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Angular momentum coupling between a rotating magnetized plasma and torsional Alfvén
waves carrying orbital angular momentum (OAM) is examined. It is demonstrated not
only that rotation is the source of Fresnel–Faraday rotation – or orbital Faraday rotation
effects – for OAM-carrying Alfvén waves, but also that angular momentum from an
OAM-carrying Alfvén wave can be transferred to a rotating plasma through the inverse
process. For the direct process, the transverse structure angular rotation frequency is
derived by considering the dispersion relation for modes with opposite OAM content.
For the inverse process, the torque exerted on the plasma is derived as a function of wave
and plasma parameters.
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1. Introduction

Understanding the effect of rotation on plasma dynamics is essential to a wide range of
applications. Besides original efforts motivated by microwave generation in magnetrons
(Brillouin 1945), it has indeed been shown that rotation could enable new approaches to
thermonuclear confinement (Wilcox 1959; Bekhtenev et al. 1980; Hassam 1997; Fetterman
& Fisch 2008, 2010; Ochs & Fisch 2017; Rax, Gueroult & Fisch 2017). Rotation has also
been found to hold promise for developing plasma mass separation applications (Gueroult
et al. 2017, 2019b), either in pulsed plasma centrifuges (Bonnevier 1966; Krishnan, Geva
& Hirshfield 1981) or in steady-state cross-field rotating plasmas (Ohkawa & Miller
2002; Shinohara & Horii 2007; Fetterman & Fisch 2011; Gueroult, Rax & Fisch 2014),
advanced accelerators (Janes 1965; Janes, Levy & Petschek 1965; Janes et al. 1966;
Rax & Robiche 2010; Thaury et al. 2013) and thrusters (Gueroult, Fruchtman & Fisch
2013). But understanding the effect of rotation on plasma dynamics is also essential in
a number of environments. Rotation is for instance key to the structure and stability
of a number of astrophysical objects (Kulsrud 1999; Miesch & Toomre 2009). In light
of this ubiquitousness, and because plasma waves are widely used for both control and
diagnostics in plasmas, it seems desirable to understand what the effect of rotation on wave
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propagation in plasmas may be (Gueroult, Rax & Fisch 2023). In fact the importance of
this task was long recognized in geophysics and astrophysics, leading to extensive studies
of low-frequency magnetohydrodynamic (MHD) waves in rotating plasmas (Lehnert 1954;
Hide 1969; Acheson 1972; Acheson & Hide 1973; Campos 2010), and notably of Alfvén
waves (Stix 1992).

Meanwhile, following the discovery that electromagnetic waves carry both spin and
orbital angular momentum (Allen et al. 1992; Andrews & Babiker 2012; Allen, Barnett
& Padgett 2016), there have been numerous theoretical developments on spin–orbit
interactions (Bliokh et al. 2015) in modern optics, which we note are now being applied to
plasmas (Bliokh & Bliokh 2022). For spin angular momentum (SAM)-carrying waves,
that is, circularly polarized waves, propagation through a rotating medium is known
to lead to a phase shift between eigenmodes with opposite SAM content (Player 1976;
Gueroult et al. 2019a; Gueroult, Rax & Fisch 2020). This phase shift is then the source
of a rotation of polarization or polarization drag (Jones 1976), as originally postulated
by Thomson (1885) and Fermi (1923). For orbital angular momentum (OAM)-carrying
waves, propagation through a rotating medium is the source of a phase shift between
eigenmodes with opposite OAM content (Götte, Barnett & Padgett 2007), leading to image
rotation or Faraday–Fresnel rotation (Padgett et al. 2006).

This azimuthal Fresnel drag of OAM-carrying waves, which can be viewed as an
orbital Faraday rotation of the amplitude, was first derived (Wisniewski-Barker et al.
2014) and observed (Franke-Arnold et al. 2011) in isotropic, non-gyrotropic media.
In contrast, propagation of OAM-carrying waves in a rotating anisotropic (gyrotropic)
medium poses greater difficulty since the polarization state and the wave vector direction
– which are independent parameters for a given wave frequency in an isotropic medium
– become coupled. Yet, it was recently shown that Faraday–Fresnel rotation is also
found for the high-frequency magnetized plasma modes that are Whistler–Helicon and
Trivelpiece–Gould modes (Rax & Gueroult 2021). For such high-frequency modes it was
found that the main modifications induced by the plasma rotation are associated with
Doppler shift and Coriolis effect in the dispersion relation. Interestingly, we note that
the result that rotation is the source of an azimuthal component for the group velocity
of low-frequency waves in magnetized plasmas when Ω · k �= 0 was already pointed
out in geophysics and astrophysics (Acheson & Hide 1973), but the connection to a
Faraday–Fresnel rotation of the transverse structure of the wave did not seem to have been
made. An added complexity for these low-frequency modes is that one must, in addition
to anisotropy and gyrotropy, consider the strong coupling to the inertial mode (Lighthill
1980) that then comes into play. Revisiting this problem, we derive here in this study
the expression for Faraday–Fresnel rotation for low-frequency rotating Alfvén waves in a
rotating magnetized plasma.

This paper is organized as follows. After briefly recalling the configuration of interest
and previous results in the next section, we construct in § 3 the spectrum of low-frequency,
small-amplitude, fluid waves in a magnetized rotating plasma. The set of linearized
Euler and Maxwell equations describes an oscillating Beltrami flow-force-free field
(Chandrasekhar & Prendergast 1956) whose components are expressed with a cylindrical
Chandrasekhar–Kendall (CK) potential (Chandrasekhar & Kendall 1957; Yoshida 1991).
Then, in § 4, these OAM-carrying waves are shown to display a Faraday–Fresnel rotation
under the influence of the plasma rotation. Section 5 focuses on the inverse problem when
the OAM of the wave is absorbed by the plasma. We derive in this case the torque exerted
by this wave on the fluid driven as a function of the wave and plasma parameters. Finally
§ 6 summarizes the main findings of this study.
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FIGURE 1. Uncoupled dispersion of torsional Alfvén waves (TAW) obtained for B0 �= 0 and
Ω = 0 and of inertial waves (IM) obtained for Ω �= 0 and B0 = 0.

2. Background

In this study we consider a rotating magnetized plasma column with constant angular
velocity Ω = Ωez and static uniform magnetic field B0 = B0ez. We write (r, θ, z)
cylindrical coordinates on a cylindrical basis (er, eθ , ez). The plasma dynamics is described
assuming an inviscid and incompressible fluid model. We classically define the Alfvén
velocity

V .= B0/
√
μ0ρ, (2.1)

where μ0 is the permittivity of vacuum and ρ the mass density of the fluid.
In the simple case where B0 = 0 and Ω �= 0 the rotating plasma behaves as an ordinary

rotating fluid and inertial waves can propagate. Taking a phase factor exp j(ωt − k‖z −
k⊥y), the dispersion relation for this inertial mode is (Lighthill 1980)

ω = ±2Ωk‖/
√

k2
‖ + k2

⊥. (2.2)

Conversely, in the case where Ω = 0 but B0 �= 0, Alfvén waves can propagate in the
magnetized plasma at rest. The dispersion of this torsional mode is (Stix 1992)

ω = ±B0k‖/
√
μ0ρ = ±k‖V. (2.3)

Note that compressional Alfvén waves are not considered here as we are considering an
incompressible plasma. The dispersion of uncoupled torsional Alfvén waves and inertial
waves is plotted in figure 1 in the (k‖V/ω, k⊥V/ω) plane for a given frequency ω. Note
that we have normalized for convenience the wavevector to ω/V , and that even for the
unmagnetized inertial wave branch.

In the more general case where both B0 �= 0 andΩ �= 0, then a strong coupling between
inertial waves and torsional Alfvén waves modes rearranges the spectrum and gives rise
to two new branches (Lehnert 1954; Acheson & Hide 1973). This coupling is expected
to be strongest in the regions where the the dispersion curves of the modes absent
rotation (torsional Alfvén waves) and absent magnetic field (inertial waves) intersect,
which is highlighted in grey in figure 1. Since as already pointed out by Acheson &
Hide (1973) the group velocity of these new modes for waves such that Ω · k �= 0 has
an azimuthal component, then we expect Fresnel–Faraday rotation as recently identified
for Trivelpiece–Gould and Whistler–Helicon high-frequency electronic modes (Rax &
Gueroult 2021).
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3. Rotating Alfvén waves in a rotating plasma

In this section we examine the properties of low-frequency waves carrying OAM in a
rotating magnetized plasma.

3.1. Classical modes
Two methods can be used to identify and describe the coupling between the angular
momentum of a rotating plasma column and the angular momentum of a wave propagating
in this rotating magnetized plasma. One is to consider the transformation laws of the
various parameters from the laboratory frame to a rotating frame. The other is to perform
the study in the laboratory frame starting from first principles. Here we use the first
method, similarly to original contributions on MHD waves in rotating conductive fluids
(Lehnert 1954; Hide 1969), and solve the perfect MHD dynamics to calculate the rotating
plasma linear response for the low-frequency branches where the coupling between the
fields and the particles is large. By working in the co-rotating frame (R) rather than in the
laboratory frame (L), both the Coriolis force 2Ω × v and the centrifugal forces −∇ψ with
ψ = −Ω2r2/2 must be taken into account.

We model the evolution of the wave velocity field v(r, t) using Euler’s equation under
the assumptions of homogeneity and zero viscosity:

∂v

∂t
+ (v · ∇)v + 2Ω × v = −∇

(
P
ρ

+ ψ

)
+ 1
μ0ρ

(∇ × B)× (B + B0) (3.1)

and the evolution of the wave magnetic field B(r, t) using the Maxwell–Faraday equation
under the assumption of perfect conductivity:

∂B
∂t

= ∇ × [v × (B + B0)], (3.2)

where ρ is the mass density of the fluid and P is the pressure. These dynamical relations
are completed by the flux conservation law

∇ · B = 0 (3.3)

for the magnetic field and the incompressibility relation

∇ · v = 0 (3.4)

for the velocity field. As already mentioned, this last relation will restrict the plasma
behaviour to the Alfvénic dynamics associated with torsional waves. We should also stress
that the assumptions made here and in this study only capture specific kinds of pressure
equilibrium. Indeed a rotating equilibrium demands a radial gradient in the total pressure
(that is either in the plasma pressure or in the magnetic pressure) to balance the centrifugal
forces (Hameiri 1983). In bringing the density under the gradient in (3.1), which will
facilitate the analysis of perturbations around this equilibrium, we implicitly assumed
a homogeneous density. In this model the pressure gradient must thus come entirely
from a temperature gradient. Although restrictive, we work here within this homogeneous
assumption to expose new coupling phenomena, and keep in mind that this is only an
approximation whose justification remains to be demonstrated.
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We now consider a small-amplitude MHD perturbation, propagating along and around
the z axis, described by a magnetic perturbation:

B(r, θ, z, t) = B(r, θ, z) exp( jωt) (3.5)

with respect to the uniform static magnetic field B0 = B0ez. The wave frequency ω is
assumed smaller than the ion cyclotron frequency and larger than the collision frequency
to validate the use of the perfect MHD model (3.1), (3.2). The oscillating magnetic wave
B is associated with an oscillating hydrodynamic velocity perturbation v:

v(r, θ, z, t) = u(r, θ, z) exp( jωt) (3.6)

with respect to rotating frame velocity equilibrium v0 = 0. The pressure P balances
the centrifugal force at equilibrium ∇(P + ρψ) = 0 and the pressure perturbation is
p(r, θ, z) exp jωt. To first order in these perturbations, the linearization of (3.1) and (3.2)
gives

jωu + 2Ω × u = −∇(p/ρ)+ 1
μ0ρ

(∇ × B)× B0, (3.7)

jωB = (B0 · ∇)u. (3.8)

Flux conservation and incompressibility provide the two additional conditions

∇ · u = 0, (3.9)

∇ · B = 0. (3.10)

Taking the curl of both (3.7) and (3.8) and eliminating B gives a linear relation for the
velocity perturbation:

ω2∇ × u + 2jω(Ω · ∇)u + (V · ∇)2(∇ × u) = 0, (3.11)

with V the Alfvén velocity already defined in (2.1). Note that the elimination of the
pressure term obtained by taking the curl of (3.7) would not be possible if, as hinted at
earlier, accounting for a radial density gradient.

Now if one Fourier-analyses this velocity perturbation as a superposition of plane waves:

u(r) exp jωt = exp[ j(ωt − k · r)], (3.12)

that is to say put the emphasis on the linear momentum dynamics rather than on the angular
momentum dynamics, one recovers the two branches of Alfvénic/inertial perturbations in
a rotating plasma (Lehnert 1954; Acheson & Hide 1973). Specifically, plugging (3.12) into
(3.11) and then taking the cross-product jk× of this algebraic relation, one obtains the
dispersion relation

ω2 − (k · V )2 = ±2ω(Ω · k)/|k|. (3.13)

The two solutions, which are illustrated in figure 2, have been widely investigated within
the context of geophysical and astrophysical MHD models. They are also in agreement
with the solutions obtained from the local dispersion relation for magneto-rotational
instabilities (Goedbloed, Keppens & Poedts 2019, § 13.5.1) in the appropriate limit.
For short wavelengths, the Ω = 0 torsional Alfvén wave splits into an inertial and
a magneto-inertial wave. For long wavelengths, that is, in the grey zone in figure 2,
inertial terms dominate the dispersion and the inertial wave is found to reduce to its zero
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FIGURE 2. Coupled dispersion of magneto-inertial waves (MI) and inertial waves (IM).

rotation behaviour already shown in figure 1. Note finally that the torsional Alfvén wave
is recovered for large k⊥ where a local dispersion becomes valid as opposed to small
k⊥ where the large wavelength allows the wave to probe the large-scale behaviour of
the rotation.

3.2. Beltrami flow
Instead of this usual procedure using a full Fourier decomposition as given by (3.12), we
start here by considering a travelling perturbation along z of the form

u(r, θ, z) = w(r, θ) exp(−jk‖z). (3.14)

Note that this is analogous to what was already done by Shukla (2012) to study
OAM-carrying dispersive shear Alfvén waves, though in this earlier study the paraxial
approximation and a two-fluid model were used, and the plasma was considered at rest
(i.e. non-rotating). Plugging (3.14) in the dispersion relation for a rotating plasma (3.11)
gives

∇ × u = Ku, (3.15)

where we have defined

K(k‖, ω)
.= 2

Ω

ω
k‖

(
k2

‖V2

ω2
− 1

)−1

. (3.16)

From (3.8) the oscillating magnetic field is then written as

ωB = −√
μ0ρk‖Vu. (3.17)

The two modes identified in figure 2 can be recovered from (3.16). More specifically,
for k‖V > ω (3.15) describes an Alfvén wave modified by inertial effect. Conversely for
k‖V < ω (3.15) describes an inertial wave modified by MHD coupling. In the following
we focus on the Alfvén wave dynamics and thus assume K > 0.

Equation (3.15) is characteristic of a Beltrami flow (Chandrasekhar & Prendergast
1956). As such u can be written in terms of the so-called CK potential Φ (Chandrasekhar

https://doi.org/10.1017/S0022377823001368 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823001368


Rotating Alfvén waves in rotating plasmas 7

& Kendall 1957) as

u = 1
K∇ × (∇ ×Φez)+ ∇ ×Φez

= −
[

1
K∇ × ez × ∇ + ez × ∇

]
Φ, (3.18)

where the CK potential is a solution of the scalar Helmholtz equation

	Φ + K2Φ = 0. (3.19)

One verifies that the three components of (3.18) are independent.
Before examining the structure of OAM-carrying modes through the CK potential, two

additional results can be obtained from (3.16). First, for the Fourier decomposition used
above, plugging (3.13) in (3.16) gives

K2

k2
‖

= 1 + k2
⊥

k2
‖
> 1. (3.20)

Second, we can derive the dimensionless group-velocity dispersion coefficient

ω

K
∂K
∂ω

= −k‖
K
∂K
∂k‖

= k2
‖V2 + ω2

k2
‖V2 − ω2

, (3.21)

which we use later to make explicit the axial wavevector difference for two eigenmodes
with opposite OAM content.

3.3. Structure of OAM-carrying modes
Because we are interested in waves carrying OAM around z and linear momentum along
z, we search for solutions of the form

Φ(r, θ, z) = φ(r) exp[−j(mθ + k‖z)], (3.22)

where m ∈ Z is the azimuthal mode number associated with the OAM of the wave. From
(3.19) the radial amplitude of this rotating CK potential φ(r) must be a solution of the
Bessel equation

1
r

d
dr

(
r

dφ
dr

)
− m2

r2
φ + (K2 − k2

‖)φ = 0. (3.23)

Since as shown in (3.20) K2 > k2
‖, φ(r) is in general the combination of Bessel functions

of the first and the second kind and order m ∈ Z, Jm and Ym. Yet, the finite value of φ at
r = 0 demands restricting the physical solution to Bessel functions of the first kind Jm so
that we find

φ(r) = Jm(αr), (3.24)

with the cylindrical dispersion relation

α2 + k2
‖ = K2(k‖, ω). (3.25)

Note that, like the ordinary plane wave (3.12) used in the standard analysis, the cylindrical
Bessel waves (3.24) cannot be normalized.
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Putting these pieces together one finally gets

v =
[

1
K∇ × ez × ∇ + ez × ∇

]
Jm(

√
K2 − k2

‖r) exp[j(ωt − mθ − k‖z)]

= − ωB√
μ0ρk‖V

. (3.26)

The components in the plasma frame of a rotating Alfvén wave with azimuthal mode
number m thus have an amplitude proportional to combination of Bessel functions of the
first kind and of orders m and m ± 1. All these Bessel functions have the same radial
dependence, namely

√
K2(k‖, ω)− k2

‖r, where K(k‖, ω) is given by (3.16).

4. Direct rotational Fresnel drag–orbital Faraday rotation

Let us now rewrite these perturbations as seen from the laboratory frame. We use the
index R for the rotating plasma rest frame and L for the laboratory frame. The radial
Eulerian coordinates r and z are unchanged through this change of frame or reference, but
the azimuthal coordinate θ changes, with

r|L = r|R, (4.1)

z|L = z|R, (4.2)

θ |L = θ |R +Ωt. (4.3)

Since the axial wavevector is unchanged k‖|R = k‖|L, the phase of the wave in the plasma
rest frame

ωt − k‖z ± mθ |R (4.4)

becomes
(ω ∓ mΩ)t − k‖z ± mθ |L (4.5)

in the laboratory frame.
Equipped with these transformations we can now describe the conditions to observe

Fresnel–Faraday rotation. For this we consider two CK potentials describing two Alfvén
modes with opposite OAM content in the rotating frame R:

Φ+|R = Jm(αr) exp( j[(ω − mΩ)t − (k‖ − δk‖)z − mθ |R]),
Φ−|R = J−m(αr) exp( j[(ω + mΩ)t − (k‖ + δk‖)z + mθ |R]).

}
(4.6)

These transform in the CK potentials in the laboratory frame L:

Φ+|L = Jm(αr) exp( j[ωt − (k‖ − δk‖)z − mθ |L]),
Φ−|L = J−m(αr) exp( j[ωt − (k‖ + δk‖)z + mθ |L]),

}
(4.7)

as a result of the rotational Doppler shift θ |L = θ |R +Ωt. These Alfvén CK potentials
Φ±|L can be driven by a multicoil antenna similar to that used to study Whistler–Helicon
modes (Stenzel & Urrutia 2014, 2015a,b,c; Urrutia & Stenzel 2015, 2016; Stenzel &
Urrutia 2018; Stenzel 2019). The radial field pattern is then a superposition of +m and
−m Bessel amplitudes J±m(αr), where α is associated with the radial modulation of the
antenna currents (Rax & Gueroult 2021). The antenna then sets both the radial wavevector
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α and the frequency ω, whereas the axial wavevectors k‖ ± δk‖ are solutions of the rotating
frame dispersion relation. From (3.25),

α =
√
K2(k‖ − δk‖, ω − mΩ)− (k‖ − δk‖)2, (4.8)

α =
√
K2(k‖ + δk‖, ω + mΩ)− (k‖ + δk‖)2. (4.9)

Since we assume ω � Ω and k‖ � δk‖, we can Taylor-expand (4.8) and (4.9) to get δk‖,
leading to

k‖
K δk‖ = δk‖

2
∂K(ω, k‖)
∂k‖

+ mΩ
2
∂K(ω, k‖)

∂ω
. (4.10)

Equation (3.21) can then be used to finally write the axial wavevector difference δk‖ for
two modes with the same frequency ω, the same radial amplitude |Jm(αr)| and equal but
opposite azimuthal number |m| as

δk‖
k‖

= 1
2

m
Ω

ω

1 + k2
‖V2

ω2

1 − k2
‖

K2
+
(

1 + k2
‖

K2

)
k2

‖V2

ω2

, (4.11)

where K(k‖, ω,Ω) is given by (3.16). This implies that there will be a difference in the
axial phase velocity ω/(k‖ ± δk‖) of these two modes, and because these two modes
rotate in opposite directions due to their opposite azimuthal mode number, the transverse
structure of the sum of these modes will rotate. This is the Fresnel drag–Faraday orbital
rotation effect. Specifically, if one launches a wave which is a superposition of +m and
−m modes such that at the antenna location z = 0

Φ|z=0 = Jm(αr)((exp[ j(ωt − mθ |L)] + (−1)m exp[ j(ωt + mθ |L)]), (4.12)

the wave transverse amplitude rotates as it propagates along z > 0 with an angular velocity
along the propagation axis

dθ
dz

|L = δk
m

= 1
2
Ω

ω
k‖K2 k2

‖V2 + ω2

k2
‖V2(K2 + k2

‖)+ ω2(K2 − k2
‖)
. (4.13)

This CK potential rotation is illustrated in figure 3 for the case m = 4. Equations
(4.11) and (4.13) quantify the direct Faraday–Fresnel effect of Alfvén waves in rotating
plasmas, completing the similar results previously obtained for Trivelpiece–Gould and
Whistler–Helicon modes (Rax & Gueroult 2021). The 1/m factor in (4.13) comes from
the fact that the image constructed from the superposition of ±m modes has a 2m-fold
symmetry.

To conclude this section it was shown that besides the Fresnel–Faraday rotation
associated with a phase-velocity difference for m and −m modes, there can also be a
splitting of the envelope of an (m,−m) wave packet if the group velocity for co-rotating
(m) and counter-rotating (−m) modes were different (Rax & Gueroult 2021). We note that
this second effect is also present here for Alfvén waves in rotating plasmas. Indeed, given
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u =�J4(�r) cos (4�) u =�J4(�r) cos (4�����/4)

z = �/4(d �/dz)

FIGURE 3. Fresnel drag–Faraday rotation of the CK potential describing an Alfvén–Beltrami
wave with m = ±4 after a propagation along a path z = π/4(dθ/dz).

a radial wavevector α the dispersion relation is D = K2 − k2
‖ − α2 = 0, so that from (3.21)

the axial group velocity is given by

− ∂D
∂k‖

/
∂D
∂ω

= k‖
K∂K/∂ω − ω

k‖
, (4.14)

and one verifies from (3.16) that the group velocity for a mode (k‖ + δk‖,m) and that for
a mode (k‖ − δk‖,−m) are different. Rather than deriving here an explicit formula for
the Fresnel–Faraday splitting, we consider in the next section the inverse Fresnel–Faraday
effect associated with wave absorption.

5. Inverse rotational Fresnel drag and angular moment absorption

In a perfectly conducting inviscid plasma there is no power absorption. The power
exchange between the oscillating electromagnetic field and the plasma is purely reactive.
To obtain an irreversible (active) angular momentum absorption, on needs a dissipative
mechanism. Two different wave OAM absorption mechanisms can be considered. One
is resonant collisionless absorption; the other is collisional absorption. The former was
recently studied in Rax, Gueroult & Fisch (2023) through quasilinear theory and will not
be considered here. Instead, we consider in this section a weakly dissipative plasma where
the ideal MHD hypothesis of perfect conductivity is relaxed and the inviscid assumption
of zero viscosity no longer applies. In both cases, collisional or collisionless, each time
an energy δU is absorbed by the plasma, an axial angular momentum δL = mδU/ω is
also absorbed by the plasma (Rax et al. 2017, 2023). The rate of decay of the wave
angular momentum is hence equal to the wave-induced density of torque on the plasma
Γ = dL/dt. In steady state, this angular momentum transfer dΓ/dt is balanced by viscous
damping of the velocity shear and Ohmic dissipation of the radial charge polarization
sustaining the rotation. This dissipation is larger in the collisional case considered here
than in the collisionless regime considered in Rax et al. (2023).

Specifically, we introduce two dissipative collisional couplings to our dissipation-less
system (3.7), (3.8), namely finite viscosity ρμ and finite resistivity μ0η. We follow the
notation of Taylor (1989) (devoted to Alfvén wave helicity absorption) and introduce the
magnetic diffusion coefficient η and the kinematic viscosity μ. Ohm’s law is then written
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as E + v × B = μ0ηj and the system (3.7), (3.8) becomes

jωu + 2Ω × u = −∇(p/ρ)+ 1
μ0ρ

(∇ × B)× B0 + μ	u, (5.1)

jωB = (B0 · ∇)u + η	B. (5.2)

Since we assume weak dissipation, the resistive term η	B in the Maxwell–Faraday
equation and the viscous term μ	u in the Navier–Stokes equation can be evaluated with
the dispersive properties of the non-dissipative dispersion relation. Within the bounds of
this perturbative expansion scheme (K2η 	 ω and K2μ 	 ω), and for the perturbation
u(r, θ, z) = w(r, θ) exp(−jk‖z) already given in (3.14), we get from (3.15), (3.17) the
non-dissipative Laplacians

	u = −K2u, (5.3)

	B = −K2B. (5.4)

Plugging these results into (5.1), (5.2) yields the system

jωu + 2Ω × u = −∇(p/ρ)+ 1
μ0ρ

(∇ × B)× B0 − K2μu, (5.5)

jωB = (B0 · ∇)u − K2ηB, (5.6)

where now viscous and resistive dissipation introduce a local relaxation.
We then take the rotational of the first equation and eliminate B using the second

equation to get

[(jω + K2μ)(jω + K2η)]∇ × u + 2j(jω + K2η)k‖Ωu + k2
‖V2∇ × u = 0. (5.7)

After some algebra we find that the linearized dissipative regime of velocity and field
low-frequency oscillations is now described by

∇ × u = [KR(k‖, ω)− jKI(k‖, ω)]u, (5.8)

(ω − jK2η)B = −√
μ0ρk‖Vu, (5.9)

rather than by the collisionless equations (3.15), (3.17), where we have defined the two real
wavevectors KR ≈ K � KI through

KR(k‖, ω)− jKI(k‖, ω) = 2Ω
(ω − jK2η)k‖

k2
‖V2 − (ω − jK2μ)(ω − jK2η)

. (5.10)

We then consider an initial-value problem with a weakly decaying wave of the form

v = u exp[ j(ω + jν)t], (5.11)

with ω � ν, and with the structure

v =
[

1
KR − jKI

∇ × ez × ∇ + ez × ∇
]

Jm(αr) exp( j[(ω + jν)t − mθ − k‖z]), (5.12)

where α is a real number, ω and k‖ are given and the damping rate ν(ω, k‖,K) is to be
determined from the weak dissipation expansion of the dispersion relation

α2 + k2
‖ = [KR(k‖, ω + jν)− jKI(k‖, ω + jν)]2, (5.13)
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obtained by plugging this solution in (5.8). Taylor-expanding this last relation for ν 	 ω,
the lowest-order real part gives the collisionless dispersion

α2(k‖, ω) = K2
R(k‖, ω)− k2

‖ ≈ K2(k‖, ω)− k2
‖, (5.14)

while the lowest-order imaginary part gives a relation for the decay rate ν:

ν(k‖, ω)
∂KR(ω)

∂ω
= KI(k‖, ω) ≈ K3

ω

⎡
⎣η + (μ+ η)

(
k2

‖V2

ω2
− 1

)−1
⎤
⎦ . (5.15)

Here we took ∂KR/∂ω ≈ ∂K/∂ω and used (3.21).
Finally, (5.15) can be used to write an equation for the evolution of the wave energy

density U :

dU
dt

= −2νU = −2KI

(
∂KR

∂ω

)−1

U . (5.16)

For a rotating Alfvén wave, this energy density U has three distinct components:

U = 〈B2〉
2μ0

+ ε0

2
〈(v × B0)

2〉 + ρ

2
〈v2〉, (5.17)

where 〈 〉 indicates an average over the fast ω oscillations. The first term on the right-hand
side is the magnetic energy, the second term is the electric energy and the third term is the
kinetic energy. This energy density can be rewritten using the Alfvén velocity V and the
velocity of light c as

U = ρ

2

[
〈v2〉

(
1 + V2

c2

(
1 + k2

‖c2

ω2

))
−
〈(

v · V
c

)2
〉]
. (5.18)

Combining equations (5.16), (5.17) and the relation between energy and angular
momentum absorption, one finally gets

Γ = 2ρ
m
ω
KI

(
∂KR

∂ω

)−1
[
〈v2〉

(
1 + V2

c2

(
1 + k2

‖c2

ω2

))
− 〈(v · V )2〉

c2

]
, (5.19)

where KR and KI are given by (5.10) and v is given by (3.26).

6. Conclusion

Building on previous contributions studying Alfvén waves in rotating plasmas
in geophysical and astrophysical settings, we have examined here the dynamics of
OAM-carrying torsional Alfvén waves in a rotating plasma. It is found that two new
couplings exist between the OAM of the Alfvén waves and the angular momentum of
the rotating plasma.

One is Fresnel–Faraday rotation, that is, a rotation of the transverse structure of
the wave due to the medium’s rotation, which had already been predicted for the
high-frequency electronic modes that are Trivelpiece–Gould and Whistler–Helicon modes
(Rax & Gueroult 2021). Extending these earlier contributions, direct Fresnel–Faraday
rotation for torsional Alfvén waves in a rotating plasma is described by (4.11) and (4.13).
It is the OAM analogue of the polarization drag effect for spin angular momentum waves
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(Jones 1976; Player 1976). An important distinction found here, though, is that while
rotation did not introduce new high-frequency modes so that Faraday–Fresnel rotation
for Trivelpiece–Gould and Whistler–Helicon modes was simply the consequence of the
interplay between Coriolis force and rotational Doppler shift (Rax & Gueroult 2021), the
strong coupling to the inertial wave that exists for Alfvén waves in rotating plasmas makes
this picture more complex.

The second coupling is the inverse effect through which the OAM-carrying wave exerts
a torque on the plasma. Inverse Faraday–Fresnel rotation is described by (5.10) and (5.19).
This inverse effect is akin to the spin angular momentum inverse Faraday effect but for the
OAM of the wave. It is found that for a plasma with non-zero collisional absorption the
damping of an OAM-carrying wave is the source of a torque on the plasma.

Looking ahead, these results suggest that direct Faraday–Fresnel rotation could in
principle be used to diagnose plasma rotation with Alfvén waves. Conversely, it may be
possible to utilize inverse Faraday–Fresnel rotation to sustain plasma rotation through
Alfvén wave angular momentum absorption. The detailed analysis of these promising
prospects, as well as the examination of the effect of radial non-uniformities, is left for
future studies.
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