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The Values of Modular Functions and

Modular Forms

So Young Choi

Abstract. Let Γ0 be a Fuchsian group of the first kind of genus zero and Γ be a subgroup of Γ0 of finite

index of genus zero. We find universal recursive relations giving the qr-series coefficients of j0 by using

those of the qhs
-series of j, where j is the canonical Hauptmodul for Γ and j0 is a Hauptmodul for

Γ0 without zeros on the complex upper half plane H (here qℓ := e2πiz/ℓ). We find universal recursive

formulas for q-series coefficients of any modular form on Γ
+

0
(p) in terms of those of the canonical

Hauptmodul j+
p .

1 Introduction

Let j(N) be the canonical Hauptmodul for a Hecke subgroup Γ0(N) of SL2(Z) of
genus zero. By using Norton and Koike’s idea, Kim and Koo [5] derived a recursive

formula for q-series coefficients of j(N) (q = e2πiz throughout). Let Γ1(N) be the
congruence subgroup of SL2(Z) whose elements are congruent to

(
1 ∗
0 1

)
mod N

(N = 2, 6, 8, 10, 12). Kim and Koo [6] also found recursive formulas for the q-series
coefficients of the canonical Hauptmodul j(1,N) for Γ1(N).

Let Γ0 be a Fuchsian group of the first kind of genus zero and Γ be a subgroup of
Γ0 of finite index of genus zero. Let j be the canonical Hauptmodul for Γ and j0 be
a Hauptmodul for Γ0. In Section 2, by using Bruinier, Kohnen and Ono’s idea in [2]

we find universal recursive relations giving the qr-series coefficients of j0 in terms of
the qhs

-series of j, where ql = e2πiz/l and l = hs or l = r throughout (see Theorem
2.2).

Let J = 1/q + 744 + 196884q + · · · be the usual elliptic modular function on

SL2(Z). For every positive integer n, let jn be the unique modular function which
is holomorphic on H whose Fourier expansion at ∞ is of the form jn = 1/qn +∑∞

m=1 cn(m)qm. Bruinier, Kohnen and Ono [2] considered the sums of the values
of elliptic modular functions jn over divisors of meromorphic modular function on

SL2(Z), where j1 = J − 744. They showed that the “trace” of these values dictates
the properties of modular forms on SL2(Z). They provided a very useful link relating
the values of J to the arithmetic of the Fourier coefficients of modular forms, that is,
there are universal recursive formulas for the Fourier coefficients of every modular

form on SL2(Z). They studied the action of Ramanujan’s theta-operator defined by

θ
( ∞∑

n=n0

a(n)qn
)

:=

∞∑

n=n0

na(n)qn
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on meromorphic modular forms on SL2(Z) in relation to the values of a certain
sequence of modular functions. If f (z) =

∑∞
n=n0

a(n)qn is a weight k meromorphic

modular form on SL2(Z), then

θ( f ) =
f̃ + k f E2

12

and f̃ is a weight k + 2 meromorphic modular form where

E2(z) := 1 − 24

∞∑

n=1

σ1(n)qn

is the Eisenstein series. E2 is not a modular form, but has a twisted transformation

law that we will use in Section 3. They found an explicit formula for f̃ which yields
the universal recursive formulas mentioned above.

It is natural to investigate analogues of this work for modular forms on more
general Fuchsian groups of the first kind of genus zero. In Section 3, we consider

the problem for groups Γ
+
0 (p) generated by a Hecke subgroup Γ0(p) of SL2(Z) and

Fricke involution
(

0 −1
p 0

)
with genus zero. In the case p = 1, one has Γ

+
0 (p) =

SL2(Z). If Φ is the set of primes p for which Γ
+
0 (p) has genus zero, then (see [4])

Φ = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71}.

For each p ∈ Φ, we give an explicit formula for the action of the Ramanujan’s theta-
operator on Γ

+
0 (p): if f is a weight k meromorphic form on Γ

+
0 (p), then θ( f ) =

( f̃ + k f E2 + kpE2(pz))/24 and f̃ is a weight k + 2 meromorphic modular form on

Γ
+
0 (p). In Section 3, we find an explicit formula for f̃ in terms of the values of a

certain sequence of modular functions (see Theorem 3.2). As a consequence, we
obtain recurrence relations for Fourier coefficients of modular forms on these groups

(see Theorem 3.1). Finally, we mention that two recent and forthcoming papers [1, 3]
consider similar problems with respect to Hecke subgroups of SL2(Z).

2 Universal Recurrence Relations for Fourier Coefficients of a
Hauptmodul

Let H be the complex upper half plane. Let Γ0 be a Fuchsian group of the first kind

of genus zero. Let r be the unique positive real number such that (Γ0)∞ · {±1} =

{±
(

1 r
0 1

)m | m ∈ Z}. Let j0 be a Hauptmodul for Γ0. As a Hauptmodul for Γ0,
j0(z) has a Fourier expansion at ∞ in the form

j0(z) =
1

qr

+

∞∑

n=0

a(n)qn
r (qr = e2πiz/r).

Let Γ be a subgroup of Γ0 of finite index of genus zero. Let PΓ be the set of all cusps
of Γ and H∗

= H ∪ PΓ. For each cusp s ∈ PΓ, take σ ∈ SL2(R) such that σ∞ = s.

Then there exists a unique positive real number hs such that

σ−1
Γsσ · {±1} = {±

(
1 hs

0 1

)m | m ∈ Z}.
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For convenience we write h for h∞. Let j be the Hauptmodul for Γ whose Fourier
expansion at ∞ is of the form

j(z) =
1

qh

+

∞∑

n=1

a j(n)qn
h (qh = e2πiz/h).

For each m ∈ N, there exists a modular function jm for Γ which is holomorphic on
H∗ − Γ∞ and has Fourier expansion at ∞ in the form

jm(z) =
1

qm
h

+

∞∑

n=1

cm(n)qn
h.

Indeed, jm is a polynomial in j with coefficients in Z[a j(1), a j(2), . . . , a j(m − 1)].
Since jm(z) is holomorphic at s ∈ PΓ − Γ∞, it has a Fourier expansion at s in the

form

jm(σz) =

∞∑

n=0

αnqn
hs
.

The constant term α0 = jm(s) is independent of the choice of σ.

For the purposes of the following lemma, let F(z) be any meromorphic modular
form for Γ of weight 2. We define the action of σ =

(
a b
c d

)
by

(F|2σ)(z) = (det σ) · (cz + d)−2 · F(σz).

Then F(z) has a Fourier expansion at each cusp s ∈ PΓ as follows

(F|2σ)(z) =

∑

n≥N0

anqn
hs
.

We consider

ω := F(z)dz

as a differential on Γ\H∗ using the canonical quotient map π : H∗ → Γ\H∗. Let 1/eτ

be the cardinality of ±Γτ/{±1} for each τ ∈ H.

Lemma 2.1 We have

(i) Resπ(s) ω =
hs

2πi
a0 for s ∈ PΓ and

(ii) Resπ(τ ) ω = eτ Resτ F(z) for τ ∈ H.

Proof By simple calculation we obtain the assertion.

For every integer n > 1, define a polynomial

Fn−1(x1, . . . , xn−1) ∈ Q[x1, . . . , xn−1]
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by

∑

m1,...,mn−1≥0

m1+2m2+···+(n−1)mn−1=n

(−1)m1+···+mn−1 · (m1 + · · · + mn−1 − 1)!

m1! . . . mn−1!
· xm1

1 · · · x
mn−1

n−1 .

The first few polynomials Fn are

F1(x1) =
1

2
x2

1,

F2(x1, x2) = −1

3
x3

1 + x1 · x2,

F3(x1, x2, x3) = x1 · x3 − x2
1 · x2 +

1

2
x2

2.

Let j0(z) have a Fourier expansion at ∞ (as a modular function for Γ) as follows

j0(z) =

∞∑

n=−l

b(n)qn
h.

Here we take l =
h
r
∈ N. We then have a(n) = b(nl) and b(n) = 0 if l ∤ n.

For any modular function f for Γ whose Fourier expansion at a cusp s is of the

form

f (σz) =

∑

n=ns

a f (s, n)qn
hs

with a f (s, ns) 6= 0,

we call ns the order of vanishing of f at s and denote it by ords f . Moreover, ordτ g

denotes the standard order of vanishing of g at the point τ ∈ H when g is a mero-
morphic function on H (throughout).

Theorem 2.2 We have that for n ≥ 2,

b(n − l) = Fn−1(b(1 − l), . . . , b(n − 1 − l))

− 1

n

∑ ′
ords j0 · jn(s) − 1

n

∑

τ∈Γ\H

eτ · ordτ j0 · jn(τ )

and that

b(1 − l) = −
∑′

ords j0 · j1(s) −
∑

τ∈Γ\H

eτ · ordτ j0 · j1(τ ).

Here the
∑ ′

means we sum over representatives s of the cusps of Γ not including the cusp

at ∞.
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Proof For m ∈ N let Gm = (h · jm(z) · d j0(z)

dz
)/(2πi j0(z)) and ωm = Gm(z)dz. Then

ωm is a 1-form on Γ\H∗. We calculate the residue of ωm at each point π(τ )(τ ∈ H∗).
First we consider cusps s ∈ PΓ.

Case 1 s = ∞. Since Gm(z) = higher terms in q−h − e(m) + higher terms in qh

(we are defining e(m) in (1) so that the following residue calculation holds), we have

Resπ(∞) ωm =
−h

2πi
· e(m).

Case 2 s ∈ PΓ − Γ∞. Since jm(z) is holomorphic at s and

(
h

d j0(σz)

dz

)
/(2πi j0(σz)) = h · ords j0

hs

+ higher terms in qhs
,

we obtain

(Gm|2σ)(z) =

(
h · jm(σz) · d j0(σz)

dz

)
/(2πi j0(σz))

= h · ords j0

hs

· jm(s) + higher terms in qhs
.

This implies

Resπ(s) ωm =
h

2πi
· ords j0 · jm(s).

Case 3 τ ∈ H. j0 is holomorphic on H and jm(z) is holomorphic on H. These
imply

Resτ Gm(z) =
h

2πi
· Resτ

d j0(z)

dz

j0(z)
jm(z) =

h

2πi
· ordτ j0 · jm(τ ).

Consequently the residue theorem
(∑

τ∈Γ\H∗ Resπ(τ ) ωm = 0
)

shows

e(m) =

∑′
ords j0 · jm(s) +

∑

τ∈Γ\H

eτ · ordτ j0 · jm(τ ).

Here the
∑ ′

means we sum over representatives s of the cusps of Γ not including the
cusp at ∞. On the other hand, consider J0(qh) :=

∑∞
n=−l b(n)qn

h as a meromorphic
function in a neighborhood of qh = 0. Arguing as in [2, Propositon 2.1], we have

that the e(n) are the qh-series coefficients of the logarithmic derivative of J0(qh):

(1)
qh J ′0(qh)

J0(qh)
= −l −

∞∑

n=1

e(n)qn
h with e(n) ∈ C.

Hence we obtain

∑

n≥−l

nb(n)qn
h =

(
−l −

∞∑

n=1

e(n)qn
h

)( ∑

n≥−l

b(n)qn
h

)
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which implies

e(1) = −b(1 − l)

and

e(n) + e(n − 1)b(1 − l) + · · · + e(1)b(n − l − 1) + nb(n − l) = 0 (n ≥ 2).

Let σk be the elementary symmetric function in x1, . . . , xn and sk be the power func-
tion in these variables, That is, σ1 = x1 + · · ·+ xn, σ2 = x1x2 + · · ·+ xn−1xn, . . . , σn =

x1x2 · · · xn and sk = xk
1 + · · · + xk

n.

Consider the fact (see [7]) that

sn − sn−1σ1 + · · · + (−1)n−1s1σn−1 + (−1)nnσn = 0.

By evaluating these identities at xk = q(k, n), where the q(k, n) are the roots of the
polynomial xn + b(1 − l)xn−1 + · · · + b(n − l), we obtain

e(n) = n·
∑

m1,...,mn≥0
m1+2m2+···+nmn=n

(−1)m1+···+mn · (m1 + · · · + mn − 1)!

m1! · · ·mn!
·b(1−l)m1 · · · b(n−l)mn

because (see [7])

si = i ·
∑

m1,...,mn≥0
m1+2m2+···+nmn=i

(−1)m2+m4+··· (m1 + · · · + mn − 1)!

m1! · · ·mn!
· σm1

1 · · ·σmn

n .

Therefore we obtain the assertion.

Example 2.3 Let j(z) be the canonical Hauptmodul for Γ1(8). In [6] we see

j(z) =
1

q
+ 3 · q + 2 · q2 + q3 − 2 · q4 − 4 · q5 − 4 · q6 + 0 · q7 + 6 · q8 + · · · .

Then we have

j1(z) = j(z)

j2(z) = j(z)2 − 6

j3(z) = j(z)3 − 9 · j(z) − 6

j4(z) = j(z)4 − 12 · j(z)2 − 8 · j(z) + 14

j5(z) = j(z)5 − 15 · j(z)3 − 10 · j(z)2 + 40 · j(z) + 100

...
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Table 1: The values of j(z) at all inequivalent cusps of Γ1(8)

cusp s ∞ 0 1
4

1
2

1
3

3
8

j(s) ∞ 1 + 2
√

2 −1 −3 1 − 2
√

2 −2

ords j0(z) −1 −1 1 1 0 0

Let Γ0 be the group generated by Γ1(8) and a Fricke involution
(

0 −1/(2
√

2)

2
√

2 0

)
.

By simple calculation we know that

j0(z) :=
j(z)2 + 4 j(z) + 3

j(z) − 2
√

2 − 1

is a Hauptmodul for Γ0. In this case we have l = 1. By easy calculation we obtain
Table 1. Then by Theorem 2.2 and Table 1, we have a(0) = 5 + 2

√
2 and

a(n − 1) = Fn−1(a(0), a(1), . . . , a(n − 2)) +
1

n
( jn(0) − jn(

1

2
) − jn(

1

4
)) (n > 1)

which implies

j0(z) =
1

q
+ (5 + 2

√
2) + (19 + 12

√
2) · q + (56 + 44

√
2) · q2

+ (167 + 160
√

2) · q3 + (612 + 356
√

2) · q4 + · · · .

3 The Divisor of a Modular Form on Γ
+
0 (p)

In this section we agree that p is a prime number contained in

Φ = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71}

and Γ
+
0 (p) is the group generated by a Hecke subgroup Γ0(p) of SL2(Z) and Fricke

involution
(

0 −1
p 0

)
. We let H∗

= H∪PΓ
+

0
(p) and t+

p be the canonical Hauptmodul for
Γ

+
0 (p). Then t+

p has the Fourier expansion at ∞ in the form

t+
p (z) =

1

q
+

∑

n≥1

anqn.

Let

E2(z) = 1 − 24

∞∑

n=1

σ1(n)qn.
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be the Eisentein series, where σ1(n) =
∑

d|n d. We define Ramanujan’s theta-operator
by:

θ
( ∞∑

n=n0

a(n)qn
)

:=

∞∑

n=n0

na(n)qn.

If f is a weight k meromorphic modular form on Γ
+
0 (p), then θ( f ) − (kE2(z) +

kpE2(pz)) f (z))/24 is a weight k + 2 meromorphic modular form on Γ
+
0 (p). This

follows from the transformation formula for E2:

E2(γz) = (cz + d)2E2(z) − 6ci

π
(cz + d), for γ =

(
a b
c d

)
∈ SL2(Z).

Let jm be the modular function for Γ
+
0 (p) which is holomorphic on H∗ − Γ

+
0 (p)∞

and has the Fourier expansion at ∞ in the form

jm(z) =
1

qm
+ cm(1)q + cm(2)q2 + · · · for each m ∈ N.

Then jm is a polynomial in t+
p .

For each integer n > 1, define a polynomial Hn(x1, . . . , xn) ∈ Q[x1, . . . , xn] by

∑

m1,...,mn−1≥0

m1+2m2+···+(n−1)mn−1=n

(−1)m1+···+mn−1 · (m1 + · · · + mn−1 − 1)!

m1! · · ·mn−1!
· xm1

1 · · · x
mn−1

n−1

− 1

n
· xn · σ1(n) − p

n
· xn · σ1

( n

p

)
.

Here σ1

(
n
p

)
is zero if n 6≡ 0 mod p. Let 1/eτ be the cardinality of Γ

+
0 (p)τ/{±1}.

Theorem 3.1 For any weight k meromorphic modular form f on Γ
+
0 (p) which has

Fourier expansion at ∞
f (z) = qh +

∑

n≥h+1

a f (n)qn

we have

a f (h + 1) = −
∑

τ∈Γ
+

0
(p)\H

eτ · ordτ f · j1(τ ).

Furthermore, for each integer n ≥ 2,

a f (h + n) = Hn(a f (h + 1), . . . , a f (h + n − 1), k) − 1

n

∑

τ∈Γ
+

0
(p)\H

eτ · ordτ f · jn(τ ).

Proof For each m ∈ N let Mm(z) = jm(z) · (θ( f )/ f − (kE2(z) + kpE2(pz))/24) and
ωm = Mm(z)dz. Then ωm is a 1-form on Γ

+
0 (p)\H∗.
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We calculate the residue of ωm at each point π(τ ) for τ ∈ H∗. As in [2, Proposi-
tion 2.1], we have

(2)
θ( f )

f
= h −

∞∑

n=1

v(n)qn with v(n) ∈ C.

Then Mm(z) = higher terms in q−1−v(m)+k
∑

d|m d+ pk
∑

p|m,d| m

p

d+ higher terms

in q. Hence we have

Resπ(∞) Mm(z)dz =
1

2πi
· (kσ1(m) + pkσ1(m/p) − v(m)).

For each τ ∈ H, we observe

Resτ Mm(z) = Resτ
θ( f )

f
jm(z) =

1

2πi
· ordτ f · jm(τ )

because E2(z), E2(pz) and jm(z) are holomorphic on H. Hence we have

Resπ(τ ) Mm(z)dz =
eτ

2πi
· ordτ f · jm(τ ).

Now by the residue theorem we obtain

(3) v(m) =

∑

τ∈Γ
+

0
(p)\H

eτ · ordτ f · jm(τ ) + kσ1(m) + pkσ1(m/p).

On the other hand, we obtain that

a f (1 + h) = −v(1),

and for each integer n ≥ 2

na f (h + n) + v(n) = n ·
∑

m1,...,mn−1≥0

m1+2m2+···+(n−1)mn−1=n

(−1)m1+···+mn−1 · (m1 + · · · + mn−1 − 1)!

m1! · · ·mn−1!
·

· a f (h + 1)m1 · · · a f (h + n − 1)mn−1

by the recurrence (of the usual complete symmetric functions and sum) which is
used in the proof of Theorem 2.2. By combining these relations with (3) we obtain
the assertion.

Let f be a weight k meromorphic modular form on Γ
+
0 (p) and define two func-

tions

Hτ (z) := 1 +

∞∑

n=1

eτ · jn(τ ) · qn(z, τ ∈ H)

and

fθ(z) :=
k(p + 1)

24
− ord∞ f +

∑

τ∈Γ
+

0
(p)\H

ordτ f · (Hτ (z) − 1).

Then we obtain the following theorem
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Theorem 3.2 For a weight k meromorphic modular form f on Γ
+
0 (p), we have

(i) Hτ (z) and fθ(z) are weight 2 meromorphic modular forms on Γ
+
0 (p).

(ii) θ( f ) =
(
− fθ + k

24
E2(z) + kp

24
E2(pz)

)
f (z).

Proof For a fixed τ ∈ H let h(z) be a modular form of weight zero on Γ
+
0 (p) such

that ord∞ h(z) = 1, ordτ h(z) = −1 and ordµ h(z) = 0 for all µ ∈ H − Γ
+
0 (p)τ . By

replacing f by h(z) in (2) and (3) we obtain θ(h(z))/h(z) = Hτ (z). Hence Hτ (z) is a
weight 2 meromorphic modular form on Γ

+
0 (p). From (2) and (3) we see that

θ( f )

f
− k

24
E2(z) − kp

24
E2(pz) = − fθ.

This proves the assertion (ii) and the rest of assertion (i).
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