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The objective of the present paper is to investigate the constancy of the topological
invariant, denoted the non-barotropic generalized cross-helicity in the case of non-ideal
magnetohydrodynamics (MHD). Existing work considers only ideal barotropic MHD and
ideal non-barotropic MHD. Here, we consider dissipative processes in the form of thermal
conduction, finite electrical conductivity and viscosity and the effect of these processes
on the cross-helicity conservation. An analytical approach has been adopted to obtain the
mathematical expressions for the time derivative of the cross-helicity. Obtained results
show that the generalized cross-helicity is not conserved in the non-ideal MHD limit and
indicate which processes affect the helicity and which do not. Furthermore, we indicate
the configurations in which this topological constant is conserved despite the dissipative
processes. Some examples and applications are also given.

Keywords: plasma flows

1. Introduction

Topological invariants have been useful for several decades, and there are such
invariants in magnetohydrodynamic (MHD) flows. For example, the importance of two
helicities i.e. magnetic helicity and cross-helicity, has long been discussed in relation
to the controlled nuclear fusion problem and in numerous astrophysical scenarios
(Brown et al. 1999; Yoshizawa & Yokoi 1993; Yoshizawa 1991; Vishniac & Cho 2001
and references therein). Earlier works (Yahalom & Lynden-Bell 2008; Yahalom 2013,
1995) have studied the relations between the helicities and symmetries of ideal MHD.
Magnetohydrodynamics connects Maxwell’s equations to the hydrodynamics of highly
conductive flows to explain the macroscopic behaviour of a conducting fluid such as a
plasma. The simplest fluid model to explain the characteristics of a plasma is ideal MHD.
Ideal MHD is characterized by an infinite electrical conductivity or, alternatively, by the
limit at which electrical resistivity disappears. In this case, the magnetic field is frozen
in the plasma and no topological modifications are conceivable. Freidberg (1987) has
discussed the role of ideal MHD in the regime of plasma physics. However, ideal MHD
does not describe precisely the behaviour of real plasmas and this is the main motivation
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for the study of non-ideal MHD. Some important realistic processes are missing in the
ideal description, such as resistive heating, heat conduction and viscous effects. Viscosity
plays an important role on the dissipation scale when investigating plasma turbulence in
the solar wind and elsewhere. Similarly, magnetic diffusivity is one of the reasons for the
magnetic reconnection phenomenon. Thermal conductivity is also a substantial process in
more realistic models (Landau & Lifshitz 1987). It causes the perturbations of the physical
variables to spread out through a plasma. These essential properties of all three dissipative
processes are the stimuli for the authors to make this current analysis.

The mathematical expression for cross-helicity (correlation between the velocity and
magnetic field) is given by (Woltjer 1958b,a)

HC =
∫

B · v d3x, (1.1)

in which the integral is taken over the entire flow domain. Here, B and v are the
magnetic field and velocity, respectively; HC is conserved for barotropic or incompressible
MHD (but not for non-barotropic MHD) and is given a topological interpretation in
terms of the knottiness of the magnetic and flow field lines. A generalization for
non-barotropic MHD of this quantity was given by Webb et al. (2014a,b). This resembles
the generalization of barotropic fluid dynamics conserved quantities including helicity to
non-barotropic flows, including topological constants of motion derived by Mobbs (1981).
The conservation law of cross-helicity for non-barotropic MHD has been discussed by
Webb, McKenzie & Zank (2015) in a multi-symplectic formulation of MHD. A potential
vorticity conservation equation for non-barotropic MHD was derived by Webb & Mace
(2015) by using Noether’s second theorem. Webb et al. (2014a,b) pointed out that the
generalized helicity conservation law in non-barotropic fluids is not local, as it relies on
the extra, non-locally generated variable σ , which is derived from the Lagrangian time
integral of the temperature T(x, t). Here, v is replaced by the topological velocity field
vt = v − σ∇s. The mathematical expression of non-barotropic cross-helicity is given in
section 3.

Recently, the non-barotropic cross-helicity was generalized using additional label
translation symmetry groups (χ and η translations) (Yahalom 2019), this led to additional
topological conservation laws, the χ and η cross-helicities. The functions χ and η are
sometimes denoted as ‘Euler potentials’, ‘Clebsch variables’ and also ‘flux representation
functions’ (Hazeltine & Meiss 2003).

Cross-helicity is expected to play an important role in several MHD plasma phenomena
such as global magnetic field generation, turbulence suppression, etc. It provides a measure
of the degree of linkage of the vortex tubes of the velocity field with the flux tubes of
the magnetic field. Cross-helicity plays an important role in the turbulent dynamo (Yokoi
2013). The cross-helicity density conservation law for barotropic flows is important in
MHD turbulence theory (Zhou & Matthaeus 1990b,a; Zank et al. 2011). Verma (2004)
has discussed MHD turbulence in his review paper in detail. He has examined Alfvénic
MHD turbulence with zero and non-zero helicities. Plasma velocity and magnetic field
measurements from the Voyager 2 mission are used to study solar wind turbulence in
the slow solar wind (Iovieno et al. 2016) and to characterize its cross-helicity. The energy
fluxes of MHD turbulence provide a measure for the transfers of energy among the velocity
and magnetic fields (Verma 2019; Verma et al. 2021).

Magnetic helicity that characterizes the topological features of magnetic field lines
(Woltjer 1958b; Moffatt 1969, 1978; Moffatt & Ricca 1995; Webb et al. 2014a,b) is given
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Generalized cross-helicity 3

by

HM ≡
∫

A · B d3x. (1.2)

Calkin (1963) and Webb & Anco (2017) used gauge field theory to obtain the conservation
law for the magnetic helicity density for ideal MHD. Here, A is the vector potential. Faraco
& Lindberg (2020) has also shown the conservation of magnetic helicity in turbulent
flows. Barnes et al. (1986) showed the dissipation of the magnetic field when flux tubes
diffuse through one another on resistive time scales. Candelaresi & Del Sordo (2021)
show that helical magnetic fields play a major role in ensuring the sustained stability of
some plasmas, based on their observational, numerical and analytical results. Further, its
important role in determining the structures, dynamics and heating of the solar corona has
been well explained by Knizhnik et al. (2019).

The present work is the first treatment of the evolution of generalized cross-helicity
considering dissipative processes. In addition to the general presented result of
non-barotropic cross-helicity dissipation by friction, magnetic diffusivity and heat
conduction, we also give a specific analytic model of MHD with finite diffusivity and
compare the decay of cross-helicity with the decay of magnetic helicity for the case of
high magnetic Reynolds number.

The structure of this paper is as follows: the second section deals with the basic
equations for non-ideal non-barotropic MHD and defines the basic notations. In the section
that follows, we introduce non-barotropic cross-helicity and show how it decays under
non-ideal processes. We conclude the third section by comparing this decay with the
decay of magnetic helicity. Section four describes the decay in a framework of a simple
but completely analytic model. Section five discuss the constraints imposed by topological
quantities on the MHD dynamics. Section six is concerned with the effect of cross-helicity
on the Z pinch. Section seven concludes the current paper with some general remarks and
plans for future developments.

2. Standard formulation of non-ideal non-barotropic MHD

The standard set of equations solved for non-ideal non-barotropic MHD is given below
(here. we use the EMU system of units)

ρ
dv

dt
= ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇p + J × B − ρ∇φ + ∂σ ′

ik

∂xk

= −∇p + (∇ × B) × B
4π

− ρ∇φ + ∂σ ′
ik

∂xk
, (2.1)

∂ρ

∂t
+ ∇ · (ρv) = 0 (2.2)

∇ · B = 0 (2.3)

∂B
∂t

= ∇ × (v × B) + η

4π
∇2B (2.4)

ρT
ds
dt

= σ ′
ik

∂vi

∂xk
+ ηJ2 + ∇ · (k∇T). (2.5)

The following notations are utilized: ∂/∂t is the partial temporal derivative; d/dt =
∂/∂t + v · ∇ is the temporal material derivative or Lagrangian time derivative; ∇ has

https://doi.org/10.1017/S002237782300123X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782300123X


4 P. Sharma and A. Yahalom

its standard meaning in vector calculus; ρ is the fluid density, v is the velocity of fluid, B
is the magnetic flux density, φ is a gravitational potential, T is the temperature, s is the
specific entropy, k is the heat conduction and p is the pressure, which depends through the
equation of state on the density and entropy (the non-barotropic case). The stress tensor is
defined as

σ ′
ik = μ

(
∂vi

∂xk
+ ∂vk

∂xi
− 2

3
δik

∂vl

∂xl

)
, (2.6)

in which μ is a coefficient of kinematic viscosity. Notice that we take the coefficient of
second viscosity (or volume viscosity) to be zero for the sake of simplicity. According
to classical kinetic theory, viscosity arises from collisions between particles. The current
density J and the magnetic field are related by Ampere’s law (EMU units)

∇ × B = 4πJ . (2.7)

Note that Maxwell’s displacement current is often neglected due to its smallness in MHD
dynamics in the non-relativistic regime. The magnetic diffusivity η originates from Ohm’s
law

E + v × B = ηJ , (2.8)

of non-ideal MHD, where E is the electric field. Ohm’s law is another manifestation of
collisions in the plasma. Combining Ohm’s equation with Faraday’s equation

∂B
∂t

= −∇ × E, (2.9)

and Ampere’s law will yield (2.4). In this form, η resembles a diffusion coefficient
describing the diffusion of the magnetic field through a conducting medium of finite
conductivity. The justification for those equations and the conditions under which they
apply can be found in standard books on MHD (see for e.g. Batchelor 1967; Landau &
Lifshitz 1987; Sturrock 1994; Kundu, Cohen & Dowling 2015; Ogilvie 2016).

3. Cross-helicity for non-ideal non-barotropic MHD

In this section, we derive the time derivative of the non-barotropic cross-helicity using
the aforementioned equations.

3.1. A brief explanation of the topological velocity and non-barotropic cross-helicity
The mathematical expression for the cross-helicity of non-barotropic fluids is given by
(Webb et al. 2014a; Yahalom 2017a,b)

HCNB =
∫

d3x vt · B. (3.1)

Here, the topological velocity field is defined as vt = v − σ∇s (Yahalom & Qin 2021),
where σ is an auxiliary variable, which depends on the Lagrangian time integral of the
temperature i.e.

dσ

dt
= T.

(
⇒ σ =

∫ t

0
T dt′ + σ0 = t〈T〉 + σ0

)
. (3.2)

The above integral is done for each fluid element separately and 〈〉 = (1/t)
∫ t

0 dt′
designates temporal averaging. In Appendix A we describe the variational approach
leading to (3.2).
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Notice that, in non-barotropic MHD, one can calculate the temporal derivative of the
cross-helicity equation (1.1) using the standard equations to obtain

dHC

dt
=
∫

T∇s · B d3x. (3.3)

Thus, generically, cross-helicity is not conserved. A clue on how to define the
cross-helicity for non-barotropic MHD can be obtained from the variational analysis
described in Yahalom (2016b), which is valid for magnetic field lines at the intersection of
two comoving surfaces χ , η0 (Euler potentials). Following Sakurai (1979), the magnetic
field takes the form

B = ∇χ × ∇η0. (3.4)

And the generalized Clebsch representation of the velocity (Yahalom 2016b) is

v = ∇ν + α∇χ + β∇η0 + σ∇s, (3.5)

where, in the above, α, β and ν are Lagrange multipliers appearing in the said action
(Yahalom 2016b); see also Appendix A. Let us now write the cross-helicity given in (1.1)
in terms of (3.4) and (3.5), this will take the form

HC =
∫

dΦ[ν] +
∫

dΦ

∮
σ ds, (3.6)

in which dΦ = B · dS is the magnetic flux, and [ν] is the discontinuity of the non-single
valued potential ν (Yahalom 2017a). Now, as for ideal MHD, the magnetic field lines move
with the flow, and it follows that the magnetic flux dΦ is conserved. It is also shown in
Yahalom (2017a) that the material derivative of [ν] must vanish. Thus, the first term on
the right-hand side of (3.6) is conserved. This suggests the following definition for the
non-barotropic cross-helicity HCNB

HCNB =
∫

dΦ[ν] = HC −
∫

dΦ

∮
σ ds. (3.7)

The conventional form of the same expression is given in (3.1). Please refer to Yahalom
(2017a) for the detailed justification of the definition, the form of the non-barotropic
cross-helicity and a proof of its constancy.

We point out that, from a pure mathematical point of view, it does not really matter
what the physical meaning of the vector fields appearing in the cross-helicity term is, the
cross-helicity will describe how the fields are knotted together (Yokoi 2013, § 2, see also
Ricca & Moffatt (1992) and Ricca & Berger (1996) for non-crossed helicity). Thus, from
a purely topological point of view, it does not matter if we consider the physical velocity
field v or the topological velocity field vt.

3.2. The temporal derivative of non-barotropic cross-helicity
Next, we study the temporal derivative of the non-barotropic cross-helicity

dHCNB

dt
=
∫

d3x
(

vt · ∂B
∂t

+ B · ∂vt

∂t

)
. (3.8)
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Now we calculate the first term on the right-hand side with the help of (2.4)

vt · ∂B
∂t

= vt ·
{
∇ × (v × B) + η

4π
∇2B

}
(3.9)

vt · ∂B
∂t

= ∇ · {(v × B) × vt} + (v × B) · ωt + vt · η

4π
∇2B, (3.10)

where we define the topological vorticity of the topological flow field as

ωt ≡ ∇ × vt. (3.11)

Next, we calculate the second term on the right-hand side

B · ∂vt

∂t
= B · ∂(v − σ∇s)

∂t
= B ·

(
∂v

∂t
− ∂σ

∂t
∇s − σ∇ ∂s

∂t

)
. (3.12)

Now we simplify the right-hand side of (3.12) in three steps: the first term is calculated
with the help of (2.1)

∂v

∂t
= −(v · ∇)v − ∇p

ρ
+ (∇ × B) × B

4πρ
− ∇φ + 1

ρ

∂σ ′
ik

∂xk

= (v × ω) + (∇ × B) × B
4πρ

− ∇
(

v2

2

)
− ∇w + T∇s − ∇φ + 1

ρ

∂σ ′
ik

∂xk
, (3.13)

in which the vorticity is
ω ≡ ∇ × v, (3.14)

and we have used the thermodynamic identity

dw = dε + d
(

p
ρ

)
= T ds + 1

ρ
dp ⇒ ∇w = T∇s + 1

ρ
∇p. (3.15)

Thus

B · ∂v

∂t
= B ·

{
(v × ω) − ∇

(
v2

2
+ w + φ

)
+ T∇s

}
+ Bi

ρ

∂σ ′
ik

∂xk
. (3.16)

In the second term, we use (3.2) to obtain

−∂σ

∂t
∇s = (v · ∇σ − T)∇s. (3.17)

In the third term, we use (2.5) to derive

−σ∇ ∂s
∂t

= σ∇
[
v · ∇s − 1

ρT
σ ′

ik
∂vi

∂xk
− η

ρT
J2 − 1

ρT
∇ · (k∇T)

]
. (3.18)

Combining the above expressions, we have

B · ∂vt

∂t
= B ·

[
(v × ω) − ∇

(
v2

2
+ w + φ

)
+ (v · ∇σ)∇s + σ∇(v · ∇s)

+ σ∇
{
− 1

ρT
σ ′

ik
∂vi

∂xk
− η

ρT
J2 − 1

ρT
∇ · (k∇T)

}]
+ Bi

ρ

∂σ ′
ik

∂xk
. (3.19)
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Notice that

∇{σ(v · ∇s)} = σ∇(v · ∇s) + (v · ∇s)∇σ, (3.20)

and also that

v × ωt = v × (ω − ∇σ × ∇s) = v × ω + (v · ∇σ)∇s − (v · ∇s)∇σ

= v × ω + (v · ∇σ)∇s − ∇((v · ∇s)σ ) + σ∇(v · ∇s), (3.21)

or that

v × ωt + ∇((v · ∇s)σ ) = v × ω + (v · ∇σ)∇s + σ∇(v · ∇s). (3.22)

Thus we obtain

B · ∂vt

∂ t
= B ·

[
(v × ωt) + ∇

{
σ(v · ∇s) − v2

2
− w − φ

}]

− B ·
[
σ∇

{
1

ρT
σ ′

ik
∂vi

∂xk
+ η

ρT
J2 + 1

ρT
∇ · (k∇T)

}]
+ Bi

ρ

∂σ ′
ik

∂xk
. (3.23)

Combining (3.10) and (3.23) and taking into account that

B · (v × ωt) = −(v × B) · ωt, (3.24)

we obtain

vt · ∂B
∂t

+ ∂vt

∂t
· B = ∇ · {(v × B) × vt} + η

4π
vt · ∇2B

+ B · ∇
{
σ(v · ∇s) − v2

2
− w − φ

}

+ Bi

ρ

∂σ ′
ik

∂xk
− σB · ∇

{
1

ρT
σ ′

ik
∂vi

∂xk
+ η

ρT
J2 + k

ρT
∇2T

}

= ∇ ·
[
{(v × B) × vt} + B

{
σ(v · ∇s) − v2

2
− w − φ

}]

− σB
{

1
ρT

σ ′
ik

∂vi

∂xk
+ η

ρT
J2 + k

ρT
∇2T

}]

+ η

4π
vt · ∇2B + Bi

ρ

∂σ ′
ik

∂xk

+ (B · ∇σ)

[
1

ρT
σ ′

ik
∂vi

∂xk
+ η

ρT
J2 + k

ρT
∇2T

]
. (3.25)
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Now, substituting (3.25) into (3.8), we obtain

dHCNB

dt
=
∫

∇ ·
[
{(v × B) × vt} + B

{
σ(v · ∇s) − v2

2
− w − φ

}

− σB
{

1
ρT

σ ′
ik

∂vi

∂xk
+ η

ρT
J2 + k

ρT
∇2T

}]
d3x

+
∫ {

η

4π
vt · ∇2B + Bi

ρ

∂σ ′
ik

∂xk

+ (B · ∇σ)

[
1

ρT
σ ′

ik
∂vi

∂xk
+ η

ρT
J2 + k

ρT
∇2T

]}
d3x, (3.26)

using Gauss’ divergence theorem, we obtain

dHCNB

dt
=
∮ [

{(v × B) × vt} + B
{
σ(v · ∇s) − v2

2
− w − φ

}

− σB
{

1
ρT

σ ′
ik

∂vi

∂xk
+ η

ρT
J2 + k

ρT
∇2T

}]
· dS

+
∫ {

η

4π
vt · ∇2B + Bi

ρ

∂σ ′
ik

∂xk

+ (B · ∇σ)

[
1

ρT
σ ′

ik
∂vi

∂xk
+ η

ρT
J2 + k

ρT
∇2T

]}
d3x. (3.27)

Here, the surface integral encapsulates the volume for which the cross-helicity is
calculated. For generic problems arising in the solar and dynamo contexts, the volume
chosen is not infinite. Experience with magnetic helicity variation shows that the boundary
terms are often critical (and the largest in the solar corona), and the topology flowing
in and out of systems is crucial in astrophysical contexts. It would likely be so for
the non-barotropic cross-helicity. If the surface is taken at infinity the magnetic fields
vanish and thus, in a generic case, the entire surface term, then the time derivative of
cross-helicity can be written as

dHCNB

dt
=
∫ {

η

4π
vt · ∇2B + Bi

ρ

∂σ ′
ik

∂xk
+ (B · ∇σ)

ρT

(
σ ′

ik
∂vi

∂xk
+ ηJ2 + k∇2T

)}
d3x.

(3.28)
Thus, the time derivative of the cross-helicity depends generically on the stress tensor
i.e. the viscosity of the fluid and the coefficient of magnetic diffusivity, and also on the heat
conduction but not on heat convection. By putting all non-ideal terms to zero, we obtain
the ideal MHD condition and conservation of non-barotropic cross-helicity takes place.
In the special case that the magnetic field lies on σ surfaces (that is, average temperature
surfaces) and thus is orthogonal to ∇σ , the cross-helicity change will not depend on the
thermal conductivity

dHCNB

dt
=
∫ {

η

4π
vt · ∇2B + Bi

ρ

∂σ ′
ik

∂xk

}
d3x. (3.29)

The same will be true for a high density and high temperature plasma, and a plasma of
small temperature gradients (plasma in global thermal equilibrium). Of course, even if heat
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conduction does not affect the non-barotropic cross-helicity, other non-ideal processes do,
and those include friction and ohmic losses.

To conclude this subsection we shall partition the time derivative of the non-barotropic
cross-helicity in accordance with the non-ideal process that contributes to its modification

dHCNB

dt
=
∫ {

η

[
vt · ∇2B

4π
+ J2

ρT
(B · ∇σ)

]

+ k(B · ∇σ)
∇2T
ρT

+ Bi

ρ

∂σ ′
ik

∂xk
+ (B · ∇σ)

σ ′
ik

ρT
∂vi

∂xk

}
d3x. (3.30)

Let us introduce the dimensionless Reynolds number and magnetic Reynolds number

Re ≡ ρ̄UL
μ

, Rm ≡ UL
η

, (3.31a,b)

where L is a characteristic length, ρ̄ is a typical density and U a characteristic speed of the
system.

We may now inquire: How does the value of those numbers affect the conservation
of non-barotropic cross-helicity? To do this, we write each physical variable g as a
multiplication of a characteristic value ḡ and a dimensionless variable g′ in the form

g = ḡg′ ⇒ x = Lx′, v = Uv′, t = t̄t′. (3.32a–c)

The above equation suggests the following choice of t̄:

t̄ ≡ L
U

. (3.33)

Similarly, we write

ρ = ρ̄ρ ′, T = T̄T ′, σ = σ̄ σ ′, B = B̄B′, J = J̄J ′. (3.34a–e)

Equation (3.2) suggests the following definition of σ̄ :

σ̄ ≡ T̄ t̄ = T̄L
U

, (3.35)

and (2.7) suggests the following definition of J̄:

J̄ ≡ B̄
L

. (3.36)

For the viscosity tensor, we use a double prime notation (as we already used a single prime
notation to distinguish the viscosity tensor from the σ scalar). Thus

σ ′
ik = σ̄ ′σ ′′

ik, σ ′′
ik ≡ ∂v′

i

∂x′
k

+ ∂v′
k

∂x′
i
− 2

3
δik

∂v′
l

∂x′
l
. (3.37a,b)

It follows from (2.6) that

σ̄ ′ = μU
L

= ρ̄U2

Re
. (3.38)
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We will also need the magnetic and kinetic energy expressions in dimensionless form

Ek = 1
2

∫
ρv2 d3x = ρ̄U2L3E′

k, E′
k ≡ 1

2

∫
ρ ′v′2 d3x′

Em = 1
8π

∫
B2 d3x = B̄2L3E′

m, E′
m ≡ 1

8π

∫
B′2 d3x′.

⎫⎪⎪⎬
⎪⎪⎭ (3.39)

Finally, we shall look at the amount of heat Qc that is conducted into the volume (which
is not equal to the total change in heat in the volume as heat may be produced by viscosity
and ohmic losses; see (2.5)). We may write the heat flux density as

q = q̄q′, q′ ≡ ∇′T ′, q̄ ≡ k
T̄
L

. (3.40a–c)

Thus the rate of change of Qc is (in dimensional and dimensionless form)

dQc

dt
= −

∮
q · dS = −L2q̄

∮
q′ · dS′,

dQ′
c

dt′
= −

∮
q′ · dS′, (3.41a,b)

where we integrate over a surface encapsulating the flow. Writing as usual

Q̄c = Qc

Q′
c

= q̄
L3

U
= kT̄

L2

U
. (3.42)

Having defined the above quantities, we may write the non-barotropic cross-helicity as

HCNB = H̄CNBH′
CNB, H̄CNB ≡ L3UB̄, H′

CNB ≡
∫

d3x′ v′
t · B′. (3.43a–c)

Thus
dHCNB

dt
= L2U2B̄

dH′
CNB

dt′
⇒ dH′

CNB

dt′
= 1

L2U2B̄
dHCNB

dt
. (3.44)

It follows that (3.30) can be written in the form

dH′
CNB

dt′
= 1

L2U2B̄
dHCNB

dt
=
∫ {

1
Rm

[
v′

t · ∇′2B′

4π
+ J

′2

ρ ′T ′ B
′ · ∇′σ ′ E′

k

E′
m

Em

Ek

]

+ E′
k

Q′
c

Qc

Ek
(B′ · ∇′σ ′)

∇′2T ′

ρ ′T ′

+ 1
Re

[
B′

i

ρ ′
∂σ ′′

ik

∂x′
k

+ (B′ · ∇′σ ′)
σ ′′

ik

ρ ′T ′
∂v′

i

∂x′
k

]}
d3x′. (3.45)

Thus, generally speaking, non-barotropic cross-helicity will change slowly for flows with
both high Reynolds and high magnetic Reynolds numbers in which the heat conducted is
small with respect to the kinetic energy of the flow. Indeed ‘Increasing cross helicity with
fixed fluctuation energy increases the time required for energy to cascade to smaller scales,
reduces the cascade power, and increases the anisotropy of the small-scale fluctuations’
(Chandran 2008). This has implications for the solar wind and solar corona (Chandran
2008).

It will also be of interest to study how another topological invariant, i.e. the magnetic
helicity, changes for a flow of high Reynolds number. And how the rate of dissipation
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differs between those two quantities. Brief background regarding magnetic helicity is
given below for the sake of the reader’s convenience. The magnetic helicity is defined
as

HM ≡
∫

A · B d3x, (3.46)

where A is the magnetic vector potential, defined such that

B = ∇ × A. (3.47)

For an illustration of specific helical magnetic fields see Yahalom & Lynden-Bell
(2008). After taking the temporal derivative of the magnetic helicity and simplifying the
expressions, we obtain the well-known relation

dHM

dt
= −2η

∫
J · B d3x. (3.48)

The above relation has been verified by many authors (Biskamp 1997; Akhmet’ev,
Kunakovskaya & Kutvitskii 2009; Priest 2014; Verma 2019, 2021). It is clear from
(3.48) that, generally speaking, the magnetic diffusivity leads to the non-conservation
of magnetic helicity in non-ideal MHD. On the other hand, neither viscosity nor heat
conductivity affect the conservation of magnetic helicity. We can easily recover the ideal
MHD condition by putting magnetic diffusivity to zero, in which case it is evident that the
magnetic helicity is conserved. Furthermore, the above result also shows that magnetic
helicity is conserved even in non-ideal flows if the currents are orthogonal to the magnetic
field i.e. J · B = 0. In this case

dHM

dt
= 0. (3.49)

If the magnetic field and magnetic current density are not strictly orthogonal then the
magnetic helicity is only approximately conserved.

The above result can also be expressed in a dimensionless form in which we write the
vector potential as

A = ĀA′, Ā = B̄L. (3.50a,b)

And thus

HM = H̄MH′
M, H′

M ≡
∫

A′ · B′ d3x′, H̄M ≡ B̄2L4. (3.51a–c)

For a similar dimensional analysis of magnetic helicity see Russell et al. (2015, (17)). It is
straightforward to see that

dH′
M

dt′
= − 2

Rm

∫
J ′ · B′ d3x′. (3.52)

It follows that an approximate conservation of magnetic helicity is achievable at high
magnetic Reynolds number and is independent ofthe values of the Reynolds number and
total conducted heat. Thus the phenomenon of magnetic helicity conservation is much
more general.
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4. An application

We shall deal with the application in two stages with a helical stratified magnetic field;
in the first we describe an ideal MHD flow following Yahalom & Qin (2021), then we
assume a small magnetic diffusivity η (high magnetic Reynolds number) and discuss
the implications for the flow. Finally, we calculate the magnetic and cross-helicities and
discuss their relative rate of change.

4.1. The ideal case
We introduce a set of standard cylindrical coordinates R, φ, z, where R̂, φ̂, ẑ are the
corresponding unit vectors. We further assume an MHD flow of uniform density ρ

confined between the internal and external radii ain and a, respectively, i.e. ain < R < a.
Furthermore assume that the flow contains a helical stratified stationary magnetic field

B =
⎧⎨
⎩2B⊥

(
1 − R

a

)
φ̂ + Bz0ẑ ain < R < a

0 otherwise,
(4.1)

in which Bz0, B⊥ are constants. The magnetic field is contained in a cylinder of radius a
and is independent of z. Furthermore, we assume that the planes z = 0 and z = L can be
identified such that a topological torus is created. In such a scenario, the only field lines
that will be closed will satisfy the relation

n
m

= B⊥
πRBz0

(
1 − R

a

)
L, n, m integers, (4.2)

while lines not satisfying this relation will be surface filling.
In Yahalom & Qin (2021), we derive a stationary velocity field v that satisfies the

stationary ideal versions of (2.4) and (2.2)

∇ × (v × B) = 0, (4.3)

∇ · (ρv) = 0. (4.4)

There, we arrived at the simple expression

v = v0
R
a

φ̂, (4.5)

where v0 is a constant with dimensions of velocity. The ideal stationary version of (2.1) is
given by

ρ(v · ∇)v = −∇p + (∇ × B) × B
4π

. (4.6)

This can be solved by the pressure function

p(R) = B2
⊥

π

(
3

R
a

− R2

a2
− ln

(
R
a

)
− 2

)
+ 1

2
ρv2

0

(
R2

a2
− 1

)
, p(a) = 0. (4.7)

Of course, p(ain) 	= 0, and thus one will need a rigid internal cylinder of radius ain that can
support such a pressure. We can now calculate the cross-helicity using (3.1), in which we
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assume a uniform specific entropy such that vt = v. Inserting (4.5) and (4.1) into (3.1) we
arrive at the expression

HCNBI = π

3
v0B⊥

L
a2

[
a4 − a3

in(4a − 3ain)
]
. (4.8)

In order to calculate the magnetic helicity, we need to calculate a vector potential, one
possibility is given by

A =
⎧⎨
⎩

1
2

Bz0Rφ̂ − 2B⊥R
(

1 − R
2a

)
ẑ ain < R < a

0 otherwise.
(4.9)

Inserting (4.1) and (4.9) into (3.46) we arrive at the result

HMI = − 2
3πLBz0B⊥(a − ain)

[
a2 + aina + a2

in

]
. (4.10)

Obviously, both magnetic helicity and magnetic cross-helicity do not change in time.
The situation, however, is quite different when one considers non-ideal processes such
as magnetic diffusion.

4.2. The non-ideal case
Let us assume a non-ideal magnetic diffusion; the magnetic field BT will obviously be
different from B and we may write it in the following form:

BT = B + ηB1. (4.11)

In the above, B is given in (4.1) and is thus a stationary solution of an ideal MHD
configuration. If we take the typical scale to be a and the typical velocity to be v0, we
can write the magnetic Reynolds number in the form

Rm = v0a
η

, ⇒ η = v0a
Rm

. (4.12)

Thus, if we take the typical size of the magnetic fields BT and B to be B̄T = B̄ = Bz0 and
the typical size of B1 to be B̄1 = Bz0/v0a, we may write

B′
T = B′ + 1

Rm
B′

1. (4.13)

We shall assume that the magnetic Reynolds number is large, such that the non-ideal
correction is small. Now, BT must satisfy (2.4)

∂BT

∂t
= ∇ × (v × BT ) + η

4π
∇2BT , (4.14)

assuming that the velocity field is given by (4.5), and taking int account that B is stationary,
we arrive at

η
∂B1

∂t
= η∇ × (v × B1) + η

4π
∇2(B + ηB1). (4.15)

Thus, η can be cancelled out and we obtain

∂B1

∂t
= ∇ × (v × B1) + 1

4π
∇2(B + ηB1). (4.16)

Therefore, the term ηB1 = (Bz0/Rm)B′
1 can be neglected for high magnetic Reynolds
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numbers. Thus, we arrive at the equation

∂B1

∂t
= ∇ × (v × B1) + 1

4π
∇2B. (4.17)

The source term of the above equation is, according to (4.1),

1
4π

∇2B = − B⊥
2πR2

φ̂, (4.18)

for every point R < a. Moreover, it is easy to show that, if at a specified time t = 0 we have
B1(x, 0) = 0, it follows that B1R(x, t) = B1z(x, t) = 0 for any time t. The equation for B1φ

is thus
∂B1φ

∂t
= − B⊥

2πR2
, (4.19)

which can be trivially integrated

B1φ = − B⊥
2πR2

t. (4.20)

Thus the total magnetic field is

BT =
⎧⎨
⎩2B⊥

(
1 − R

a
− η

4πR2
t
)

φ̂ + Bz0ẑ ain < R < a

0 otherwise.
(4.21)

And thus the current density can be calculated using (2.7) to be

J T =
⎧⎨
⎩

B⊥
2πR

(
1 − 2R

a
+ η

4πR2
t
)

ẑ ain < R < a

0 otherwise.
(4.22)

Thus one can calculate the time-dependent pressure using (2.1)

p(R, t) = B2
⊥

π

(
3

R
a

− R2

a2
− ln

(
R
a

)
− 2 + ηt

4πa

(
1
R

− 1
a

)
− η2t2

96π2

(
1
R6

− 1
a6

))

+ 1
2
ρv2

0

(
R2

a2
− 1

)
, p(a, t) = 0. (4.23)

Thus the internal cylinder must sustain the above time-dependent pressure.
Now, to calculate the magnetic helicity we need a vector potential; this can be similarly

obtained as in the ideal case in the form

AT =
⎧⎨
⎩

1
2

Bz0Rφ̂ − 2B⊥R
(

1 − R
2a

+ ηt
4πR2

)
ẑ ain < R < a

0 otherwise.
(4.24)

Inserting (4.21) and (4.24) into (3.46) will result in a time-dependent magnetic helicity

HMT = −2
3
πLBz0B⊥(a − ain)

[
a2 + aina + a2

in + 9ηt
4π

]
. (4.25)
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FIGURE 1. Comparison of |(1/HMI)(dHMT/dt′)| with |(1/HCNBI)(dHCNBT/dt′)| for Rm = 1.

The time derivative of the above magnetic helicity is

dHMT

dt
= −3

2
LBz0B⊥(a − ain)η. (4.26)

Similarly, inserting (4.21) and (4.5) into (3.1) will result in a time-dependent cross-helicity

HCNBT = 4πv0B⊥
L
a

[
1
3
(a3 − a3

in) − 1
4a

(a4 − a4
in) − ηt

4π
(a − ain)

]
, (4.27)

with a time derivative of

dHCNBT

dt
= −v0B⊥

L
a
(a − ain)η. (4.28)

It is interesting to compare which of the topological quantities is better preserved given
some high Reynolds number (and neglecting viscosity and heat conduction). To this end
we compare

∣∣∣∣ 1
HMI

dHMT

dt′

∣∣∣∣ = 9
4πRm(1 + a′

in + a′2
in)

, a′
in ≡ ain

a
, t′ = t

v0

a
, (4.29a–c)

with ∣∣∣∣ 1
HCNBI

dHCNBT

dt′

∣∣∣∣ = 3(1 − a′
in)

πRm
[
1 − a′3

in(4 − 3a′
in)
] . (4.30)

Both the above quantities are inversely proportional to the magnetic Reynolds number Rm.
The results for Rm = 1 are depicted in figure 1, which illustrates that the relative rates
of change of both quantities are about the same, with a slight advantage to the magnetic
helicity depending on the particular geometry of the configuration. It is shown that, for
the right pressure profile, both magnetic helicity and cross-helicity are of comparable
importance. The higher the magnetic Reynolds number, the more ideal the flow is.
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5. Topological bounds

Topological quantities serve as lower bounds on MHD ‘energies’ thus preventing some
types of instabilities developing. For example, Moffatt (1992) shows that the ‘energy’ is
bounded from below by the magnetic helicity using the Cauchy–Schwarz inequality

HM =
∫

B · A d3x �
√∫

A2 d3x

√∫
B2 d3x. (5.1)

In addition, it was shown by Yahalom (2017a) that

HM =
∫

B · A d3x � 1
2

∫ (
B2 + A2) d3x. (5.2)

A similar analysis can be done for the non-barotropic cross-helicity. It is easy to show
that the ‘energy’ is bounded from below by the cross-helicity as follows:

HCNB =
∫

B · vt d3x � 1
2

∫ (
B2 + vt

2) d3x, (5.3)

HCNB =
∫

B · vt d3x �
√∫

vt
2 d3x

√∫
B2 d3x. (5.4)

In this sense, a configuration with a highly complicated topology is more stable since
its energy is bounded from below. The current paper discusses the constancy of the
topological invariants when MHD flow is not ideal, with obvious implications for the
applicability of the above constraints.

6. The Z pinch and cross-helicity

Some types of plasma devices are dependent on fast changes (‘instabilities’) to generate
physical effects. One of those is the Z pinch, in which a current flowing in the axial
direction (z direction) through a plasma is used to generate an azimuthal magnetic field
which produces a Lorentz force compressing the plasma column. This was suggested
initially as a fusion configuration, and lately as a neutronsource (Zhang et al. 2019).

We consider a cylindrical coordinate system as in § 4, however, now we assume

B = Bφ(R)φ̂, (6.1)

which is an azimuthal magnetic field which depends only on the radial coordinate R. This
is associated with a current according to (2.7)

J = Jzẑ, Jz(R) = 1
4πR

∂(RBφ)

∂R
. (6.2a,b)

We thus obtain a Lorentz force density in the radial direction

f L = J × B = fLRR̂, fLR(R) = − 1
4π

[
∂

∂R

(
1
2

B2
φ

)
+ B2

φ

R

]
. (6.3a,b)

Hence, by carefully crafting the radial distribution of Jz, we obtain an inward radial
force, which will cause an inward radial acceleration, and hence aradial velocity and
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FIGURE 2. Pinch effect in four steps. 1. Current generation by electrodes. 2. The current
(presented by orange line) generated by a magnetic field (presented by blue lines). 3. The Lorentz
force compresses the plasma. 4. If high enough density and temperature are achieved for a
sufficient time, fusion occurs.

displacement leading to implosion. The implosion will lead hopefully to a high density
and temperature and thus to fusion and neutron production (see figure 2).

Since the velocity vector is expected to be in the radial direction, in an ideal case, no
cross-helicityis expected to develop and thus the configuration seems topologically trivial.
However, in practice, some azimuthal velocity may exist with the associated cross-helicity.
It is the effect of this cross-helicity which we now investigate. Let us suppose a velocity
field of the form

v = vR(R, t)R̂ + vφ(R), φ̂ (6.4)

in which we take for simplicity the azimuthal velocity component to be stationary. We
shall assume that no potential force or viscous force issignificant, and that the pressure
p(R) depends only on the radial coordinate. In this case, there is no force component in
the azimuthal direction and we obtain

(
dv

dt

)
φ

= ((v · ∇)v)φ = vR
∂vφ

∂R
+ 1

R
vRvφ = 0. (6.5)

This is easily solved for the case vR 	= 0 in terms of the azimuthal velocity at a single point
Rm

vφ(R) = vφ(Rm)

(
Rm

R

)
. (6.6)

Assuming a barotropic equation of state, the cross-helicity given in (3.1) can be calculated
as follows:

HCNB =
∫

d3x vt · B =
∫

d3x vφBφ =
∫

dz′ R′ dR′ dφ′ vφBφ

= 2πRmvφ(Rm)L
∫

Bφ(R′) dR′. (6.7)

In the above, L is the length of the plasma column. Taking Rm to be a radial distance
beyond which the azimuthal magnetic field vanishes and defining an average azimuthal
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magnetic field as

〈Bφ〉 = 1
Rm

∫ Rm

0
Bφ(R′) dR′, (6.8)

we have

vφ(R) = HCNB

2πRmL〈Bφ〉R . (6.9)

Next, we shall write the equation for the radial velocity component, which is derived from
(2.1)

(
dv

dt

)
R

= ∂vR

∂t
+ ((v · ∇)v)R = − 1

ρ

∂p(R)

∂R
− JzBφ

ρ
. (6.10)

Notice that

((v · ∇)v)R = 1
2

∂v2
R

∂R
− v2

φ

R
. (6.11)

It follows that

∂vR

∂t
= −1

2
∂v2

R

∂R
+ v2

φ

R
− 1

ρ

∂p(R)

∂R
− JzBφ

ρ
. (6.12)

Or, more explicitly,

∂vR

∂t
= −1

2
∂v2

R

∂R
+ H2

CNB

(2πRmL〈Bφ〉)2R3
− 1

ρ

∂p(R)

∂R
− 1

4πρ

(
1
2

∂B2
φ

∂R
+ B2

φ

R

)
. (6.13)

From a dynamical point of view, the cross-helicity has a negative effect because, for a fast
pinch, we would like to have a negatively large ∂vR/∂t < 0; however, the cross-helicity
will diminish the negativity of the right-hand side and thus has an adverse effect. As the
density in the pinch core increases, the pressure gradient will build up, eventually stopping
the implosion and thus the radial velocity will vanish vr = 0. In that case

∣∣∣∣ 1
ρ

∂p(R)

∂R

∣∣∣∣ = − 1
ρ

∂p(R)

∂R
= − H2

CNB

(2πRmL〈Bφ〉)2R3
+ 1

4πρ

(
1
2

∂B2
φ

∂R
+ B2

φ

R

)
. (6.14)
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So the maximal pressure gradient (and therefore the maximal core density) diminishes
due to the cross-helicity. We underline that, in the Z pinch scenario, the dissipation of the
cross-helicity as described in (3.30) has a positive effect, allowing us to achieve a higher
core density faster.

7. Summary and concluding remarks

The conservation of topological constants of motion such as the non-barotropic
cross-helicity and magnetic helicity imposes constraints on the MHD flow and thus affects
its stability (Yahalom 2017b). In his important review paper ‘Physics of magnetically
confined plasmas’, A. H. Boozer (Boozer 2005) states that: ‘A spiky current profile causes
a rapid dissipation of energy relative to magnetic helicity. If the evolution of a magnetic
field is rapid, then it must be at constant helicity’.

To achieve fusion, one needs to achieve a stable plasma which has the needed
temperature and density to sustain fusion. Usually, this is difficult to achieve for a long
enough duration at Earth conditions in Earth’s laboratory. A flow with a non-trivial
topology seems to be more stable as the energy of the flow is bounded from below.
Usually, topological conservation laws are used in order to deduce lower bounds on the
‘energy’ of the flow. Those bounds are only approximate in non-ideal flows but, due to their
topological nature, simulations show that they are approximately conserved even when the
‘energy’ is not.

To summarize, we have analytically examined the evolution of generalized cross-helicity
for non-ideal compressible MHD by taking resistive heating, heat conduction and
viscous effects into account. To achieve the aforementioned aim, first, we have derived
a specific entropy equation which is valid in non-ideal MHD flow with the help of
an energy equation. After that, using the basic MHD equations and the definition
of non-barotropic cross-helicity, we have derived the rate of change of generalized
cross-helicity with time. We have shown that the helicities are not conserved in non-ideal
MHD flow and their time derivatives depend only on non-ideal processes. One can
easily recover ideal MHD conditions by putting all of the non-ideal constants to
zero.

Magnetic and non-barotropic cross-helicities differ; the magnetic helicity is only
affected by magnetic diffusivity while the non-barotropic cross-helicity is dependent
on viscosity and heat conduction as well (except for special cases), making it
more susceptible to change over time. A dimensional analysis shows that, for a
magnetic helicity ‘slow change’, one needs only a high magnetic Reynolds number,
but this will not suffice for a ‘slow change’ of non-barotropic cross-helicity. The
latter case requires in addition a high Reynolds number (non-magnetic) as well
as limitations to the amount of heat conducted with respect to the flow kinetic
energy.

The generalized cross-helicity conservation law may find potential uses in solar MHD.
Under the influence of rotation and baroclinic instability, events such as magnetic
tornadoes can occur. Within these tornadoes, vorticity is generated as a result of the
baroclinic term (Webb & Mace 2015). The relevance of non-zero cross-helicity in
astrophysical and space plasma phenomena is nicely explained by Yokoi (2013) and
references therein. It is believed that non-barotropic cross-helicity, which unlike standard
cross-helicity can only be modified by non-ideal processes that are usually slower, can
be even more useful. For recent developments, one can refer to Heinonen et al. (2021).
Perez & Boldyrev (2009) has discussed its role in MHD turbulence by high resolution
direct numerical simulations. However, space plasma is generally not ideal in nature
and the real picture can be understood only by studying the helicity evolution in a
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non-ideal environment. Many studies in the literature have shown that cross-helicity
is correlated to the self-production of turbulence. Biskamp (2003) has presented a
decay law for MHD turbulence with the help of the conservation law for magnetic
helicity. Variation in energy flux is also adopted by Verma (2004) to study the decay
law in MHD turbulence. Mizeva, Stepanov & Frik (2009) has discussed the effect of
cross-helicity on the cascade process in MHD turbulence. They showed from numerical
results that ‘cross helicity blocks the spectral energy transfer in MHD turbulence and
results in energy accumulation in the system. This accumulation proceeds until the
vortex intensification compensates the decreasing efficiency of nonlinear interactions’.
The impact of non-zero cross-helicity on MHD turbulence is unparalleled and affects the
global dynamics. Briard & Gomez (2018) examined the effect of cross-helicity on the
decay of isotropic MHD turbulence and concluded that an initial non-zero cross-helicity
makes for imbalanced MHD turbulence. The subtle anisotropic effect of cross-helicity
could be the cause of this. In this paper, we have given simple examples making
non-zero cross helicity easy to analyse but it is not too simple in the sense that it
has both non-trivial magnetic helicity and non-trivial cross-helicity. We give an exact
analytic solution of ideal MHD, which is not a trivial since the equations of MHD
(even ideal) are nonlinear partial differential equations. We also give an approximate
solution (for high magnetic Reynolds number) for non-ideal flows. Then, we show that
both quantities change by about the same fractions (that is, in percentage with respect
to their initial values). This corresponds well with our general result that magnetic and
cross-helicities both change inverse proportionally with the magnetic Reynolds number,
provided viscosity and heat conductivity can be neglected. The question as to whether
this is a reasonable assumption in specific astrophysical or Earth-based MHD flow is
beyond the scope of the current paper. In addition, we mentioned the ideal inequality
constraint that is imposed by magnetic helicity and non-barotropic cross-helicity on
MHD flows. Finally, we discussed the adverse effect of cross-helicity on the Z
pinch.

For better insight into possible applications of the non-barotropic cross-helicity, the
authors plan to develop variational principles for non-ideal MHD in the future. Our aim
is to use them for the analysis of the stability of non-ideal MHD configurations. As for
designing efficient numerical schemes for integrating the equations of fluid dynamics and
MHD, one may follow the approach described in Yahalom (2003). Analysing the dynamics
of the new generalized non-barotropic χ and η cross-helicities recently developed by
Yahalom & Qin (2021) in the non-ideal case will also be a part of future work, as well as
attention to their local/global forms. To this end, we recall that both magnetic helicity has
local form, that is, the magnetic helicity per unit of magnetic flux [ζ ] and non-barotropic
crosshelicity per unit of magnetic flux [ν], which are both conserved quantities in ideal
flows (Yahalom 2017b, (27) and (36)).
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Appendix A. Variational approach to ideal non-barotropic magnetohydrodynamics

In the following, we repeat for the reader’s convenience the variational analysis that
can be found in Yahalom (2016b,a) and which generalizes the approach of Yahalom &
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Lynden-Bell (2008) for the non-barotropic case. Consider the action

A ≡
∫

L d3x dt,

L ≡ L1 + L2,

L1 ≡ ρ

(
1
2
v2 − ε(ρ, s)

)
+ B2

8π
,

L2 ≡ ν

[
∂ρ

∂t
+ ∇ · (ρv)

]
− ρα

dχ

dt
− ρβ

dη0

dt
− ρσ

ds
dt

− B
4π

· ∇χ × ∇η0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A1)

In the above, ε is the specific internal energy (internal energy per unit of mass). The reader
is reminded of the following thermodynamic relations which will become useful later:

dε = T ds − P d
1
ρ

= T ds + P
ρ2

dρ

∂ε

∂s
= T,

∂ε

∂ρ
= P

ρ2

w = ε + P
ρ

= ε + ∂ε

∂ρ
ρ = ∂(ρε)

∂ρ

dw = dε + d
(

P
ρ

)
= T ds + 1

ρ
dP.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A2)

Obviously, ν, α, β, σ are Lagrange multipliers which were inserted in such a way that the
variational principle will yield the following equations:

∂ρ

∂t
+ ∇ · (ρv) = 0,

ρ
dχ

dt
= 0,

ρ
dη0

dt
= 0,

ρ
ds
dt

= 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (A3)

It is not assumed that ν, α, β, σ are single valued. Provided ρ is not null, those are just the
continuity equation (2.2), entropy conservation and the conditions that Sakurai’s functions
are comoving. Taking the variational derivative with respect to B, we see that

B = B̂ ≡ ∇χ × ∇η0. (A4)

Hence, B is in Sakurai’s form and satisfies (2.3). It can be easily shown that, provided that
B is in the form given in (A4), and (A3) are satisfied, then also (2.4) is satisfied for zero
magnetic diffusivity η = 0.

For the time being we have shown that all of the equations of non-barotropic
magnetohydrodynamics can be obtained from the above variational principle, except
Euler’s equations. We will now show that Euler’s equations can be derived from the above
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variational principle as well. Let us take an arbitrary variational derivative of the above
action with respect to v, this will result in

δvA =
∫

dt
{∫

d3x dtρδv · [v − ∇ν − α∇χ − β∇η0 − σ∇s] +
∮

dS · δvρν

+
∫

dΣ · δvρ[ν]
}

. (A5)

The integral
∮

dS · δvρν vanishes in many physical scenarios. In the case of astrophysical
flows, this integral will vanish since ρ = 0 on the flow boundary, in the case of a fluid
contained in a vessel with no-flux boundary conditions, δv · n̂ = 0 is induced (n̂ is a unit
vector normal to the boundary). The surface integral

∫
dΣ on the cut of ν vanishes in the

case that ν is single valued and [ν] = 0 as is the case for some flow topologies. In the
case that ν is not single valued, only a Kutta type velocity perturbation (Yahalom, Pinhasi
& Kopylenko 2005) in which the velocity perturbation is parallel to the cut will cause
the cut integral to vanish. An arbitrary velocity perturbation on the cut will indicate that
ρ = 0 on this surface,which is contradictory to the fact that a cut surface is to some degree
arbitrary, as is the case for the zero line of an azimuthal angle. We will show later that the
‘cut’ surface is co-moving with the flow, hence it may become quite complicated. This
uneasy situation may be somewhat be less restrictive when the flow has some symmetry
properties.

Provided that the surface integrals do vanish and that δvA = 0 for an arbitrary velocity
perturbatio, we see that v must have the following form:

v = v̂ ≡ ∇ν + α∇χ + β∇η0 + σ∇s. (A6)

The above equation is reminiscent of Clebsch representation in non-magnetic fluids
(Clebsch 1857, 1859). Let us now take the variational derivative with respect to the density
ρ, we obtain

δρA =
∫

d3x dtδρ
[

1
2
v2 − w − ∂ν

∂t
− v · ∇ν

]

+
∫

dt
∮

dS · vδρν +
∫

dt
∫

dΣ · vδρ[ν] +
∫

d3x νδρ|t1t0 . (A7)

Hence, provided that
∮

dS · vδρν vanishes on the boundary of the domain and
∫

dΣ ·
vδρ[ν] vanishes on the cut of ν, in the case that ν is not single valued1 , at the initial and
final times the following equation must be satisfied:

dν

dt
= 1

2
v2 − w. (A8)

Since the right-hand side of the above equation is single valued as it is made of physical
quantities, we conclude that

d[ν]
dt

= 0. (A9)

Hence, the cut value is co-moving with the flow and thus the cut surface may become
arbitrarily complicated. This uneasy situation may be somewhat be less restrictive when
the flow has some symmetry properties.

1Which entails either a Kutta type condition for the velocity in contradiction to the ‘cut’ being an arbitrary surface,
or a vanishing density perturbation on the cut.
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Finally, we have to calculate the variation with respect to both χ and η0, this will lead
us to the following results:

δχA =
∫

d3x dtδχ
[
∂(ρα)

∂t
+ ∇ · (ραv) − ∇η0 · J

]

+
∫

dt
∮

dS ·
[

B
4π

× ∇η0 − vρα

]
δχ

+
∫

dt
∫

dΣ ·
[

B
4π

× ∇η0 − vρα

]
[δχ ] −

∫
d3x ραδχ |t1t0, (A10)

δη0 A =
∫

d3x dtδη0

[
∂(ρβ)

∂t
+ ∇ · (ρβv) + ∇χ · J

]

+
∫

dt
∮

dS ·
[
∇χ × B

4π
− vρβ

]
δη0

+
∫

dt
∫

dΣ ·
[
∇χ × B

4π
− vρβ

]
[δη0] −

∫
d3x ρβδη0|t1t0 . (A11)

Provided that the correct temporal and boundary conditions are met with respect to the
variations δχ and δη0 on the domain boundary and on the cuts, in the case that some
(or all) of the relevant functions are non-single valued, we obtain the following set of
equations:

dα

dt
= ∇η0 · J

ρ
,

dβ

dt
= −∇χ · J

ρ
, (A12a,b)

in which the continuity equation (2.2) was taken into account. By correct temporal
conditions we mean that both δη0 and δχ vanish at the initial and final times. As for
the boundary conditions which are sufficient to make the boundary term vanish, one
can consider the case that the boundary is at infinity and both B and ρ vanish. Another
possibility is that the boundary is impermeable and perfectly conducting. A sufficient
condition for the integral over the ‘cuts’ to vanish is to use variations δη0 and δχ , which
are single valued. It can be shown that χ can always be taken to be single valued, hence
taking δχ to be single valued is no restriction at all. In some topologies η0 is not single
valued and in those cases a single valued restriction on δη0 is sufficient to make the cut
term null.

Finally, we take a variational derivative with respect to the entropy s

δsA =
∫

d3x dtδs
[
∂(ρσ)

∂t
+ ∇ · (ρσv) − ρT

]
+
∫

dt
∮

dS · ρσvδs

−
∫

d3x ρσδs|t1t0 . (A13)

We notice that, according to (A6), σ is single valued and hence no cuts are needed. Taking
into account the continuity equation (2.2) we obtain for locations in which the density ρ is
not null the result

dσ

dt
= T, (A14)

provided that δsA vanishes for an arbitrary δs, this is the same as (3.2).
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Appendix B. Euler’s equations

We shall now show that a velocity field given by (A6), such that the equations for
α, β, χ, η0, ν, σ, s satisfy the corresponding equations (A3), (A8), (A12a,b), (A14) must
satisfy Euler’s equations. Let us calculate the material derivative of v

dv

dt
= d∇ν

dt
+ dα

dt
∇χ + α

d∇χ

dt
+ dβ

dt
∇η0 + β

d∇η0

dt
+ dσ

dt
∇s + σ

d∇s
dt

. (B1)

It can be easily shown that

d∇ν

dt
= ∇dν

dt
− ∇vk

∂ν

∂xk
= ∇

(
1
2
v2 − w

)
− ∇vk

∂ν

∂xk
,

d∇η0

dt
= ∇dη0

dt
− ∇vk

∂η0

∂xk
= −∇vk

∂η0

∂xk
,

d∇χ

dt
= ∇dχ

dt
− ∇vk

∂χ

∂xk
= −∇vk

∂χ

∂xk
,

d∇s
dt

= ∇ds
dt

− ∇vk
∂s
∂xk

= −∇vk
∂s
∂xk

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B2)

in which xk is a Cartesian coordinate and a summation convention is assumed. Inserting
the result from (B2) and (A3) into (B1) yields

dv

dt
= −∇vk

(
∂ν

∂xk
+ α

∂χ

∂xk
+ β

∂η0

∂xk
+ σ

∂s
∂xk

)
+ ∇

(
1
2
v2 − w

)
+ T∇s

+ 1
ρ

((∇η0 · J )∇χ − (∇χ · J )∇η0)

= −∇vkvk + ∇
(

1
2
v2 − w

)
+ T∇s + 1

ρ
J × (∇χ × ∇η0)

= −∇p
ρ

+ 1
ρ

J × B. (B3)

We have used both (A6) and (A4) in the above derivation. This of course proves that the
non-barotropic Euler equations can be derived from the action given in (A1) and hence
all the equations of non-barotropic magnetohydrodynamics can be derived from the above
action without restricting the variations in any way except on the relevant boundaries and
cuts.

REFERENCES

AKHMET’EV, P.M., KUNAKOVSKAYA, O.V. & KUTVITSKII, V.A. 2009 Remark on the dissipation of the
magnetic helicity integral. Theor. Math. Phys. 158 (1), 125–134.

BARNES, C.W., FERNANDEZ, J.C., HENINS, I., HOIDA, H.W, JARBOE, T.R., KNOX, S.O., MARKLIN,
G.J. & MCKENNA, K.F. 1986 Experimental determination of the conservation of magnetic helicity
from the balance between source and spheromak. Phys. Fluids 29 (10), 3415–3432.

BATCHELOR, G.K. 1967 An Introduction to Fluid Dynamics, p. 615. Cambridge University Press.
BISKAMP, D. 1997 Nonlinear Magnetohydrodynamics. Cambridge University Press.
BISKAMP, D. 2003 Magnetohydrodynamic Turbulence. Cambridge University Press.
BOOZER, A.H. 2005 Physics of magnetically confined plasmas. Rev. Mod. Phys. 76 (4), 1071.
BRIARD, A. & GOMEZ, T. 2018 The decay of isotropic magnetohydrodynamics turbulence and the effects

of cross-helicity. J. Plasma Phys. 84 (1), 905840110.

https://doi.org/10.1017/S002237782300123X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782300123X


Generalized cross-helicity 25

BROWN, M., CANFIELD, R., FIELD, G., KULSRUD, R., PEVTSOV, A., ROSNER, R. & SEEHAFER,
N. 1999 Magnetic helicity in space and laboratory plasmas: editorial summary. Geophys.
Monograph-Am. Geophys. Union 111, 301–304.

CALKIN, M.G. 1963 An action principle for magnetohydrodynamics. Can. J. Phys. 41 (12), 2241–2251.
CANDELARESI, S. & DEL SORDO, F. 2021 Stability of plasmas through magnetic helicity. https://arxiv.

org/abs/2112.01193.
CHANDRAN, B.D.G. 2008 Strong anisotropic mhd turbulence with cross helicity. Astrophys. J. 685,

646–658.
CLEBSCH, A. 1857 Uber eine allgemeine transformation der hydro-dynamischen gleichungen. J. Reine

Angew. Math. 54, 293–312.
CLEBSCH, A. 1859 Uber die integration der hydrodynamischen gleichungen. J. Reine Angew. Math. 56,

1–10.
FARACO, D. & LINDBERG, S. 2020 Proof of Taylor’s conjecture on magnetic helicity conservation.

Commun. Math. Phys. 373 (2), 707–738.
FREIDBERG, J.P. 1987 Ideal Magnetohydrodynamics. Plenum Press.
HAZELTINE, R.D. & MEISS, J.D. 2003 Plasma Confinement. Courier Corporation.
HEINONEN, R.A., DIAMOND, P.H., KATZ, M.F.D. & RONIMO, G.E. 2021 On the role of cross-helicity

in β-plane magnetohydrodynamic turbulence. https://arxiv.org/abs/2103.08091.
IOVIENO, M., GALLANA, L., FRATERNALE, F., RICHARDSON, J.D., OPHER, M. & TORDELLA, D.

2016 Cross and magnetic helicity in the outer heliosphere from voyager 2 observations. Eur. J. Mech.
(B/Fluids) 55, 394–401.

KNIZHNIK, K.J., ANTIOCHOS, S.K., KLIMCHUK, J.A. & DEVORE, C.R. 2019 The role of magnetic
helicity in coronal heating. Astrophys. J. 883 (1), 26.

KUNDU, P.K., COHEN, I.M. & DOWLING, D.R. 2015 Fluid Mechanics. Academic.
LANDAU, L.D. & LIFSHITZ, E.M. 1987 Chapter V – thermal conduction in fluids. In Fluid Mechanics, 2

edn (ed. L.D. Landau & E.M. Lifshitz), pp. 192–226. Pergamon.
MIZEVA, I.A., STEPANOV, R.A. & FRIK, P.G. 2009 The cross-helicity effect on cascade processes in

MHD turbulence. Doklady Physics 54 (2), 93–97.
MOBBS, S.D. 1981 Some vorticity theorems and conservation laws for non-barotropic fluids. J. Fluid

Mech. 108, 475–483.
MOFFATT, H.K. 1969 The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35 (1), 117–129.
MOFFATT, H.K. 1978 Field Generation in Electrically Conducting Fluids, vol. 2, p. 5-1. Cambridge

University Press.
MOFFATT, H.K. 1992 Relaxation under topological constraints. In Topological Aspects of the Dynamics of

Fluids and Plasmas (ed. H.K. Moffatt, G.M. Zaslavsky, P. Comte & M. Tabor), pp. 3–28. Springer.
MOFFATT, H.K. & RICCA, R.L. 1995 Helicity and the călugăreanu invariant. In Knots and Applications
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