SAMELSON PRODUCTS IN p-REGULAR SO(2n) AND ITS HOMOTOPY NORMALITY

DAISUKE KISHIMOTO
Department of Mathematics, Kyoto University, Kyoto, 606-8502, Japan e-mail: kishi@math.kyoto-u.ac.jp
and MITSUNOBU TSUTAYA
Faculty of Mathematics, Kyushu University, Fukuoka, 819-0395, Japan e-mail: tsutaya@math.kyushu-u.ac.jp

(Received 14 July 2015; revised 6 January 2016; accepted 2 June 2016; first published online 7 February 2017)

Abstract

A Lie group is called p-regular if it has the p-local homotopy type of a product of spheres. (Non)triviality of the Samelson products of the inclusions of the factor spheres into p-regular $\mathrm{SO}(2 n)_{(p)}$ is determined, which completes the list of (non)triviality of such Samelson products in p-regular simple Lie groups. As an application, we determine the homotopy normality of the inclusion $\operatorname{SO}(2 n-1) \rightarrow$ $\mathrm{SO}(2 n)$ in the sense of James at any prime p.

2010 Mathematics Subject Classification. 55Q15.

1. Introduction and statement of the results. Let G be a compact connected Lie group. By the classical result of Hopf, it is well known that there is a rational homotopy equivalence

$$
G \simeq_{(0)} S^{2 n_{1}-1} \times \cdots \times S^{2 n_{\ell}-1}
$$

where $n_{1} \leq \cdots \leq n_{\ell}$. The sequence $n_{1} \leq \cdots \leq n_{\ell}$ is called the type of G. Here is the list of the types of simple Lie groups.

$\mathrm{SU}(n)$	$2,3, \ldots, n$	G_{2}	2,6
$\mathrm{SO}(2 n+1)$	$2,4, \ldots, 2 n$	$\mathrm{~F}_{4}$	$2,6,8,12$
$\mathrm{Sp}(n)$	$2,4, \ldots, 2 n$	E_{6}	$2,5,6,8,9,12$
$\mathrm{SO}(2 n)$	$2,4, \ldots, 2 n-2, n$	E_{7}	$2,6,8,10,12,14,18$
		E_{8}	$2,8,12,14,18,20,24,30$

Serre generalizes the above rational homotopy equivalence to a p-local homotopy equivalence such that when G is semi-simple and $G_{(p)}$ is simply connected, there is a p-local homotopy equivalence

$$
\begin{equation*}
G \simeq_{(p)} S^{2 n_{1}-1} \times \cdots \times S^{2 n_{\ell}-1} \tag{1}
\end{equation*}
$$

if and only if $p \geq n_{\ell}$, in which case G is called p-regular. In this paper, we are interested in the standard multiplicative structure of the p-localization $G_{(p)}$ when G is p-regular, and then we assume that G is a simple Lie group in the above table and is p-regular
throughout this section. Recall that for a homotopy associative H -space X with inverse and maps $\alpha: A \rightarrow X, \beta: B \rightarrow X$, the correspondence

$$
A \wedge B \rightarrow X, \quad(x, y) \mapsto \alpha(x) \beta(y) \alpha(x)^{-1} \beta(y)^{-1}
$$

is called the Samelson product of α, β in X and is denoted by $\langle\alpha, \beta\rangle$. One easily sees that in investigating the multiplicative structure of $G_{(p)}$, the Samelson products $\left\langle\epsilon_{i}, \epsilon_{j}\right\rangle$ play the fundamental role as in [9], where ϵ_{i} is the inclusion $S^{2 n_{i}-1} \rightarrow S_{(p)}^{2 n_{1}-1} \times \cdots \times S_{(p)}^{2 n_{\ell}-1} \simeq$ $G_{(p)}$ into the i th factor. So, it is our task to determine (non)triviality of these Samelson products. In this direction, Bott [2] studied the order of a certain class of Samelson products in $\mathrm{SU}(n)$ and $\mathrm{Sp}(n)$, for example.

We here make a remark on the choice of ϵ_{i} which depends on the p-local homotopy equivalence (1). Recall from [14, Theorem 13.4] that

$$
\begin{equation*}
\pi_{*}\left(S_{(p)}^{2 m-1}\right)=0 \quad \text { for } 2 m-1<*<2 m+2 p-4 . \tag{2}
\end{equation*}
$$

Then, we see that $\pi_{2 n_{i}-1}\left(G_{(p)}\right)$ is a free $\mathbb{Z}_{(p)}$-module for all i, and so $\pi_{2 n_{i}-1}\left(G_{(p)}\right) \cong \mathbb{Z}_{(p)}$ for all i and $G \neq \mathrm{SO}(2 n)$ since the entries of the type are distinct for $G \neq \mathrm{SO}(2 n)$ as in the above table. Hence, for $G \neq \mathrm{SO}(2 n)$, we may choose any generator of $\pi_{2 n_{i}-1}\left(G_{(p)}\right) \cong \mathbb{Z}_{(p)}$ as ϵ_{i}. For $G=\mathrm{SO}(2 n)$, we will make an explicit choice of ϵ_{i} below.

We first consider the Samelson products $\left\langle\epsilon_{i}, \epsilon_{j}\right\rangle$ in $G_{(p)}$ when G is the classical group except for $\mathrm{SO}(2 n)$.

Theorem 1.1. Let G be the p-regular classical group except for $\operatorname{SO}(2 n)$, and let ϵ_{i} be a generator of $\pi_{2 n_{i}-1}\left(G_{(p)}\right) \cong \mathbb{Z}_{(p)}$ for the type $\left\{n_{1}, \ldots, n_{\ell}\right\}$ of G. Then,

$$
\left\langle\epsilon_{i}, \epsilon_{j}\right\rangle \neq 0 \text { if and only if } n_{i}+n_{j}>p
$$

Proof. If $G=\mathrm{SU}(n), \mathrm{Sp}(n)$, non-triviality of the Samelson products follows from the result of Bott [2] and triviality follows from the fact that $\pi_{2 *}\left(G_{(p)}\right)=0$ for $*<p$ which is deduced from (2). Since there is a homotopy equivalence as loop spaces $\operatorname{Sp}(n)_{(p)} \simeq \operatorname{SO}(2 n+1)_{(p)}$ due to Friedlander [3], the case of $\operatorname{SO}(2 n+1)_{(p)}$ is the same as $\mathrm{Sp}(n)_{(p)}$.

We next consider the Samelson products $\left\langle\epsilon_{i}, \epsilon_{j}\right\rangle$ in $G_{(p)}$ when G is the exceptional Lie group. Some of these Samelson products are calculated in $[\mathbf{5 , 9}]$, and (non)triviality of all these Samelson products is determined in [6] as follows.

Theorem 1.2 ([6]). Let G be a p-regular compact connected exceptional simple Lie group, and let ϵ_{i} be a generator of $\pi_{2 n_{i}-1}\left(G_{(p)}\right) \cong \mathbb{Z}_{(p)}$ for the type $\left\{n_{1}, \ldots, n_{\ell}\right\}$ of G. Then,

$$
\left\langle\epsilon_{i}, \epsilon_{j}\right\rangle \neq 0 \quad \text { if and only if } \quad n_{i}+n_{j}=n_{k}+p-1 \text { for some } k
$$

Thus, the only remaining case is $\mathrm{SO}(2 n)$. The purpose of this paper is to show that a sufficient condition for non-triviality of the Samelson products $\left\langle\epsilon_{i}, \epsilon_{j}\right\rangle$ in $G_{(p)}$ (Lemma $2.1)$ used in $[\mathbf{4 - 6}, \mathbf{1 0}]$ is actually a necessary and sufficient condition, and to apply it to determination of (non)triviality of all the Samelson products $\left\langle\epsilon_{i}, \epsilon_{j}\right\rangle$ in $\mathrm{SO}(2 n)_{(p)}$. The difficulty of this case is caused by the middle dimensional sphere $S_{(p)}^{2 n-1}$ in $\mathrm{SO}(2 n)_{(p)}$ which vanishes by the inclusion $\mathrm{SO}(2 n) \rightarrow \mathrm{SO}(2 n+1)$. We choose the maps ϵ_{i}. Let ϵ_{i}
be the composite

$$
S^{4 i-1} \rightarrow \mathrm{SO}(2 n-1)_{(p)} \xrightarrow{\mathrm{incl}} \mathrm{SO}(2 n)_{(p)},
$$

for $i=1, \ldots, n-1$, where the first arrow is a generator of $\pi_{4 i-1}\left(\mathrm{SO}(2 n-1)_{(p)}\right) \cong \mathbb{Z}_{(p)}$. Let $\theta: S^{2 n-1} \rightarrow \mathrm{SO}(2 n)_{(p)}$ be the map corresponding to the adjoint of the fibre inclusion of the canonical homotopy fibre sequence

$$
S^{2 n} \rightarrow B \mathrm{SO}(2 n) \rightarrow B \mathrm{SO}(2 n+1)
$$

There are only two results on Samelson products in $\operatorname{SO}(2 n)$ involving θ : Mahowald [12] showed that the Samelson product $\langle\theta, \theta\rangle \in \pi_{4 n-2}(\mathrm{SO}(2 n))$ has order $(2 n-1)!/ 8$ or $(2 n-1)!/ 4$ according as n is even or odd. Hamanaka and Kono [4] showed that the Samelson product $\left\langle\epsilon_{\frac{p-1}{2}}, \theta\right\rangle \in \pi_{4 n-2}\left(\mathrm{SO}(2 n)_{(p)}\right)$ is non-trivial when $p \leq 2 n-1$. Our main result determines (non)triviality of all Samelson products of ϵ_{i} and θ in p-regular $\mathrm{SO}(2 n)$.

Theorem 1.3. Let ϵ_{i}, θ be the above maps into $\mathrm{SO}(2 n)_{(p)}$ for p-regular $\mathrm{SO}(2 n)$. All non-trivial Samelson products of ϵ_{i}, θ in $\mathrm{SO}(2 n)_{(p)}$ are

$$
\left\langle\epsilon_{i}, \epsilon_{j}\right\rangle \quad \text { for } \quad 2 i+2 j>p \quad \text { and } \quad\left\langle\epsilon_{n-1}, \theta\right\rangle=\left\langle\theta, \epsilon_{n-1}\right\rangle,\langle\theta, \theta\rangle \quad \text { for } \quad p=2 n-1 .
$$

Recall that an H-map $f: X \rightarrow Y$ between homotopy associative H-spaces with inverse is homotopy normal in the sense of James [7] if the Samelson product $\left\langle f, 1_{Y}\right\rangle$ can be compressed to X through f up to homotopy. This is a generalization of the inclusion of a normal subgroup. James proved that $\mathrm{O}(n)$ is not homotopy normal in $\mathrm{O}(n+1)$ when $n \geq 2$ using the mod 2 cohomology. His proof implies that the 2-localization $\mathrm{SO}(n)_{(2)}$ is not homotopy normal in $\mathrm{SO}(n+1)_{(2)}$ when $n \geq 2$. As an application of Theorem 1.3 we will prove:

THEOREM 1.4. The inclusion $\iota_{(p)}: \mathrm{SO}(2 n-1)_{(p)} \rightarrow \mathrm{SO}(2 n)_{(p)}$ is homotopy normal if and only if $p>2 n-1$.

For $p>2 n-1$, we can prove the following stronger result.
Theorem 1.5. For $p>2 n-1$, the map $\iota_{(p)} \cdot \theta: \operatorname{SO}(2 n-1)_{(p)} \times S_{(p)}^{2 n-1} \rightarrow \mathrm{SO}(2 n)_{(p)}$ is an H-equivalence, where $S_{(p)}^{2 n-1}$ is a homotopy associative and homotopy commutative H-space.

Note that we do not need to assume that $\operatorname{SO}(2 n-1)$ is p-regular in the last two theorems.
2. Detecting Samelson products by the Steenrod operations. Let G be a p-torsion free connected finite loop space of type $n_{1} \leq \cdots \leq n_{\ell}$ throughout this section where the type of a finite loop space is similarly defined. We set notation for G. Since G is p-torsion free, we have

$$
H^{*}\left(B G_{(p)} ; \mathbb{Z} / p\right)=\mathbb{Z} / p\left[x_{1}, \ldots, x_{\ell}\right], \quad\left|x_{i}\right|=2 n_{i}
$$

We fix this presentation of the $\bmod p$ co-homology of $B G_{(p)}$. Note that

$$
H^{*}\left(G_{(p)} ; \mathbb{Z} / p\right)=\Lambda\left(e_{1}, \ldots, e_{\ell}\right)
$$

for the suspension e_{i} of x_{i}. For each i, we take a non-trivial element $\epsilon_{i} \in \pi_{2 n_{i}-1}\left(G_{(p)}\right)$ which is not divisible by non-units in $\mathbb{Z}_{(p)}$ such that

$$
\left(\Sigma \epsilon_{i}\right)^{*} \circ \iota_{1}^{*}\left(x_{j}\right)=\left\{\begin{array}{ll}
h_{i} \Sigma u_{2 n_{i}-1} & i=j \tag{3}\\
0 & i \neq j
\end{array},\right.
$$

for some $h_{i} \in \mathbb{Z}_{(p)}$, where $\iota_{1}: \Sigma G_{(p)} \rightarrow B G_{(p)}$ is the canonical map and u_{k} is a generator of $H^{k}\left(S^{k} ; \mathbb{Z}_{(p)}\right) \cong \mathbb{Z}_{(p)}$. We note that $G_{(p)}$ is a product of spheres if and only if h_{1}, \ldots, h_{ℓ} are units. The following lemma is first used in [10] and is the main tool in the proof of Theorem 1.2 given in [6]. Here, we reproduce the proof for completeness of the present paper.

Lemma 2.1 ([10, Proof of Theorem 1.1]). Suppose that h_{i} and h_{j} are units in $\mathbb{Z}_{(p) .}$. If $\mathcal{P}^{1} x_{k}$ is decomposable and includes the term $c x_{i} x_{j}(c \neq 0)$, the Samelson product $\left\langle\epsilon_{i}, \epsilon_{j}\right\rangle$ is non-trivial.

Proof. Suppose $\left\langle\epsilon_{i}, \epsilon_{j}\right\rangle=0$ under the assumption that $\mathcal{P}^{1} x_{k}$ includes the term $c x_{i} x_{j}$ $(c \neq 0)$. Let $\bar{\epsilon}_{m}: S^{2 n_{m}} \rightarrow B G_{(p)}$ be the adjoint of ϵ_{m}. Then, by (3), we have $\bar{\epsilon}_{m}^{*}\left(x_{m}\right)=$ $h_{m} u_{2 m}$. By adjointness of Samelson products and Whitehead products, the Whitehead product $\left[\bar{\epsilon}_{i}, \bar{\epsilon}_{j}\right]$ in $B G_{(p)}$ is trivial, and then there is a map $\mu: S^{2 n_{i}} \times S^{2 n_{j}} \rightarrow B G_{(p)}$ satisfying $\left.\mu\right|_{S^{2 n_{i}} \vee S^{2 n_{j}}}=\bar{\epsilon}_{i} \vee \bar{\epsilon}_{j}$. So we get $\mu^{*}\left(x_{i}\right)=h_{i}\left(u_{2 n_{i}} \otimes 1\right)$ and $\mu^{*}\left(x_{j}\right)=h_{j}\left(1 \otimes u_{2 n_{i}}\right)$, and hence

$$
c h_{i} h_{j} u_{2 n_{i}} \otimes u_{2 n_{j}}=\mu^{*}\left(c x_{i} x_{j}\right)=\mu^{*}\left(\mathcal{P}^{1} x_{k}\right)=\mathcal{P}^{1} \mu^{*}\left(x_{k}\right)=0,
$$

where the second and the last equality follows from the decomposability of $\mathcal{P}^{1} x_{k}$ and triviality of \mathcal{P}^{1} on $H^{*}\left(S^{2 n_{i}} \times S^{2 n_{j}} ; \mathbb{Z} / p\right)$, respectively. This is a contradiction to $c h_{i} h_{j} \neq 0$.

In this lemma, the assumption on the decomposability of $\mathcal{P}^{1} x_{k}$ cannot be removed. Here is a counterexample.

Example 2.2. We consider $\mathrm{SU}(4)$ at the prime 3 . Recall that $H^{*}(B \mathrm{SU}(4) ; \mathbb{Z} / 3)=$ $\mathbb{Z} / 3\left[c_{2}, c_{3}, c_{4}\right]$, where c_{i} denotes the i th universal Chern class. By inspection, we have

$$
\mathcal{P}^{1} c_{2}=c_{2}^{2}+c_{4} .
$$

For a degree reason, the inclusion $\epsilon_{1}: S^{3}=\mathrm{SU}(2) \rightarrow \mathrm{SU}(4)$ satisfies $\left(\Sigma \epsilon_{1}\right)^{*} \circ \iota_{1}^{*}\left(c_{2}\right)=$ Σu_{3} as in (3), but the Samelson product $\left\langle\epsilon_{1}, \epsilon_{1}\right\rangle$ is trivial since $\mathrm{SU}(2)$ commutes up to homotopy with itself in $\mathrm{SU}(4)$.

We elaborate Lemma 2.1 to prove that its converse is true when $G_{(p)}$ is a product of spheres. The following lemma is useful to detect the non-triviality of a Samelson product when $G_{(p)}$ (not necessarily p-regular) is decomposed into a product of a sphere and some space. The proof is independent of Lemma 2.1.

Lemma 2.3. For integers $1 \leq i, j, k \leq \ell$, suppose that there is a map $\pi_{k}: G_{(p)} \rightarrow$ $S_{(p)}^{2 n_{k}-1}$ such that $\pi_{k}^{*}\left(u_{2 n_{k}-1}\right)=e_{k}, h_{i}$ and h_{j} are units in $\mathbb{Z}_{(p)}$, and $n_{i}+n_{j}=n_{k}+p-1$. Then, $\pi_{k} \circ\left\langle\epsilon_{i}, \epsilon_{j}\right\rangle \neq 0$ if and only if $\mathcal{P}^{1} x_{k}$ includes the term $c x_{i} x_{j}$ with $c \neq 0$.

Proof. We prove both implications simultaneously. We may suppose that $h_{i}=h_{j}=$ $h_{k}=1$. Let $P^{2} G_{(p)}$ be the projective plane of $G_{(p)}$, i.e. there is a cofibre sequence

$$
\begin{equation*}
\Sigma G_{(p)} \wedge G_{(p)} \xrightarrow{H} \Sigma G_{(p)} \xrightarrow{\rho_{1}} P^{2} G_{(p)}, \tag{4}
\end{equation*}
$$

where H is the Hopf construction. By [11, Section 4], the canonical map $\iota_{1}: \Sigma G_{(p)} \rightarrow$ $B G$ extends to a map $\iota_{2}: P^{2} G \rightarrow B G$, i.e. $\iota_{2} \circ \rho_{1}=\iota_{1}$. Put $\bar{x}_{i}=\iota_{2}^{*}\left(x_{i}\right)$. Then, we have $\rho_{1}^{*}\left(\bar{x}_{i}\right)=\Sigma e_{i}$. By [11, Section 3], we also have $\delta_{1}^{*}\left(\Sigma^{2} e_{i} \otimes e_{j}\right)=\bar{x}_{i} \bar{x}_{j}$ for the connecting $\operatorname{map} \delta_{1}: P^{2} G_{(p)} \rightarrow \Sigma^{2} G_{(p)} \wedge G_{(p)}$ of the cofibre sequence (4). Consider the map

$$
\Phi=\Sigma\left\langle\epsilon_{i}, \epsilon_{j}\right\rangle-\left[\Sigma \epsilon_{i}, \Sigma \epsilon_{j}\right]: \Sigma S^{2 n_{i}-1} \wedge S^{2 n_{j}-1} \rightarrow \Sigma G_{(p)}
$$

where $[-,-]$ denotes the Whitehead product. Note that Φ induces a trivial map on mod p cohomology since $H^{*}\left(G_{(p)} ; \mathbb{Z} / p\right)$ is primitively generated and the Whitehead product becomes trivial after suspending. The map Φ is connected with the Hopf construction H through the map constructed by Morisugi [13, Theorem 5.1] such that there is a $\operatorname{map} \xi: S^{2 n_{i}-1} \wedge S^{2 n_{j}-1} \rightarrow G_{(p)} \wedge G_{(p)}$ satisfying

$$
\Phi=H \circ \Sigma \xi \quad \text { and } \quad \xi^{*}\left(e_{s} \otimes e_{t}\right)= \begin{cases}u_{2 n_{i}-1} \otimes u_{2 n_{j}-1} & (s, t)=(i, j),(j, i) \\ 0 & \text { otherwise } .\end{cases}
$$

Then, we get a homotopy commutative diagram

whose rows are homotopy cofibrations, implying that

$$
\rho_{2}^{*} \circ \lambda_{1}^{*}\left(\bar{x}_{k}\right)=\Sigma e_{k} \quad \text { and } \quad \lambda_{1}^{*}\left(\bar{x}_{s} \bar{x}_{t}\right)= \begin{cases}\delta_{2}^{*}\left(\Sigma^{2} u_{2 n_{i}-1} \otimes u_{2 n_{j}-1}\right) & (s, t)=(i, j),(j, i) \tag{5}\\ 0 & \text { otherwise },\end{cases}
$$

where $\delta_{2}^{*}\left(\Sigma^{2} u_{2 n_{i}-1} \otimes u_{2 n_{j}-1}\right)$ is non-trivial element since Φ is trivial on $\bmod p$ cohomology. We have

$$
\pi_{k} \circ\left\langle\epsilon_{i}, \epsilon_{j}\right\rangle=c \alpha_{1} \quad(c \in \mathbb{Z} / p)
$$

where α_{1} is a generator of $\pi_{2 n_{k}+2 p-4}\left(S^{2 n_{k}-1}\right) \cong \mathbb{Z} / p$ [14, Proposition 13.6]. Note that $\pi_{k} \circ\left\langle\epsilon_{i}, \epsilon_{j}\right\rangle$ is nontrivial if and only if $c \neq 0$. Then, for the map

$$
\widehat{\Phi}=c \Sigma \alpha_{1}-\left[\Sigma \pi_{k} \circ \epsilon_{i}, \Sigma \pi_{k} \circ \epsilon_{j}\right]: \Sigma S^{2 n_{i}-1} \wedge S^{2 n_{j}-1} \rightarrow \Sigma S_{(p)}^{2 n_{k}-1}
$$

there is a homotopy commutative diagram

whose rows are homotopy cofibrations. Since α_{1} is detected by the Steenrod operation \mathcal{P}^{1} and $\Sigma \hat{\Phi}=c \Sigma^{2} \alpha_{1}$, the $\bmod p$ cohomology of $C_{\hat{\Phi}}$ is given by

$$
\widetilde{H}^{*}\left(C_{\widehat{\Phi}} ; \mathbb{Z} / p\right)=\left\langle a_{2 n_{k}}, a_{2 n_{i}+2 n_{j}}\right\rangle, \quad \mathcal{P}^{1} a_{2 n_{k}}=c a_{2 n_{i}+2 n_{j}}
$$

such that $\delta_{3}^{*}\left(\Sigma^{2} u_{2 n_{i}-1} \otimes u_{2 n_{j}-1}\right)=a_{2 n_{i}+2 n_{j}}$ and $\rho_{3}^{*}\left(a_{2 n_{k}}\right)=\Sigma u_{2 n_{k}-1}$. Then, by (5), we get $\rho_{2}^{*} \circ \lambda_{2}^{*}\left(a_{2 n_{k}}\right)=\Sigma e_{k}=\rho_{2}^{*} \circ \lambda_{1}^{*}\left(\bar{x}_{k}\right)$. By the homotopy cofibre sequence $\Sigma G_{(p)} \xrightarrow{\rho_{2}} C_{\Phi} \xrightarrow{\delta_{2}}$ $\Sigma^{2} S^{2 n_{i}-1} \wedge S^{2 n_{j}-1}$, one can see that the inclusion $\rho_{2}: \Sigma G_{(p)} \rightarrow C_{\Phi}$ is injective in the mod p cohomology of dimension $2 n_{k}$, and then we obtain $\lambda_{2}^{*}\left(a_{2 n_{k}}\right)=\lambda_{1}^{*}\left(\bar{x}_{k}\right)$. Now consider an element $\mathcal{P}^{1} x_{k}$ in $H^{*}\left(B G_{(p)} ; \mathbb{Z} / p\right)$, which is expressed as a polynomial of x_{1}, \ldots, x_{ℓ}. Denote the coefficient of the term $x_{i} x_{j}$ in $\mathcal{P}^{1} x_{k}$ by d. Then, we have

$$
\lambda_{1}^{*}\left(\mathcal{P}^{1} \bar{x}_{k}\right)=d \delta_{2}^{*}\left(\Sigma^{2} u_{2 n_{i}-1} \otimes u_{2 n_{j}-1}\right)+\text { a linear combination of } \lambda_{1}^{*}\left(\bar{x}_{1}\right), \ldots, \lambda_{1}^{*}\left(\bar{x}_{\ell}\right)
$$

by (5). On the other hand, we also have

$$
\lambda_{1}^{*}\left(\mathcal{P}^{1} \bar{x}_{k}\right)=\mathcal{P}^{1} \lambda_{1}^{*}\left(\bar{x}_{k}\right)=\mathcal{P}^{1} \lambda_{2}^{*}\left(a_{2 n_{k}}\right)=c \delta_{2}^{*}\left(\Sigma^{2} u_{2 n_{i}-1} \otimes u_{2 n_{j}-1}\right)
$$

Since $\delta_{2}^{*}\left(\Sigma^{2} u_{2 n_{i}-1} \otimes u_{2 n_{j}-1}\right)$ is non-trivial and is not contained in the span of $\lambda_{1}^{*}\left(\bar{x}_{1}\right), \ldots, \lambda_{1}^{*}\left(\bar{x}_{\ell}\right)$, we have $c=d$. Thus, $\mathcal{P}^{1} x_{k}$ must include the term $c x_{i} x_{j}$. Therefore, we have established the lemma.

Theorem 2.4. Suppose $p \geq n_{\ell}-n_{1}+2$. Then, the Samelson product $\left\langle\epsilon_{i}, \epsilon_{j}\right\rangle$ in $G_{(p)}$ is non-trivial if and only if for some $k, \mathcal{P}^{1} x_{k}$ includes the term $c x_{i} x_{j}$ with $c \neq 0$.

Proof. By the result of Kumpel [8], we can choose each ϵ_{i} such as $h_{i}=1$. Then, the composite

$$
S^{2 n_{1}-1} \times \cdots \times S^{2 n_{\ell}-1} \xrightarrow{\epsilon_{1} \times \cdots \times \epsilon_{\ell}} G_{(p)} \times \cdots \times G_{(p)} \rightarrow G_{(p)}
$$

induces a p-local homotopy equivalence where the second map is the multiplication, and we identify $G_{(p)}$ with $S_{(p)}^{2 n_{1}-1} \times \cdots \times S_{(p)}^{2 n_{e}-1}$ by this p-local homotopy equivalence. Under this assumption, h_{i} is a unit of $\mathbb{Z}_{(p)}$ for any i. By this decomposition, we can find a projection $\pi_{k}: G_{(p)} \rightarrow S_{(p)}^{2 n_{i}-1}$ such that $\pi_{k}^{*} u_{2 n_{i}-1}=e_{i}$ for each i. By Lemma 2.3, if $\mathcal{P}^{1} x_{k}$ includes the term $c x_{i} x_{j}$ with $c \neq 0$, then the Samelson product $\left\langle\epsilon_{i}, \epsilon_{j}\right\rangle$ in $G_{(p)}$ is non-trivial. As in [9], if $\left\langle\epsilon_{i}, \epsilon_{j}\right\rangle$ is non-trivial, then for some $1 \leq k \leq \ell$ we have $n_{k}+p-1=n_{i}+n_{j}$ and $\pi_{k} \circ\left\langle\epsilon_{i}, \epsilon_{j}\right\rangle$ is non-trivial. Again by Lemma 2.3, this implies that $\mathcal{P}^{1} x_{k}$ includes the term $c x_{i} x_{j}$ with $c \neq 0$.
3. Proofs of the results. Let p be an odd prime and $p_{i}, e_{n} \in H^{*}\left(B S O(2 n)_{(p)} ; \mathbb{Z} / p\right)$ be the $\bmod p$ reduction of the i th universal Pontrjagin class for $i=1, \ldots, n-1$ and the Euler class, respectively. Then,

$$
H^{*}\left(B \mathrm{SO}(2 n)_{(p)} ; \mathbb{Z} / p\right)=\mathbb{Z} / p\left[p_{1}, \ldots, p_{n-1}, e_{n}\right]
$$

and the maps ϵ_{i} and θ correspond to p_{i} and e_{n}, respectively, in the sense of (3). In particular, we take ϵ_{i} so that $h_{i}=1$ for $i \leq \frac{p-1}{2}$ and θ so that $(\Sigma \theta)^{*} \circ \iota_{1}^{*}\left(e_{n}\right)=\Sigma u_{2 n-1}$ and $(\Sigma \theta)^{*} \circ \iota_{1}^{*}\left(p_{i}\right)=0$ for any i.

Lemma 3.1. The following statements hold.
(1) The element $\mathcal{P}^{1} p_{i}$ does not include the quadratic term $\operatorname{ce}_{n} p_{j}(c \neq 0)$ for any i and j.
(2) If $p=2 n-1$, the element $\mathcal{P}^{1} p_{1}$ is decomposable and includes the term $(-1)^{\frac{p-1}{2}} e_{n}^{2}$.

Proof. Since $p_{i} \in H^{*}\left(B \mathrm{SO}(2 n)_{(p)} ; \mathbb{Z} / p\right)$ is contained in the image from $H^{*}\left(B \mathrm{SO}(2 n+1)_{(p)} ; \mathbb{Z} / p\right)$, if a quadratic term of $\mathcal{P}^{1} p_{i}$ includes e_{n}, it must be a multiple of e_{n}^{2} and $i=n-\frac{p-1}{2} \geq 1$. Thus, the first statement holds. Recall that for a maximal torus T of $\mathrm{SO}(2 n)$ and the natural map $\iota: B T_{(p)} \rightarrow B \mathrm{SO}(2 n)_{(p)}$, we have

$$
H^{*}\left(B T_{(p)} ; \mathbb{Z} / p\right)=\mathbb{Z} / p\left[t_{1}, \ldots, t_{n}\right], \quad\left|t_{i}\right|=2
$$

such that $\iota^{*}\left(p_{i}\right)$ is the i th elementary symmetric polynomial in $t_{1}^{2}, \ldots, t_{n}^{2}$ and $\iota^{*}\left(e_{n}\right)=$ $t_{1} \cdots t_{n}$. In particular, ι is injective in the $\bmod p$ cohomology. Suppose $p=2 n-1$. We have

$$
\iota^{*}\left(\mathcal{P}^{1} p_{1}\right)=\mathcal{P}^{1}\left(t_{1}^{2}+\cdots+t_{n}^{2}\right)=2\left(\left(t_{1}^{2}\right)^{\frac{p+1}{2}}+\cdots+\left(t_{n}^{2}\right)^{\frac{p+1}{2}}\right)
$$

Then, we obtain

$$
\mathcal{P}^{1} p_{1} \equiv(-1)^{\frac{p-1}{2}} e_{n}^{2} \quad \bmod \left(p_{1}, \ldots, p_{n-1}\right)^{2}
$$

by the Newton formula. Therefore, the second statement holds.
Lemma 3.2. The element $\mathcal{P}^{1} e_{n}$ is decomposable and the following congruence hold:

$$
\mathcal{P}^{1} e_{n} \equiv(-1)^{\frac{p-1}{2} \frac{p-1}{2} e_{n} p_{\frac{p-1}{2}} \quad \bmod \left(p_{1}, \ldots, p_{n-1}\right)^{2} ~}
$$

Proof. We set $\iota: B T_{(p)} \rightarrow B \mathrm{SO}(2 n)_{(p)}$ as in the proof of Lemma 3.1. We have

$$
\iota^{*}\left(\mathcal{P}^{1} e_{n}\right)=\mathcal{P}^{1} \iota^{*}\left(e_{n}\right)=\mathcal{P}^{1}\left(t_{1} \cdots t_{n}\right)=t_{1} \cdots t_{n}\left(\left(t_{1}^{2}\right)^{\frac{p-1}{2}}+\cdots+\left(t_{n}^{2}\right)^{\frac{p-1}{2}}\right)
$$

Then, the proof is completed by the Newton formula.
Proof of Theorem 1.3 Assume $p>2 n-2$. Since the inclusion $\mathrm{SO}(2 n-1)_{(p)} \rightarrow$ $\mathrm{SO}(2 n)_{(p)}$ has a left homotopy inverse, it follows from Theorem 1.1 that the Samelson product $\left\langle\epsilon_{i}, \epsilon_{j}\right\rangle$ is non-trivial if and only if $2 i+2 j>p$. To detect the Samelson products $\left\langle\epsilon_{i}, \theta\right\rangle=\left\langle\theta, \epsilon_{i}\right\rangle$ and $\langle\theta, \theta\rangle$ by Theorem 2.4 , we need the information about the quadratic terms of $\mathcal{P}^{1} p_{i}$ and $\mathcal{P}^{1} e_{n}$ including e_{n}. Now these informations have already been obtained in Lemma 3.1 and 3.2. Therefore, the proof of Theorem 1.3 is completed.

Lemma 3.2 implies non-triviality of the Samelson product $\left\langle\epsilon_{\frac{p-1}{2}}, \theta\right\rangle$ not only when $\mathrm{SO}(2 n)$ is p-regular but also when $\mathrm{SO}(2 n)$ is not p-regular as follows.

Corollary 3.3. The Samelson product $\left\langle\epsilon_{\frac{p-1}{2}}, \theta\right\rangle=\left\langle\theta, \epsilon_{\frac{p-1}{2}}\right\rangle$ in $\pi_{2 n+2 p-4}\left(\mathrm{SO}(2 n)_{(p)}\right)$ is non-trivial for any odd prime p. More precisely, the image of $\left\langle\epsilon_{\frac{p-1}{2}}, \theta\right\rangle$ under the homomorphism induced by the projection $\mathrm{SO}(2 n)_{(p)} \rightarrow S_{(p)}^{2 n-1}$ generates $\pi_{2 n+2 p-4}\left(S_{(p)}^{2 n-1}\right) \cong$ \mathbb{Z} / p.

Proof. Note that, for the projection $\pi: \operatorname{SO}(2 n)_{(p)} \rightarrow S_{(p)}^{2 n-1}$, we have $(\Sigma \pi)^{*} \Sigma u_{2 n-1}=$ $\iota_{1}^{*}\left(e_{n}\right)$. Then, the corollary follows from Lemma 2.3 and 3.2.

We next prove Theorem 1.4. Let X be a homotopy associative H -space with inverse. For maps $\alpha: A \rightarrow X$ and $\beta: B \rightarrow X$, let $\{\alpha, \beta\}$ denote the composite

$$
A \times B \xrightarrow{\alpha \times \beta} X \times X \rightarrow X,
$$

where the last arrow is the commutator map. Then, for the projection $q: A \times B \rightarrow$ $A \wedge B$, we have $q^{*}(\langle\alpha, \beta\rangle)=\{\alpha, \beta\}$ and the induced map $q^{*}:[A \wedge B, X] \rightarrow[A \times B, X]$ is injective. In particular, $\langle\alpha, \beta\rangle$ is trivial if and only if so is $\{\alpha, \beta\}$.

Lemma 3.4 (cf. [9, Proposition 1]). For maps $\varphi_{i}: A_{i} \rightarrow X(i=1,2)$ and $\beta: B \rightarrow$ X, if $\left\{\varphi_{2}, \beta\right\}$ is trivial, then

$$
\left\{\varphi_{1} \cdot \varphi_{2}, \beta\right\}=\left\{\varphi_{1}, \beta\right\} \circ \rho_{2},
$$

where $\rho_{2}: A_{1} \times A_{2} \times B \rightarrow A_{1} \times B$ denotes the projection.
Proof. In the group of the homotopy set $\left[A_{1} \times A_{2} \times B, X\right]$, we have

$$
\left\{\varphi_{1} \cdot \varphi_{2}, \beta\right\}=\left[\left(\varphi_{1} \circ \pi_{1}\right) \cdot\left(\varphi_{2} \circ \pi_{2}\right), \beta \circ \pi\right],
$$

where $\pi_{i}: A_{1} \times A_{2} \times B \rightarrow A_{i}$ for $i=1,2$ and $\pi: A_{1} \times A_{2} \times B \rightarrow B$ denote the projections and $[-,-]$ means the commutator. In a group G, we have

$$
[x y, z]=x[y, z] x^{-1}[x, z],
$$

for $x, y, z \in G$. Then, the proof is completed by $\left[\varphi_{1} \circ \pi_{1}, \beta \circ \pi\right]=\left\{\varphi_{1}, \beta\right\} \circ \rho_{2}$.
Proof of Theorem 1.4 Let $\iota: \mathrm{SO}(2 n-1) \rightarrow \mathrm{SO}(2 n)$ denote the inclusion and $\pi: \mathrm{SO}(2 n) \rightarrow S^{2 n-1}$ the projection. For $p=2$ and $n \geq 2$, as remarked in Section 1, the 2-localization $\iota_{(2)}: \mathrm{SO}(2 n-1)_{(2)} \rightarrow \mathrm{SO}(2 n)_{(2)}$ is not homotopy normal by the argument by James [7, Proof of Theorem (3.1)].

If $2<p \leq 2 n-1$, then the Samelson product

$$
\pi_{(p)} \circ\left\langle\iota_{(p)}, 1_{\mathrm{SO}(2 n)_{(p)}}\right\rangle \circ\left(\epsilon_{\frac{p-1}{2}} \wedge \theta\right)=\pi_{(p)} \circ\left\langle\epsilon_{\frac{p-1}{2}}, \theta\right\rangle
$$

is non-trivial in $\pi_{2 n+2 p-4}\left(S_{(p)}^{2 n-1}\right)$ by Corollary 3.3. This implies that $\iota_{(p)}$ is not homotopy normal.

Suppose $p>2 n-1$. Note that the identity map of $\mathrm{SO}(2 n)_{(p)}$ is identified with the map $\iota_{(p)} \cdot \theta: \mathrm{SO}(2 n-1)_{(p)} \times S_{(p)}^{2 n-1} \rightarrow \mathrm{SO}(2 n)_{(p)}$. Then, it follows from Lemma 3.4 that $\iota_{(p)}$ is homotopy normal if the Samelson product $\left\langle\iota_{(p)}, \theta\right\rangle$ is trivial. Note also that $\iota_{(p)}$ is identified with the map $\epsilon_{1} \cdots \epsilon_{n-1}: S_{(p)}^{3} \times \cdots \times S_{(p)}^{4 n-5} \rightarrow \mathrm{SO}(2 n-1)_{(p)}$. Then, it is sufficient to show that $\left\{\epsilon_{1} \cdots \epsilon_{n-1}, \theta\right\}$ is trivial. By Lemma 3.4, this is equivalent to that $\left\langle\epsilon_{i}, \theta\right\rangle$ are trivial for all i. Thus, $\iota_{(p)}$ is homotopy normal by Theorem 1.3.

We finally prove Theorem 1.5. Let X, Y be homotopy associative H -spaces with inverse. Recall that the H-deviation $d(f)$ of a map $f: X \rightarrow Y$ is defined by

$$
d(f): X \wedge X \rightarrow Y, \quad\left(x_{1}, x_{2}\right) \mapsto f\left(x_{1} x_{2}\right) f\left(x_{2}\right)^{-1} f\left(x_{1}\right)^{-1}
$$

By definition, f is an H-map if and only if the H -deviation $d(f)$ is trivial.

Lemma 3.5. Let X_{1}, X_{2}, Y be homotopy associative H-spaces with inverse, and $\lambda_{i}: X_{i} \rightarrow Y$ be H-maps for $i=1$, 2. Then, the map $\lambda_{1} \cdot \lambda_{2}: X_{1} \times X_{2} \rightarrow Y$ is an H-map if and only if the Samelson product $\left\langle\lambda_{1}, \lambda_{2}\right\rangle$ is trivial.

Proof. For $x_{i}, x_{i}^{\prime} \in X_{i}(i=1,2)$, we have

$$
\begin{aligned}
d\left(\lambda_{1} \cdot \lambda_{2}\right)\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right) & \simeq \lambda_{1}\left(x_{1} x_{1}^{\prime}\right) \lambda_{2}\left(x_{2} x_{2}^{\prime}\right) \lambda_{2}\left(x_{2}^{\prime}\right)^{-1} \lambda_{1}\left(x_{1}^{\prime}\right)^{-1} \lambda_{2}\left(x_{2}\right)^{-1} \lambda_{1}\left(x_{1}\right)^{-1} \\
& \simeq \lambda_{1}\left(x_{1}\right)\left(\left\langle\lambda_{1}, \lambda_{2}\right\rangle\left(x_{1}^{\prime}, x_{2}\right)\right) \lambda_{1}\left(x_{1}\right)^{-1}
\end{aligned}
$$

since λ_{1}, λ_{2} are H-maps. Then, since λ_{1} is an H-map, $d\left(\lambda_{1} \cdot \lambda_{2}\right)$ is trivial if and only if so is $\left\langle\lambda_{1}, \lambda_{2}\right\rangle$, completing the proof.

Proof of Theorem 1.5. Obviously, the map $\iota_{(p)} \cdot \theta$ is a homotopy equivalence, so it remains to show that it is an H-map. By definition, we have $d(\theta) \in \pi_{4 n-2}\left(\mathrm{SO}(2 n)_{(p)}\right)$, and then by $[\mathbf{1 4}$, Proposition 13.6] and $p>2 n-1, d(\theta)$ is trivial, implying that θ is an H-map. The inclusion $\iota_{(p)}$ is clearly an H-map, and in the proof of Theorem 1.4 the Samelson product $\left\langle\iota_{(p)}, \theta\right\rangle$ is shown to be trivial for $p>2 n-1$. Thus, by Lemma 3.5, $\iota_{(p)} \cdot \theta$ is an H-map. Note that we have not fixed an H -structure of $S_{(p)}^{2 n-1}$. There is a one to one correspondence between H -structures on $S_{(p)}^{2 n-1}$ and $\pi_{4 n-2}\left(S_{(p)}^{2 n-1}\right)$. By [14, Proposition 13.6] and $p>2 n-1, \pi_{4 n-2}\left(S_{(p)}^{2 n-1}\right)=0$, so there is only one H -structure on $S_{(p)}^{2 n-1}$. By [1], $S_{(p)}^{2 n-1}$ has a homotopy associative and homotopy commutative H structure. Then, $S_{(p)}^{2 n-1}$ must be a homotopy associative and homotopy commutative H -space.

Acknowledgements. D.K. is supported by JSPS KAKENHI (No. 25400087).

REFERENCES

1. J. F. Adams, The sphere, considered as an H-space mod p, Quart. J. Math. 12 (1961), 52-60.
2. R. Bott, A note on the Samelson products in the classical groups, Comment. Math. Helv. 34 (1960), 249-256.
3. E. M. Friedlander, Exceptional isogenies and the classifying spaces of simple Lie groups, Ann. Math. 101 (1975), 510-520.
4. H. Hamanaka and A. Kono, A note on the Samelson products in $\pi_{*}(\mathrm{SO}(2 n))$ and the group [SO(2n), SO(2n)], Topology Appl. 154(3) (2007), 567-572.
5. H. Hamanaka and A. Kono, A note on Samelson products and mod p cohomology of classifying spaces of the exceptional Lie groups, Topology Appl. 157(2) (2010), 393-400.
6. S. Hasui, D. Kishimoto and A. Ohsita, Samelson products in p-regular exceptional Lie groups, Topology Appl. 178(1) (2014), 17-29.
7. I. M. James, On homotopy theory of classical groups, Ann. Acad. Brasil. Cienc. 39 (1967), 39-44.
8. P. G. Kumpel, Mod p-equivalences of $\bmod p H$-spaces, Quart. J. Math. 23 (1972), 173-178.
9. S. Kaji and D. Kishimoto, Homotopy nilpotency in p-regular loop spaces, Math. Z. 264(1) (2010), 209-224.
10. A. Kono and H. Ōshima, Commutativity of the group of self homotopy classes of Lie groups, Bull. London Math. Soc. 36 (2004), 37-52.
11. J. Lin, H-spaces with finiteness conditions, in Handbook of algebraic topology (James I. M., Editors) (Elsevier, North-Holland, 1995), 1095-1141, Chapter 22.
12. M. Mahowald, A Samelson product in $\mathrm{SO}(2 n)$, Bol. Soc. Math. Mexicana 10 (1965), 80-83.
13. K. Morisugi, Hopf construction, Samelson products and suspension maps, Contemporary Math. 239 (1999), 225-238.
14. H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studies, vol. 49 (Princeton University Press, Princeton N.J., 1962).
