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Abstract. This paper consists of two independent parts. 
(1) The Monte Carlo method for computing the evolution of spherical stellar systems has been modified 

so that the computation can be continued after the time of formation of the central singularity. Results 
are presented for systems with equal and unequal star masses. The initial core-halo formation is followed 
by a general expansion of the cluster, while the central singularity absorbs a growing fraction of the total 
negative energy. 

(2) Theoretical expressions of the 'diffusion coefficients', which describe the effect of encounters in a 
stellar system, contain a factor \n(yN) where TV is the number of stars and y is a constant usually taken 
to be of the order of 0.4. A reconsideration of the 'non-dominant terms' leads to a substantially lower 
value, of the order of 0.15 for equal masses and 0.075 for unequal masses with a typical distribution. 

• This correction improves the agreement between JV-body and Monte Carlo simulations of spherical 
systems. 

1. Extension of Monte Carlo Models Beyond the Singularity 

All methods used so far to study the dynamical evolution of a spherical cluster under 
the effect of encounters indicate that the core of the system contracts, and that the 
contraction ends in a singular event at a finite time. When the system is described by 
a continuous distribution function, the central density becomes infinite at the critical 
time (Henon, 1961; von Hoerner, 1968; Larson, 1970). In JV-body simulations, a close 
binary forms near the centre (see reviews by Aarseth, 1973,1975; Wielen, 1974,1975). 
In Henon's Monte Carlo models, the innermost shell collapses (Henon, 1971). In the 
models of Spitzer and associates, the computation does not quite reach the critical 
time, but a small fraction of the mass near the centre appears to be headed for collapse 
(Spitzer and Thuan, 1972; Spitzer, 1975). 

A theoretical explanation of this phenomenon has been given by Lynden-Bell 
and Wood (1968), who treated stars as molecules and applied thermodynamical 
concepts: the core of the system is 'hotter' than the outer regions, so that there is an 
outward flux of heat; the core loses energy, contracts, and becomes hotter as a con
sequence of the virial theorem. This process accelerates until the central singularity 
is formed. 

What happens after the critical time? Unfortunately many methods fail at or 
before that time, because of technical difficulties related to the appearance of the 
singularity. The N-body simulations, however, are able to survive the event. They 
indicate that the central binary progressively shrinks and absorbs a growing fraction 
of the total negative energy of the system. An early analytical model (Henon, 1961) 
also indicated that after the central singularity has formed, it will emit a continuous 
flow of energy. 

Again the explanation of this behaviour is given by Lynden-Bell and Wood's 
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mechanism, which does not stop when the singularity is formed: the central parts 
are still hotter than the outside, and there is still an outward heat flux. However, the 
system has exhausted its first source of energy, which was the contraction of the core. 
Therefore the energy must come now from the singularity itself. This will appear less 
mysterious if events are considered in more detail. Shortly before the critical time, 
only a small fraction of the core is rapidly contracting, and therefore feeding the 
energy flow; the rest of the system is in quasi-equilibrium on this short time scale 
and is only traversed by the energy flow, without contributing to it. The active region 
becomes smaller and smaller as the critical time is approached, and finally shrinks to 
a point. This is most clearly seen in Larson's (1970) figures, and was also predicted 
earlier (Henon, 1961). Thus, at the critical time, the energy flux originates from the 
centre itself. Since no further contraction is possible, after the critical time the energy 
must continue to come from the central singularity. 

In the iV-body simulations with point masses, extracting energy from the singu
larity is no problem; the central binary can supply any amount of energy by shrinking. 
In Henon's Monte Carlo method, as recently described (1973), the innermost shell 
begins to shrink at the critical time; it can also supply an unlimited amount of energy 
in this way, and thus it plays very much the same role as the central binary in the 
AT-body simulations. Unfortunately, the results then become unreliable, for technical 
reasons: the method assumes that the shells which represent the system have closely 
spaced radii, approximating a continuous distribution; it does not function properly 
if a singular shell has a radius much smaller than the others. For this reason, the 
Monte Carlo computations have until now been stopped at the critical time. 

On the other hand, simple estimates indicate that many real globular clusters, if 
not most, have already passed their critical time (Spitzer, 1975). Since the Monte 
Carlo method is especially designed for the case of globular clusters, it seems to be 
of prime importance to be able to extend it to the post-critical phase of evolution. 
We may note also that a recent comparison with JV-body simulations for the case of 
unequal masses (Aarseth et al., 1975; also Wielen, 1975, Figure 2) was impeded by 
the early demise of the Monte Carlo models. 

We present here an attempt to extend the Monte Carlo models past the critical 
time. The problem is to introduce at the centre a mechanism which can represent the 
singularity and act as an energy source, in a way which is physically reasonable and 
technically trouble-free. As already said, if the system is left to its own devices, it will 
use one shell for the purpose, and this creates technical difficulties. Therefore it was 
felt preferable to introduce at the centre an artificial energy source, entirely distinct 
from the shells. This source has no mass; its only role is to supply energy as required 
by the evolution of the cluster. 

The detailed mechanism for the transfer of energy from the source to the rest of the 
system must now be specified. We take the view that the rate of flow of the energy is 
controlled by the system as a whole, not by the singularity. To justify this assumption, 
consider the near-real situation in Af-body simulations, with mass points and a 
central binary. At any given time, the structure of the system corresponds to some 
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definite temperature difference between the inner and outer parts, and therefore 
dictates a definite outward flux of energy. Suppose that the central singularity delivers 
too much energy with respect to this requirement. The excess energy will not be 
transmitted, but stored in the innermost fraction of the core, which will expand. This 
reduces the interaction between the central binary and the core, and the energy flux 
from the binary is brought down. Conversely, if the energy delivered is insufficient, 
the core contracts and the interaction with the binary increases. This regulating 
mechanism automatically adjusts the energy flux supplied by the binary to the 
amount required by the system. The situation is the same as in stellar interiors, where 
the rate of production of nuclear energy in the central region is automatically ad
justed to the value required to maintain the overall equilibrium. 

This has two consequences for our model. First, the physical nature of the energy 
source does not matter, and we shall in fact leave it unspecified. Second, the mecha
nism for the transfer of energy must be self-regulatory, as in the real case: the flux 
should increase when the innermost core contracts, and conversely, so as to bring 
about a stable state of affairs. 

Let us define the self-energy of a shell as the energy which it would have in the 
absence of all other shells, i.e. (cf. Henon, 1971): 

frmtf + v})-*?^, (1) 

where r is the radius of the shell; m, v„ vt are the mass, radial velocity and transverse 
velocity of each individual star in the shell, and K is the number of stars in the shell. 
For a typical shell, the first term in (1) is of order T/n, where T is the kinetic energy 
of the whole cluster and n is the number of shells; the second term is of order \W\/n2, 
where W is the potential energy of the cluster. Thus the first term is usually much 
larger than the second, and the self-energy (1) is normally positive. On the other 
hand, experience with the previous models showed that when the innermost shell 
starts collapsing, its self-energy becomes negative. Physically, this means that the 
shell becomes an independent self-gravitating system, just as the binary in the iV-body 
simulations. 

Therefore the following simple procedure was introduced. The self-energy of the 
innermost shell is constantly monitored. Whenever it is found to be negative, it is 
brought back to a zero value; this is done by increasing the radial velocity vr. The 
energy used in this operation is considered to have been given by the central energy 
source. 

This simple device was found to work quite satisfactorily. Figure 1 represents three 
'old' Monte Carlo computations (thin lines), already shown by Wielen (1975, Figure 
1), and a new computation (thick line), in which a central energy source has been 
introduced as explained above. The initial conditions are of course identical in all 
cases. All stars have the same mass. The old models stop at about t = 1.5 because of 
the collapse of the innermost shell. In the new model, this collapse does not happen 
any more, and the computation can be continued without difficulty past the critical 
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Fig. 1. Comparison of three old Monte Carlo models (thin lines) and one new model (thick line) which 
goes beyond the singularity. The curves represent the radii containing 10%, 50%, 90% of the mass, vs 

time. All stars have the same mass. The initial state is Plummer's model with isotropic 
velocity distribution. 

time and for as long as desired. Figure 2 represents the total energy supplied by the 
central source since the beginning, as a function of time; the slope of the curve is the 
energy flux. It should be noted that the energy source is not just turned on at the 
critical time, but is present from the beginning. However, Figure 2 shows that the 
energy supplied by the source before the critical time is negligible. Therefore the 
source has no effect on the evolution during the first phase, and indeed Figure 1 
shows that there is no significant difference between the new and the old models. 
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As the critical time is approached, however, the energy flux begins to increase sharply 
(Figure 2), while the contraction of the core is halted and even reversed (Figure 1). 

Thus, the evolution appears to consist of two rather different phases. The first 
phase, which lasts until the critical time at about t=?.1.5, is characterized by the usual 
core-halo formation. In the second phase, after the critical time, we observe a general 

0.15h 

o.ioh 

0.05 h 

o 1 2 3 r 

Fig. 2. Energy delivered by the central source, as a function of time, for the new model of Figure 1. 

expansion of the system; this is of course made possible by the fact that the system 
now receives energy from the central source. The initial total energy of the system is 
— 0.25 in our units; Figure 2 shows that at the end of the computation, a negative 
energy equal to about -0.165 has been absorbed in the central singularity, so that 
the rest of the system is left with about j of its initial negative energy. Further evo
lution will in all probability follow the same trend, with the cluster expanding in
definitely while more and more of the total negative energy is absorbed by the central 
source. The evolution slows down with time, because the relaxation time increases 
as the cluster expands. Therefore the curve of Figure 2 should asymptotically ap
proach the limiting value 0.25. 

This description of the final evolution applies only to the present idealized case 
of an isolated cluster. In real clusters, tidal effects will certainly affect the evolution, 
and probably bring about a full dissolution of the system after a finite time (Wielen, 
1971). 

Figure 1 shows also that the halo expands faster than the core. This, unfortunately, 
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seems to rule out the use of a simple homological model for describing the final 
phase of the evolution. 

Figure 3 again represents three old Monte Carlo models (thin lines), already 
shown by Wielen (1975, Figure 2), and a new model (thick line), for a case with un-

I i I I i I 
0 0 .5 1.0 1.5 2 .0 

t 
Fig. 3. Comparison of three old Monte Carlo models (thin lines) and one new model (thick line) which 
goes beyond the singularity. The curves have the same meaning as in Figure 1. The masses of the stars 

are distributed according to Wielen's law. The initial state is the same as in Figure 1. 

equal masses. Here the progress is even more apparent: the old models are stopped 
in the vicinity of t = 0.15, while the new model has been computed beyond t = 2 and 
could be easily extended still further. Figure 4 represents the growth of the total 
energy supplied by the central source. These two figures are qualitatively similar to 
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Fig. 4. Energy delivered by the central source, as a function of time, for the new model of Figure 3. 

Figures 1 and 2: again there is a first phase of core-halo formation, terminating at 
r«0.15, and a second phase of general expansion; and the central source absorbs a 
growing fraction of the total negative energy. At the end of the computation, this 
fraction is about 85%. The asymptotic approach of the limiting value 0.25 is apparent 
on Figure 4. This figure is also in qualitative agreement with the results obtained by 
Aarseth (1971) from AT-body simulations. 

2. Non-Dominant Terms in the Diffusion Coefficients 

The Monte Carlo method (Henon, 1971, 1973) relies on the classical theory of relax
ation due to two-body encounters. This theory involves a number of approximations. 
Until recently, there was no pressing need to introduce refinements, since no accurate 
data were available against which the theoretical results could be tested; observa
tional evidence has been particularly disappointing in that respect (cf. King, 1975). 
Today, however, the situation is changing; A/-body simulations provide a wealth 
of very detailed information, against which the theory can be matched (Wielen, 1975). 
There is also the hope that new observational techniques will improve our knowledge 
of real clusters, for instance by allowing a reliable determination of individual ve
locities. Therefore it may be worthwhile to reconsider some of the approximations 
in the theory. 

One of the standard approximations consists in neglecting the 'non-dominant 
terms' (Chandrasekhar, 1941), i.e. the terms which are of order 1/lnN with respect 
to the dominant terms. N is the number of stars in the system. This approximation is 
clearly justified in the limit of N very large. For AT of the order of 100 to 500, however, 
the factor 1/lnN is not so small and non-dominant terms could have a significant 
effect. 
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Consider a test star with mass mx and velocity Vj. Its change of velocity as a result 
of two-body encounters is governed by the 'diffusion coefficients', i.e. the components 
of <JV1>, {AWiAX^, etc. For simplicity, we shall consider here only one scalar 
coefficient: ((JV^)2), the mean square of the change of the velocity vector (not to be 
confused with the change in absolute velocity). This quantity may be considered as 
typical since it incorporates both radial and transversal diffusion. It is given by a 
comparatively simple expression (cf. Henon, 1973): 

M 2 T / - 1 {(AW,)2} = 4nG2At / (V 2 , m2) m\V~' x 

x In { 1 + 
G(m 

lm"^-J}^2dm2. (2) 
i + rn2)_\ J 

Here At is the interval of time considered; /(V2 , rn2) is the distribution function, 
defined as number of points per unit volume in a seven-dimensional phase space 
(r2, V2, m2); V=\\2 — \ l \ is the relative velocity of the two encountering stars; 
'max is the maximum impact distance. Formula (2) is exact, within the frame of the 
two-body encounter theory: no approximations have been made so far. 

'max is °f the order of the dimensions of the system; we shall adopt here the value 
recommended by Spitzer and Hart (1971): 

'max = #/i> (3) 

where Rh is the radius containing half the mass, itself given in good approximation 
by (Spitzer, 1969): 

Rh = 0AGMKV2y, (4) 

where M is the mass of the system and < Vi2> is the mean square velocity. 
The argument of the logarithm in (2) is large: if we replace V2 by its mean value, 

2<^i2> (since V is the relative velocity between two stars), and also mx and m2 by 
their mean value, <w> = M/N, this argument becomes: 

1+(0.4JV)2. (5) 

Therefore the term 1 can clearly be neglected. 
From this point, the classical treatment continues by noting that since this large 

quantity is the argument of a logarithm, its exact value does not matter very much; 
therefore it is actually replaced by (0.4iV)2. Then the logarithm becomes a constant 
which can conveniently be taken out of the integrations. Here, we shall instead keep 
the exact expression (2), omitting only the constant 1. After substitution of (3) and 
(4), we write it in the form 

({A\l)2y = S7iG2At m f(V2,m2)m2
2V-

x {ln(0.4N) + ln(K2/2<F1
2» + ln[2<w>/w1 +w2)]} dV2 dm2 (6) 
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which clearly separates the dominant term (first term in braces) from the non-
dominant terms (second and third terms). The classical approximation consists in 
omitting these non-dominant terms. 

The diffusion coefficient (6) depends on the velocity Vx and mass ml of the test 
star. In order to obtain a mean value for the effect of the non-dominant terms, we 
consider now the average of (6) over all test stars. In so doing, it seems physically 
most reasonable to weigh each star by its mass, so that we compute in effect 

The denominator is then simply the local density Q. We have 

« ^ V , ) 2 » = SnG^-'Atlh ln(0.4JV) + I2 + J 3 ] , (8) 
with 

h = | fJzmMV1 dVt dV2 dm! dm2, 

fififnMV-1 ln(F2/2<K1
2»dV1 dV2 dwj dm2, 

(9) 

/ 3 = 'fif2mlmlV~1 ln[2<m>/(mi + m2)] dVj dV2 dm, dm2, 

/ i = / (V„m, ) , / 2 = / ( V 2 , m 2 ) . 

(8) can also be written 

« ( J V , ) 2 » = SnG2Q-lMl, ln(yN), (10) 

with 
lny = ln(0.4) + I2lh + h/I,. (11) 

Thus the effect of the non-dominant terms will be simply to modify the dimensionless 
constant y in (10). 

We consider first the case of equal masses: 

Hy1,m1) = g(\1)5(m1-m0). (12) 

Then / 3 = 0 , and 

h U ff(Vi)0(V2) V-1 ln(K2/2<»?»dV1 dV2 

h U<}(Vi)9(V2)V-id\ldV2 
(13) 

We restrict ourselves now to isotropic velocity distributions, i.e. ^(V^ will depend 
only on the velocity modulus Vv The integrals in (13) can be evaluated exactly for 
some particular forms of g. For a Maxwellian distribution, 

g(Vl) = aexp(-j2Vl
2), (14) 
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with a, j constants, the result is 

/ 2 / / 1 = in(|) - C = - 0.9827..., y = 0.1497... (15) 

where C = 0.5772... is Euler's constant. For a truncated power law, 

9{Vi) = aV? for VX<V09 g(V1) = 0 for VX > V0, (16) 

withfa, K0 constants and n an integer, we find for n even, n^O: 

7 2 ^ i n 2(n + 5) 2 2 2 
7i n + 3 n + 3 2w + 5 

+ 4 ^ ( I + * + * + - + 4 T ) ' (n) 

n + 2\ n+l; 
and for rc odd, n ̂  — 1: 

72 2(n + 5) 2 2 
— = ln— - - 2 + 
Ix n + 3 « + 3 2n + 5 

n + 2 \ w + 1 / 

These expressions are evaluated for a few values of n in Table I. The last line, n= oo, 

TABLE I 
Values of y for a velocity distribution of 

the form (16) 

hlh 

-1 
0 
1 
2 
3 
4 

00 

-0.8941 
-0.8627 
-0.8917 
-0.9259 
-0.9571 
-0.9840 

-1.3069 

0.1636 
0.1688 
0.1640 
0.1585 
0.1536 
0.1495 

0.1083 

corresponds to a ^-distribution where all stars have the same velocity modulus: 

We note that I2/Ii is always negative. This can be explained by the presence of 
a factor V~1 in the integrals, which gives more weight to low values of V. In physical 
terms: encounters with a low relative velocity are more effective. As a result, the true 
mean value of the logarithm is lower than the value derived in the classical treatment, 
where V2 is simply replaced by its average. 

We note also from (15) and Table I that, if one excepts the rather unphysical case 
of equal velocity moduli (n = oo in Table I), the value of y appears to be not very 
sensitive to the shape of the distribution function. This fortunate fact suggests that 
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one can, with very little error, adopt a standard value for 7. We shall adopt here the 
value (15) corresponding to a Maxwellian distribution of velocities, rounded to 

7 = 0.15. (19) 

Our results should be compared with an earlier computation of the effect of the 
non-dominant terms by Chandrasekhar (1941). A direct comparison is not possible, 
because Chandrasekhar considers a different quantity: {(AE)2}, where AE is the 
energy exchanged between the two stars during an encounter. In our notations, there 
is 

J £ = J(im1Vf) = m 1[V 1ZlV 1+^V 1) 2] , (20) 

so that {(AE)2} actually involves diffusion coefficients up to the fourth order. One 
can, however, compute for this quantity the correction for non-dominant terms ex
actly as we did for {(A\x)2}. We consider again the equal-mass case. For field stars 
with a maxwellian distribution of velocities, and for a test star of given velocity, 
{(AE)2} is given by Equation (81) in Chandrasekhar (1941). We define a mean value 
{{(AE)2}} over all test stars. Here again it is found to be of the form 

{{(AEf^ocI, ln(0.4AO + /2 = /i HyN)9 (21) 

as in (8) and (10). The integrals Ix and I2 can be evaluated numerically, using Equa
tion (81) and Tables 2 and 4 in Chandrasekhar (1941). The values of g for x0<0.6, 
not given by Chandrasekhar, have been taken equal to zero. The maximum impact 
distance, /max, is erroneously identified by Chandrasekhar with the average distance 
between neighbour stars, D0; therefore D0 should be replaced in his formulas by /max, 
itself given by (3) and (4). The result is then 

/2 / /1 = _ 1.0046, y = 0.1465, (22) 

which agrees rather well with (19). This indicates that 7 is not very sensitive to the 
particular diffusion coefficient, or combination of them, which is considered. 

Liboff (1959) computed the transport coefficients in a fully ionized plasma, with 
a Maxwellian distribution of velocities. Although his emphasis was on a more correct 
treatment of the long-distance cutoff, he also computed exactly the effect of the non-
dominant terms for short distances. Our quantity ({ (^V^ 2 ) ) can be expressed in 
terms of Liboff's integral fi^, and our result (15) can be shown to agree with his 
Equation (4.28). 

Figure 5 shows again the four Monte Carlo models of Figure 1 (full lines), together 
with the results of Af-body simulations by Aarseth (1974) and Wielen (1974) (filled 
and open symbols). The value 7=0.15 is used. This figure should be compared with 
Aarseth et al (1975, Figure 1) or Wielen (1975, Figure 1) where the same data are 
represented, but the classical value 7=0.4 is used. It will be seen that the agreement 
is significantly improved with the new value of 7. There is, in fact, no noticeable 
deviation any more between the results of the two methods in Figure 5, except per
haps in the lower right, where the radius corresponding to 10% of the mass appears 
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I 1 I I I I 
0 0 .5 1.0 1.5 2 .0 t 

Fig. 5. Comparison of four Monte Carlo models (full lines) with four Af-body simulations (symbols) for 
the equal-mass case, using the new value y = 0.15. The data represent the radii containing 10%, 50%, 90% 
of the mass, vs time. The Monte Carlo models are the same as in Figure 1. Filled triangles and squares 
represent two Af-body simulations by Aarseth, with AT=250. Open triangles and squares represent two 
N-body simulations by Wielen, with # = 1 0 0 and N=250 respectively. The initial state is Plummer's 

model with isotropic velocity distribution. 

to reach a minimum at a somewhat earlier time and at a higher value in the JV-body 
simulations than in the Monte Carlo models. 

A change in the value of y affects not merely the comparison between Monte Carlo 
and N-body results, but also the internal comparison between AT-body simulations 
for different values of N; for, in order to do such a comparison, the simulations must 
be reduced to a common evolutionary scale, and this can be done only by borrowing 
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from the theory the law of dependence of the evolution rate on N. In the present 
paper, the unit of time for each model was taken as (Aarseth et al, 1974): 

t0 = GM512(- ASY3/2 N/ln(yN), (23) 

where $ is the total energy of the system; f0 is the theoretical relaxation time, apart 
from a dimensionless multiplicative constant. As a result, when y is replaced by a 
different value y\ the apparent rate of evolution of a iV-body simulation is multi
plied by 

\n(yN)/ln(y'N). (24) 

This factor depends on N: for y = 0A and y' = 0.15, its value is 1.3622 and 1.2706 
respectively for N = 100 and 250, which are the values used in the N-body simula
tions of Figure 5. On the other hand, the Monte Carlo results correspond to the 
limit N->oo, and are not affected by a change in y: the factor (24) reduces to 1 in 
this limit. 

We consider now the case of unequal masses. We shall assume for simplicity that 
the distribution function is separable, i.e. there is no mass segregation: 

/(V1,m1) = ^(V1)M^i)- (25) 

Then l2/^i has the same expression (13) as before, depending only on the velocity 
distribution g. On the other hand, we must now compute the third term in (11), 
which is no longer zero: 

/ 3 t = n^(^ i )^ (^2)^ i^ ln [2<m>/ (m 1 -hm 2 ) ]dm 1 dm 2 

/j jh(m1)mldm1jh(m2)mldm2 

<m> is given by 

(m} = M/N= \ h(m)mdm I< h(m)dm. (27) 

The corrective term (26) depends only on the mass distribution h. We evaluate it first 
for a continuous distribution: 

h(m) = am~2 for m0<m<Qm0, h(m) = 0 elsewhere, (28) 

with a, m0, Q constants. We obtain 

I3f2Q\nQ\ Q\nQ 

h Vfi-W C-l 
P ( l + 0 + g P ( l + V 0 + ( l + Q ) l n [ 4 e / ( l + 0 2 ] + (l+<2)rc2/12 

(e-i)ine 
(29) 
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where D is the dilogarithm function (Abramowitz and Stegun, 1965): 
JC 

, x f lnt , , v 

1 

The expression (29) has been tabulated for a few values of Q in Table II. 

TABLE II 
Values of the corrective term 
IJIi for a mass distribution 

of the form (28) 

Q 

2 
4 
8 

16 
32 
64 

hUx 

-0.0498 
-0.1964 
-0.4322 
-0.7458 
-1.1246 
-1.5562 

We consider next the case of a discrete distribution: 
k 

h(m) = a £ riidfa — mi) (31) 

and the frequently used law for the masses mt and the corresponding numbers nt: 

m . = 21'-1, nl = 2*- ,\ (32) 

The integrals in (26) are replaced by simple sums. Results are given in Table III. 

TABLE III 
Values of the corrective term 
^/ / i for a mass distribution 

oftheform(31,32) 

k 

2 ' 
3 
4 
5 
6 

hlh 

-0.1461 
-0.3811 
-0.6938 
-1.0717 
-1.5028 

These results correspond closely to those of Table II for Q = 2*, since (32) is the dis
crete equivalent of (28). 

Finally, for Wielen's (1967) discrete distribution, which corresponds to /c = 4; 
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w£= 1, 2, 4, 8; n, = 62, 24, 10, 4, we find 

I3/I1 = -0.7014. (33) 

It can be seen that 1^/1^ too is always negative. This can be explained by the presence 
of the factor m\ in (26): heavy field stars have much more effect in encounters. Since 
mx +m2 appears in the denominator of the argument of the logarithm, the true mean 
value of the logarithm is less than the classical value, obtained by replacing m1 and 
m2 by the average <m>. 

0 - 0 . 5 1 . 0 
t 

Fig. 6. Comparison of four Monte Carlo models (full lines) with six TV-body simulations by Wielen 
(symbols) for the case of Wielen's mass distribution, using the new value y = 0.075. The Monte Carlo 
models are the same as in Figure 3. Triangles, squares and circles correspond to N= 100, 250, 500 re

spectively. The initial state is the same as before. 
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We note also that the corrective term l2/h becomes more and more important as 
the dispersion of the masses increases. Therefore one cannot meaningfully quote a 
mean value here. In view of our previous result (19), the value of 7 to be used should 
in general be 

y = 0.15exp(/3//1), (34) 

where IJ^ depends on the particular mass distribution, and should be evaluated 
from (26) or from one of our Tables. 

For Wielen's distribution, we derive from (33) and (34) the rounded value 

7 = 0.075. (35) 

Figure 6 shows again the four Monte Carlo models of Figure 3 (full lines), together 
with the results of six N-bo&y simulations by Wielen (1974) (filled and open symbols). 
The value 7 = 0.075 is used. This figure should be compared with Aarseth et al (1975, 
Figure 2) or Wielen (1975, Figure 2), where the classical value 7 = 0.4 was used. Here 
again the agreement is much better with the new value, although the Monte Carlo 
models still appear to run somewhat too fast. The corrective factor (24), with 7 = 0.4 
and / = 0.075, is 1.8308, 1.5711, 1.4619 respectively for JV= 100, 250, 500, the values 
used in the iV-body simulations of Figure 6. It is apparent here that the effect of the 
non-dominant terms is far from negligible. 

The agreement found here, particularly in the case of equal masses (Figure 5), may 
be somewhat accidental, since there are many other approximations in the theory 
which we have not considered. For instance, we know that the largest impact distance 
should be of the order of the dimensions of the system; but its particular identifica
tion with the radius containing half the mass, in (3), is no more than a guess. If this 
maximum impact distance were halved or doubled, the constant y would also be 
halved or doubled. 

Nevertheless, our results show at least that there exists no significant disagreement 
between the results of A/-body simulations and Monte Carlo models. The previously 
noted differences (Aarseth et a/., 1975) can be entirely accounted for by the approx
imations in the theory. Thus the classical theory, founded on the assumption that 
evolution is due to the cumulative effect of two-body encounters, appears to be 
confirmed by the results of iV-body simulations. 
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DISCUSSION 
Larson: Do I understand correctly that the time scale correction that you have derived applies equally 
to any theory based on the Fokker-Planck equation ? 

Henon: Yes. In particular, this correction will also improve the agreement between your fluid-dynam
ical models and the TV-body simulations. 
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