DOUBLING TROPICAL q-DIFFERENCE ANALOGUE OF THE LEMMA ON THE LOGARITHMIC DERIVATIVE

SI-QI CHENG

(Received 30 March 2018; accepted 26 July 2018; first published online 12 September 2018)

Abstract

We present a tropical q-difference analogue of the lemma on the logarithmic derivative for doubling tropical meromorphic functions.

2010 Mathematics subject classification: primary 39A12; secondary 30D35.
Keywords and phrases: tropical q-difference meromorphic function, the lemma on the logarithmic derivative, doubling property.

1. Introduction

Following Halburd and Southall [2], tropical Nevanlinna theory is concerned with functions of a real variable which are continuous piecewise linear and meromorphic and have one-sided derivatives at each point. In the tropical framework, we start with a tropical semi-ring which endows the set $\mathbb{R} \cup\{-\infty\}$ with addition

$$
x \oplus y:=\max (x, y)
$$

and multiplication

$$
x \otimes y:=x+y .
$$

We also use the notation $x \oslash y:=x-y$ and $x^{\otimes \alpha}:=\alpha x$ for $\alpha \in \mathbb{R}$. A continuous piecewise linear function $f: \mathbb{R} \rightarrow \mathbb{R}$ is tropical meromorphic on \mathbb{R} if both one-sided derivatives are integers at each point $x \in \mathbb{R}$. Laine and Tohge [6] broadened the definition of tropical meromorphic functions by removing the condition that both onesided derivatives of f are integers.

For each $x \in \mathbb{R}$, let

$$
\omega_{f}(x)=\lim _{\epsilon \rightarrow 0^{+}}\left\{f^{\prime}(x+\epsilon)-f^{\prime}(x-\epsilon)\right\} .
$$

If $\omega_{f}(x)>0$, then x is called a zero of f with multiplicity $\omega_{f}(x)$. If $\omega_{f}(x)<0$, then x is called a pole of f with multiplicity $-\omega_{f}(x)$. Observe that the multiplicity may be a

[^0]nonintegral real number; it is denoted by $\tau_{f}(x)$ in the following. It is clear that if $f(x)$ has no zeros and no poles in $\left[r_{1}, r_{2}\right]$, then $f(x)=a x+b$ in $\left[r_{1}, r_{2}\right]$, with $a, b \in \mathbb{R}$.

The tropical version of the proximity function for a tropical meromorphic function f is defined by

$$
m(r, f):=\frac{1}{2}\left\{f^{+}(r)+f^{+}(-r)\right\}
$$

where $f^{+}(x):=\max \{f(x), 0\}$ (see [2]). It is well known that

$$
m(r, f \oplus g) \leq m(r, f)+m(r, g)
$$

and

$$
m(r, f \otimes g) \leq m(r, f)+m(r, g)
$$

Denote by $n(r, f)$ the number of distinct poles of f in the interval $(-r, r)$, each pole multiplied by its multiplicity $\tau_{f}(x)$. We define the tropical counting function by

$$
N(r, f):=\frac{1}{2} \int_{0}^{r} n(t, f) d t=\frac{1}{2} \sum_{\left|b_{v}\right|<r} \tau_{f}\left(b_{v}\right)\left(r-\left|b_{v}\right|\right)
$$

and, as usual, the tropical characteristic function $T(r, f)$ is defined by

$$
T(r, f):=m(r, f)+N(r, f)
$$

The characteristic function $T(r, f)$ is a positive, continuous, nondecreasing piecewise linear function of r (see [4, Theorem 3.4]).

The tropical Poisson-Jensen formula implies a weak analogue of the tropical version of Nevanlinna's first main theorem:

$$
\begin{equation*}
T(r, f)-T(r,-f)=f(0) \tag{1.1}
\end{equation*}
$$

Tsai [8] and Laine et al. [5] further developed the tropical Nevanlinna theory.
We also use an analogue of the logarithmic measure (see [3]). Given any set E on a part of the positive r-axis, where $r>1$, we define its logarithmic measure $\operatorname{lm} E$ by

$$
\operatorname{lm} E:=\int_{E} \frac{d r}{r}
$$

Writing $E(r)$ for the part of E in the interval [1,r], we define the upper logarithmic density \log dens E and the lower logarithmic density \log dens E by

$$
\overline{\log \operatorname{dens}} E=\underset{r \rightarrow \infty}{\limsup } \frac{\operatorname{lm} E(r)}{\log r}, \quad \underline{\log \operatorname{dens}} E:=\liminf _{r \rightarrow \infty} \frac{\operatorname{lm} E(r)}{\log r} .
$$

If $\overline{\log \operatorname{dens}} E=\log \operatorname{dens} E=\varepsilon$, say, for a set E, we say that E has logarithmic density ε. The doubling property [7] plays an important role in what follows.
Definition 1.1 (Doubling property). Let $T: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be a piecewise continuous increasing function and $c_{1}>1$. Then T has the doubling property if there is a constant $c_{2}>1$ such that

$$
T\left(c_{1} r\right) \leq c_{2} T(r)
$$

for all r outside an exceptional set of finite logarithmic measure.

Definition 1.2. A tropical meromorphic function is called a doubling tropical meromorphic function if its tropical characteristic function $T(r, f)$ has the doubling property.

Example 1.3. The function $f(x)=x$ has no poles and its tropical characteristic function is $\frac{1}{2} r$, so it has the doubling property. From its graph, the function $f(x)=-|x|$ has a pole of multiplicity 2 at $x=0$ and $T(r, f)=r$, so it also has the doubling property.

Example 1.4. The following example from [4, page 5] exhibits a doubling tropical meromorphic function. The tropical rational function

$$
f(x):=\max \left\{3-x,-1+\frac{3}{2} x, 4-\frac{1}{5} x\right\}-\max \left\{-2+\frac{1}{2} x, 4 x, 1-\frac{1}{3} x\right\}
$$

has a pole of multiplicity $\frac{13}{3}$ at $x=\frac{3}{13}$ and, for all sufficiently large r,

$$
m(r, f)=1+\frac{2}{3} r, \quad N(r, f)=\frac{13}{6} r, \quad T(r, f)=1+\frac{17}{6} r,
$$

so f has the doubling property.

2. Doubling tropical q-difference analogue of the lemma on the logarithmic derivative

The tropical Nevanlinnna theory originates from the tropical Poisson-Jensen formula. This formula implies that the values of a tropical meromorphic function f at any point x in the interval $(-r, r)$ can be expressed in terms of the zeros and poles of f and the average value of f on the boundary of the interval.

Halburd and Southall [2, Lemma 3.1] derived the tropical Poisson-Jensen formula for the case in which the multiplicities of all the zeros and poles are positive integers. Laine and Tohge [6, Theorem 2.1] gave a general form of the tropical Poisson-Jensen formula, which can be stated as follows:

$$
\begin{align*}
& f(x)=\frac{1}{2}\{f(r)+f(-r)\}+\frac{x}{2 r}\{f(r)-f(-r)\}-\frac{1}{2 r} \sum_{\left|a_{\mu}\right|<r} \tau_{f}\left(a_{\mu}\right)\left\{r^{2}-\left|a_{\mu}-x\right| r-a_{\mu} x\right\} \\
&+\frac{1}{2 r} \sum_{\left|b_{v}\right|<r} \tau_{f}\left(b_{v}\right)\left\{r^{2}-\left|b_{v}-x\right| r-b_{v} x\right\} \tag{2.1}
\end{align*}
$$

where the a_{μ} are the zeros and the b_{ν} are the poles of f in the interval $[-r, r]$ and τ_{f} is a positive real number which denotes the multiplicity of a zero or pole.

The lemma on the logarithmic derivative plays an important role in Nevanlinna theory; in particular, it is used in proving Nevanlinna's second main theorem. A tropical difference analogue of the lemma on the logarithmic derivative is given in [2, Lemma 3.8]. Here, we prove a doubling tropical q-difference analogue of the lemma on the logarithmic derivative in the general context of [6]. We need the following lemmas.

Lemma 2.1. Let f be a tropical meromorphic function and $q \in \mathbb{R} \backslash\{0\}$. Then

$$
m\left(r, f\left(x^{\otimes q}\right) \oslash f(x)\right) \leq|q-1| r\{n(\rho, f)+n(\rho,-f)\}+\frac{|q-1| r}{\rho}\{2 T(\rho, f)-f(0)\}
$$

where $\rho>\max \{r,|q| r\}$.

Proof. Take any $\rho>\max \{r,|q| r\}$ and $x \in[-r, r]$. Denote the zeros of f by a_{μ} and the poles of f by b_{v}, with their corresponding multiplicities τ_{f}. Substitute $q x$ for x in (2.1), giving

$$
\begin{aligned}
& f(q x)=\frac{1}{2}\{f(\rho)+f(-\rho)\}+\frac{q x}{2 \rho}\{f(\rho)-f(-\rho)\} \\
&-\frac{1}{2 \rho} \sum_{\left|a_{\mu}\right|<\rho} \tau_{f}\left(a_{\mu}\right)\left\{\rho^{2}-\left|a_{\mu}-q x\right| \rho-a_{\mu} \cdot q x\right\} \\
&+\frac{1}{2 \rho} \sum_{\left|b_{v}\right|<\rho} \tau_{f}\left(b_{v}\right)\left\{\rho^{2}-\left|b_{v}-q x\right| \rho-b_{v} \cdot q x\right\} .
\end{aligned}
$$

This implies that

$$
\begin{aligned}
f(q x)-f(x)= & \frac{(q-1) x}{2 \rho}\{f(\rho)-f(-\rho)\} \\
& \quad+\frac{1}{2 \rho} \sum_{\left|a_{\mu}\right|<\rho} \tau_{f}\left(a_{\mu}\right)\left\{\left(\left|a_{\mu}-q x\right|-\left|a_{\mu}-x\right|\right) \rho+(q-1) a_{\mu} x\right\} \\
& \quad-\frac{1}{2 \rho} \sum_{\left|b_{v}\right|<\rho} \tau_{f}\left(b_{v}\right)\left\{\left(\left|b_{v}-q x\right|-\left|b_{v}-x\right|\right) \rho+(q-1) b_{v} x\right\} \\
= & S_{1}(x)+S_{2}(x)-S_{3}(x), \text { say. }
\end{aligned}
$$

Therefore,

$$
m(r, f(q x)-f(x)) \leq m\left(r, S_{1}(x)\right)+m\left(r, S_{2}(x)\right)+m\left(r,-S_{3}(x)\right)
$$

We proceed to estimate each of the three terms $m\left(r, S_{i}(x)\right)$ separately. By using $f^{+}(x) \leq|f(x)|$ and $|f(x)|=f^{+}(x)+(-f)^{+}(x)$,

$$
\begin{aligned}
m\left(r, S_{1}(x)\right) & \leq \frac{1}{2 \rho}|q-1| r\{|f(\rho)|+|f(-\rho)|\} \\
& =\frac{1}{2 \rho}|q-1| r\left\{f^{+}(\rho)+(-f)^{+}(\rho)+f^{+}(-\rho)+(-f)^{+}(-\rho)\right\} \\
& =\frac{|q-1| r}{\rho}\{m(\rho, f)+m(\rho,-f)\}
\end{aligned}
$$

For the second term, using the triangle inequality in the form $\| z_{1}\left|-\left|z_{2}\right|\right| \leq\left|z_{1}-z_{2}\right|$,

$$
\begin{aligned}
m\left(r, S_{2}(x)\right) \leq & \sum_{\left|a_{\mu}\right|<\rho} \tau_{f}\left(a_{\mu}\right) \cdot m\left(r, \frac{1}{2 \rho}\left\{\left(\left|a_{\mu}-q x\right|-\left|a_{\mu}-x\right|\right) \rho+(q-1) a_{\mu} x\right\}\right) \\
\leq & \sum_{\left|a_{\mu}\right|<\rho} \tau_{f}\left(a_{\mu}\right) \cdot \frac{1}{2}\left(\frac{1}{2 \rho}\left\{\left|\left(\left|a_{\mu}-q r\right|-\left|a_{\mu}-r\right|\right)\right| \rho+|q-1| \cdot\left|a_{\mu}\right| r\right\}\right. \\
& \left.\quad+\frac{1}{2 \rho}\left\{\left|\left(\left|a_{\mu}+q r\right|-\left|a_{\mu}+r\right|\right)\right| \rho+|q-1| \cdot\left|a_{\mu}\right| r\right\}\right) \\
\leq & \sum_{\left|a_{\mu}\right|<\rho} \tau_{f}\left(a_{\mu}\right) \cdot \frac{1}{2}\left(|q-1| r+\frac{1}{\rho}|q-1| \cdot\left|a_{\mu}\right| r\right) \\
\leq & \sum_{\left|a_{\mu}\right|<\rho} \tau_{f}\left(a_{\mu}\right) \cdot|q-1| r=|q-1| r \cdot n(\rho,-f) .
\end{aligned}
$$

Similarly,

$$
m\left(r,-S_{3}(x)\right) \leq|q-1| r \cdot n(\rho, f)
$$

By combining the above estimates and the tropical Nevanlinna first main theorem,

$$
\begin{aligned}
m(r, f(q x)-f(x)) & \leq \frac{|q-1| r}{\rho}\{m(\rho, f)+m(\rho,-f)\}+|q-1| r\{n(\rho, f)+n(\rho,-f)\} \\
& \leq \frac{|q-1| r}{\rho}\{2 T(\rho, f)-f(0)\}+|q-1| r\{n(\rho, f)+n(\rho,-f)\}
\end{aligned}
$$

Lemma 2.2 [1, Lemma 5.4]. Let $T: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be an increasing function and let $U: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$. If there exists a decreasing sequence $\left\{c_{n}\right\}_{n \in \mathbb{N}}$ such that $c_{n} \rightarrow 0$ as $n \rightarrow \infty$ and, for all $n \in \mathbb{N}$, the set

$$
F_{n}:=\left\{r \geq 1: U(r)<c_{n} T(r)\right\}
$$

has logarithmic density 1 , then

$$
U(r)=o(T(r))
$$

on a set of logarithmic density 1 .
We can now state and prove our doubling tropical q-difference analogue of the lemma on the logarithmic derivative.
Theorem 2.3. Let f be a doubling tropical meromorphic function and $q \in \mathbb{R} \backslash\{0\}$. Then

$$
m\left(r, f\left(x^{\otimes q}\right) \oslash f(x)\right)=o(T(r, f))
$$

on a set of logarithmic density 1 .
Proof. Assume that $K \geq K_{0}>\max \{|q|, 1\}$. Applying Lemma 2.1 with $\rho=K r$,

$$
\begin{equation*}
m(r, f(q x)-f(x)) \leq|q-1| r\{n(K r, f)+n(K r,-f)\}+\frac{|q-1|}{K}\{2 T(K r, f)-f(0)\} \tag{2.2}
\end{equation*}
$$

From the definition of the tropical counting function, for any $k>1$,

$$
N(k r, f)=\frac{1}{2} \int_{0}^{k r} n(t, f) d t \geq \frac{1}{2} \int_{r}^{k r} n(t, f) d t \geq \frac{1}{2}(k-1) r n(r, f),
$$

which implies that

$$
n(r, f) \leq \frac{2 N(k r, f)}{(k-1) r}
$$

Replacing r by $K r$ and taking $k=K+1$,

$$
\begin{equation*}
n(K r, f) \leq \frac{2 N\left(K^{2} r+K r, f\right)}{K^{2} r} \tag{2.3}
\end{equation*}
$$

Then, from (2.2) and (2.3),

$$
\begin{aligned}
& m(r, f(q x)-f(x)) \leq \frac{2|q-1|}{K^{2}}\left\{N\left(K^{2} r+K r, f\right)+N\left(K^{2} r+K r,-f\right)\right\} \\
&+\frac{|q-1|}{K}\{2 T(K r, f)-f(0)\}
\end{aligned}
$$

Now we use $N(r, f) \leq T(r, f)$, which is clear from the definitions, and the tropical version of Nevanlinna's first main theorem (1.1) to get

$$
m(r, f(q x)-f(x)) \leq \frac{2|q-1|}{K^{2}}\left\{2 T\left(K^{2} r+K r, f\right)-f(0)\right\}+\frac{|q-1|}{K}\{2 T(K r, f)-f(0)\} .
$$

By hypothesis, $T(r, f)$ satisfies the doubling property, so there is a constant $c_{2}>1$ such that

$$
T(K r, f) \leq c_{2} \cdot T(r, f) \quad \text { and } \quad T\left(K^{2} r+K r, f\right) \leq c_{2} \cdot T(r, f)
$$

for all r outside an exceptional set of finite logarithmic measure. From this, we deduce that

$$
m(r, f(q x)-f(x)) \leq \frac{2|q-1|}{K^{2}}\left\{2 c_{2} \cdot T(r, f)-f(0)\right\}+\frac{|q-1|}{K}\left\{2 c_{2} \cdot T(r, f)-f(0)\right\} .
$$

In particular, taking $K=n+1, n \in \mathbb{N}^{+}$,

$$
m(r, f(q x)-f(x)) \leq\left\{\frac{4|q-1| c_{2}}{(n+1)^{2}}+\frac{2|q-1| c_{2}}{n+1}+o\left(\frac{1}{n+1}\right)\right\} T(r, f)
$$

for all r outside an exceptional set of finite logarithmic measure. Applying Lemma 2.2 with

$$
U(r)=m(r, f(q x)-f(x)),
$$

we can conclude that

$$
m(r, f(q x)-f(x))=o(T(r, f))
$$

on a set of logarithmic density 1 . This completes the proof of the theorem.
Corollary 2.4. Let f be a doubling tropical meromorphic function and $q_{1}, q_{2} \in \mathbb{R} \backslash\{0\}$. Then

$$
m\left(r, f\left(x^{\otimes q_{1}}\right) \oslash f\left(x^{\otimes q_{2}}\right)\right)=o(T(r, f))
$$

on a set of logarithmic density 1.

Acknowledgement

The author would like to thank her supervisor Zhi-Tao Wen for making suggestions to improve the paper.

References

[1] D. C. Barnett, R. G. Halburd, W. Morgan and R. J. Korhonen, 'Nevanlinna theory for the q-difference operator and meromorphic solutions of q-difference equations', Proc. Roy. Soc. Edinburgh Sect. A 137(3) (2007), 457-474.
[2] R. G. Halburd and N. J. Southall, 'Tropical Nevanlinna theory and ultradiscrete equations', Int. Math. Res. Not. IMRN 39 (2009), 887-911.
[3] W. K. Hayman, 'On the characteristic of functions meromorphic in the plane and of their integrals', Proc. Lond. Math. Soc. 14A (1965), 93-128.
[4] R. J. Korhonen, I. Laine and K. Tohge, Tropical Value Distribution Theory and Ultra-Discrete Equations (World Scientific, Singapore, 2015).
[5] I. Laine, K. Liu and K. Tohge, 'Tropical variants of some complex analysis results', Ann. Acad. Sci. Fenn. Math. Diss. 41 (2016), 923-946.
[6] I. Laine and K. Tohge, 'Tropical Nevanlinna theory and second main theorem', Proc. Lond. Math. Soc. 102(5) (2011), 883-922.
[7] C. Q. Tan and J. Li, 'Some characterizations of upper doubling conditions on metric measure spaces', Math. Nachr. 290 (2017), 142-158.
[8] Y.-L. Tsai, 'Working with tropical meromorphic functions of one variable', Taiwanese J. Math. 16 (2012), 691-712.

SI-QI CHENG, Department of Mathematics, Taiyuan University of Technology, Shanxi 030024, China
e-mail: chengsiqi0781@link.tyut.edu.cn, 1356992134@qq.com

[^0]: (C) 2018 Australian Mathematical Publishing Association Inc.

