarrow \infty} \delta_{n}^{*} A(\psi)(t)=\lim _{n \rightarrow \infty} A\left(\delta_{n}\right)^{*} \psi(t)
$$

for all $\psi \in \mathscr{D}_{+}$and all real t. Therefore the equation

$$
A\left(\alpha_{t} \phi\right)(t)=\lim _{n \rightarrow \infty}\left\{A\left(\delta_{n}\right)\right\}\left(\alpha_{t} \phi\right)(t)=\lim _{n \rightarrow \infty}\left(\alpha \cdot\left\{A\left(\delta_{n}\right)\right\}\right)(\phi)(t)
$$

holds for all $\phi \in \mathscr{D}_{+}$and all real t. But $\alpha \cdot\left\{A\left(\delta_{n}\right)\right\} \in P$ by Theorem 2; the conclusion $\alpha \cdot A \in P$ is then a consequence of Theorem 1.

Definition. Let γ be the function defined by $\gamma(\tau)=-\tau$. For each A in P we define $A^{\prime}=\gamma \cdot A$.

Lemma. The equation

$$
T^{\prime}(\phi)(t)=\gamma(t) T(\phi)(t)-T(\gamma \phi)(t) \quad\left(-\infty<t<\infty, \phi \in \mathscr{D}_{+}\right)
$$

holds for all $T \in P$.
Proof. Since

$$
\left.\gamma_{t}(\tau) \phi(\tau)=-(t-\tau) \phi(\tau)=\gamma(t) \phi(\tau)-\gamma(\tau) \phi(\tau) \quad \text { all } \tau\right)
$$

we may write $\gamma_{t} \phi=\gamma(t) \phi-\gamma \phi$. Consequently,

$$
\begin{aligned}
T^{\prime}(\phi)(t) & =T\left(\gamma_{t} \phi\right)(t) \\
& =T(\gamma(t) \phi-\gamma \phi)(t) \\
& =\gamma(t) T(\phi)(t)-T(\gamma \phi)(t)
\end{aligned}
$$

for all $T \in P$.
We may make P into a commutative algebra by defining $A B$ to be the composition of the operator A with the operator B.

Theorem 4. The equation $(A B)^{\prime}=A^{\prime} B+A B^{\prime}$ holds for all A and B in P.
Proof. By the lemma,

$$
\begin{aligned}
(A B)^{\prime}(\phi) & =\gamma(A(B(\phi)))-A(B(\gamma \phi)) \\
& =\gamma(A(B(\phi)))-A(\gamma(B(\phi)))+A(\gamma(B(\phi))-B(\gamma \phi)) \\
& =A^{\prime}(B(\phi))+A\left(B^{\prime}(\phi)\right) \\
& =\left(A^{\prime} B\right)(\phi)+\left(A B^{\prime}\right)(\phi)
\end{aligned}
$$

for all $\phi \in \mathscr{D}_{+}$.
Corollary. The equation $\left(D^{n}\right)^{\prime}=n D^{n-1}$ holds for all positive integers n.

Bibliography

1. G. Krabbe, Operational calculus, Springer-Verlag, New York, 1970.
2. T. P. G. Liverman, Generalized functions and direct operational methods, Vol. 1, PrenticeHall, Englewood Cliffs, N.J., 1964.
3. R. Struble, On operators and distributions, Canad. Math. Bull. (1) 11 (1968), 61-64. Fullerton, California
