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Abstract

We introduce a new method for computing triply graded link homology, which is

particularly well adapted to torus links. Our main application is to the (n, n)-torus

links, for which we give an exact answer for all n. In several cases, our computations

verify conjectures of Gorsky et al. relating homology of torus links with Hilbert schemes.
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1. Introduction

Triply graded Khovanov–Rozansky homology is a link homology theory which was originally

introduced by Khovanov and Rozansky [KR08] using matrix factorizations, but was soon after

reinterpreted by Khovanov [Kho07] using the Hochschild homology of Soergel bimodules. It has

generated a great deal of interest, admitting spectral sequences which converge to various sln-link

homology theories [Ras15], and having deep connections to the representation theory of Hecke

algebras in type A.

Khovanov’s construction begins with a braid β on n strands. To such a braid,

Rouquier [Rou04] has associated a complex (up to homotopy) F (β) of Soergel bimodules,

which are certain graded bimodules [Soe07] over the polynomial ring R = Rn = Q[x1, . . . , xn]

in n variables. More precisely, Rouquier associates a complex to each braid generator (e.g.

over- or under-crossing). From this, one obtains a complex for any braid diagram by taking

the tensor product of these elementary complexes. Rouquier proves that two braid diagrams for

the same braid yield complexes which are canonically isomorphic in the homotopy category of

R-bimodules.

Khovanov [Kho07] observed that taking the closure β of a braid β should correspond to

identifying the right and left actions of R, or rather the higher derived functors of this operation.

These higher derived functors are known as Hochschild homology and are denoted by HHi(R;M),

whereM is an (R,R) bimodule; whenR is understood we write HHi(M) = HHi(R;M). Khovanov

proved that the complex obtained by applying HHi to each Soergel bimodule in a Rouquier

complex F (β) yields a complex of vector spaces which (up to homotopy) depends only on the

closure β, and thus the homology groups of this complex are link invariants of β. The three

gradings come from the Hochschild homological grading, the usual homological grading, and the

internal grading of the Soergel bimodules.

It is well known (see [Kho07] and references therein) that if R = Rn is a polynomial ring

and M is an R-bimodule, then there is an isomorphism between Hochschild homology group

HHi(R;M), and the Hochschild cohomology group HHn−i(R;M). The Hochschild cohomology

groups are the higher derived functors of M 7→ Hom(R,R)(R,M), the space of R-bimodule

maps from the monoidal identity R. For the remainder of this paper, we work exclusively with

Hochschild cohomology.

The Khovanov–Rozansky homology of torus links has deep connections to Hilbert schemes,

rational Cherednik algebras, and refined Chern–Simons theory [GORS14, GN15, GNR16]. At the

moment these connections are purely conjectural, but they suggest that the Khovanov–Rozansky

homologies of torus links are quite interesting objects. Up until now, however, the connection

with other subjects has been difficult to verify, since the computation of Khovanov–Rozansky

homology is quite challenging in practice. In this paper we introduce a new method for computing

Khovanov–Rozansky homology which seems particularly well adapted to compute homologies
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of torus links. In particular, we provide a remarkably simple description of the triply graded

homology of the (n, n) torus links, in Theorem 1.6.1

In § 1.5 we compare our results with the predictions of Gorsky and Negut [GN15] (also

Gorsky, Negut and Rasmussen [GNR16])2 coming from flag Hilbert schemes; in every case we

have checked, they match identically. Previous checks of the connection with Hilbert schemes

have been limited to the cases n = 2, 3, but with our method we are able to verify the predictions

of [GNR16] for n 6 4.

On the other hand, it is difficult to compare our results on (n, n) torus links with the

conjectures of Gorsky et al. [GOR13] since they focus on the case of the (n,m)-torus knots, that

is, when n and m are coprime, and much less is known about the link case. Nonetheless, from

Etingof we learned that the ring of k-quasi-invariants for Sn acting on Q[x1, . . . , xn] (see [ES02]

for a survey) is a representation of the rational Cherednik algebra for sln, and is the correct

replacement for the simple module Lm/n which appears in [GORS14] when m = kn. Thus, the

minimal Hochschild degree part of the Poincaré series of the (n, nk) torus links is expected to

equal the Hilbert series for a certain filtration on the ring of k-quasi-invariants. However, it is

not clear how to filter the ring of quasi-invariants in an appropriate way, so we will not say more

about this connection in this paper.

In Appendix A we include some additional computations. We found that the Poincaré

polynomial of HH0 of the (n, n+1) torus knot is given by the q, t Catalan number for n = 2, 3, 4,

which verifies a conjecture of Gorsky’s [Gor12] for these knots.

Our particular interest in the homology of the (n, n) torus links stems from the fact that

this triply graded vector space parametrizes maps from the identity Soergel bimodule R to

the Rouquier complex associated to the full twist braid FTn. The computation above is used

in forthcoming work of the authors, in which we decompose the Soergel category into its

‘eigencategories’ for the action of FTn, thereby laying the groundwork for the study of the

categorical representation theory of Hecke algebras.

1.1 Motivation from categorical representation theory

It was shown by Khovanov and Thomas [KT07] that Rouquier complexes give a faithful action of

the braid group on the homotopy category of Soergel bimodules. For this reason, the collection

of Rouquier complexes is often referred to as a categorification of the braid group, but this is

somewhat misleading, as this particular action of the braid group is intricately tied to its Hecke

quotient. Soergel [Soe07] proved that Soergel bimodules over Rn categorify the Hecke algebra

H = Hn of the symmetric group Sn. Note that H is linear over the ring Z[Q,Q−1], where Q is

categorified by the grading shift of an R-bimodule;3 for this to work correctly, R is graded so

that deg xi = 2 for all 1 6 i 6 n. Taking the image of a Rouquier complex in this Grothendieck

group yields the familiar quotient map from the braid group (or its group algebra over Z[Q,Q−1])

to the Hecke algebra. However, the fact that Rouquier complexes only reflect the ‘Hecke-type’

1 After the initial appearance of this paper on the arXiv, our technique was utilized by the second author [Hog17]
to compute the homologies of the (n, nk), and (n, nk ± 1) torus links. Soon afterward, Mellit [Mel17] related our
technique with his work on the rational shuffle conjecture, yielding a computation the homology of the (n,m)
torus knot, meaning that n,m are coprime (with a slight adaptation of Mellit’s idea, it is possible to remove the
coprime condition).
2 The work [GNR16] was still in preparation when the present paper was originally posted, and these results were
initially communicated to us privately by Eugene Gorsky.
3 Works of Soergel and those who followed him often work over the ring Z[v, v−1] instead; to compare conventions,
use the equality Q = v−1.

166

https://doi.org/10.1112/S0010437X18007571 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007571


On the computation of torus link homology

actions of the braid group is an advantage, not a limitation, as one can lift results from the

representation theory of Hecke algebras to study the homotopy category of Soergel bimodules.

This paper can be understood and appreciated without a foray into categorical representation

theory, but we provide some brief motivation here.

The Hecke algebra admits a sign representation sgnn, on which each of its standard generators

(the images of the overcrossings) acts by −Q−1. The projection from an arbitrary Hecke algebra

representation to its isotypic component for the sign representation is an idempotent often

known as a (generalized) Jones–Wenzl projector, after the corresponding idempotent in the

Temperley–Lieb algebra [Jon01, Wen87]. This projection can not be defined in H itself, requiring

certain scalars to be inverted (like Q+Q−1, for example). It can be defined in the base change

H⊗Z[Q,Q−1] Z((Q)).

In [Hog18], the second author constructs an infinite complex of Soergel bimodules Pn
which categorifies this Jones–Wenzl projector. In this paper we study a finite complex Kn which

categorifies the ‘renormalized’ Jones–Wenzl projector, a rescaling of the projector which is

actually defined within H before base change. The fact that the Jones–Wenzl idempotent

projects to the sign representation is categorified by the fact that the Rouquier complex for

an overcrossing, acting by tensor product on Kn, will simply act by a homological and a

grading shift.

The inductive construction of Kn itself also is motivated by the representation theory of

the Hecke algebra. When sgnn is induced from Hn to Hn+1, it splits into two irreducible

representations, sgnn+1 and another representation V . This splitting is actually the eigenspace

decomposition for the Young–Jucys–Murphy operator yn+1, a certain element of the braid group

on n + 1 strands which commutes with any braid on the first n strands. If γ is the eigenvalue

corresponding to V , then yn+1 − γ kills V , and thus is equal to the projection to sgnn+1 up to

scalar. If kn ∈ Hn ⊂ Hn+1 denotes the renormalized projection onto the sign representation,

then by the previous discussion there is a linear relation

kn+1 = knyn+1 − γkn.

On the categorical level, this relation becomes an exact triangle. More precisely, there is a

grading shift Γ and a chain map ϕ : ΓKn → KnF (yn+1) such that Kn+1 := Cone(ϕ) categorifies

the renormalized projection to sgnn+1. Recall that F (yn+1) indicates the Rouquier complex

associated to yn+1. It turns out that γ = Q2, and Γ = Q2 is simply the functor which shifts

internal degree up by 2. This chain map is constructed in [Hog18], and we recall the basics

in § 2.6.

This is an example of categorical diagonalization, a concept which is developed in forthcoming

work.4 The chain map ϕ mentioned above is an eigenmap; in our categorification of various

concepts in linear algebra, the cones of eigenmaps are used to categorify the operators (A− λI)

for an eigenvalue λ of an operator A. This makes the computation of HH0 of a braid

particularly significant, because it describes the space of maps from the (shifted) monoidal

identity, which are potential eigenmaps. In fact, the main result of this paper is used as a lemma

in [EH18] to prove that the full twist in the braid group has enough eigenmaps and therefore

is categorically diagonalizable. We use this to construct categorical projections to arbitrary

irreducible representations of the Hecke algebra, not just the sign representation.

4 Preprints are now available [EH17, EH18].
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In this paper, our focus is on computation: the existence of Kn is known by other means,
and we use the recursive definition of Kn to compute link invariants. This strategy is outlined
below.

1.2 Our method, decategorified
The Hecke algebra Hn is isomorphic to a quotient of the group algebra Z[Q,Q−1][Brn] where we
identify

The Jones–Ocneanu trace Tr : Hn → Z[Q±, A±] is such that Tr(β) is the Homfly polynomial
of the braid closure β̂. Using the skein relation above, and the formula which defines Tr, one can
in principal compute the Homfly polynomial for any link. In (1.2) we introduce another skein-like
relation which is often useful.

There are elements kn ∈ Hn defined inductively by k1 = 1 ∈ Hn, and

(1.1)

The element kn is a renormalized projection onto the sign representation: knσ
±
i =−Q∓kn = σ±i kn

for all 1 6 i 6 n− 1, where σi denotes the elementary braid generator. This implies that

(1.2)

The Jones–Ocneanu trace Tr(kn) can easily be computed inductively from this equation using the
invariance of Tr under the Markov moves together with the fact that kn absorbs crossings.
We can use kn to compute link invariants as follows.

– Assume β is given. Choose a crossing x in β. Place k1 somewhere in the vicinity of this
crossing. Since k1 is the identity element of H1, this does not change the element β ∈ Hn.

– Apply the relation (1.2); one of the terms will involve the switched crossing x−1, and in the
other term k1 will have grown to k2, which now has the potential to absorb some crossings.

– Repeat. That is, assume that β is a braid with a k` inserted somewhere. After manipulating
the diagram, if necessary, arrange the picture so that (1.2) can be applied. In one of the
resulting terms, some crossings will be switched, which in good situations will simplify β.
In the other term, k` grows in size and can now absorb more crossings, also resulting in a
simpler diagram.

If one is lucky, this process can be repeated until the trace Tr of the resulting terms is trivial to
compute. Torus links seem especially well adapted to the application of this trick.

Example 1.1. Let x = σ1 ∈ H2 denote the crossing. The trefoil is the (2, 3) torus knot, and can
be presented as the closure of x3. Equation (1.2) says that x = −Qk2 + Q2x−1. Multiplying by
x gives

x2 = k2 +Q2.
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Multiplying by x again gives

x3 = (−Q−1)k2 +Q2x.

The trace of k2 is easy to compute, and the trace of x is the Homfly polynomial of the unknot,
up to normalization. Thus, the trace of x3 is expressed in terms of known quantities. We can
continue in this manner, obtaining

x2m = (Q2(1−m) +Q2(2−m) + · · ·+Q2(m−1))k2 +Q2m

and

x2m+1 = (−Q−1)(Q2(1−m) +Q2(2−m) + · · ·+Q2(m−1))k2 +Q2mx,

from which the Homfly polynomials of the (2,m) torus links are readily computed.

1.3 Our method, categorified
In this paper we categorify the method outlined in the previous section. As alluded to earlier in
this introduction, the element kn ∈Hn gets replaced by a finite complex Kn of Soergel bimodules,
and the relations (1.1) and (1.2) become exact triangles. More precisely, there is a chain map
constructed in [Hog18] from Q2Kn → KnF (yn+1), and Kn+1 is defined to be the mapping cone
on this map. The fact that kn absorbs crossings becomes the fact that KnF (σi) ' TQ−1Kn '
F (σi)Kn. Here and throughout we use T and Q to denote the functors which increase homological
degree and bimodule degree respectively. We have, for instance, an equivalence

(1.3)

where the notation A ' (B → C) means that there is an exact triangle

C → A → B → T−1C.

The distinguished triangle (1.3) will be essentially the only weapon we need to attack our
computations. Suppose F (β) is a Rouquier complex that we would like to study. Iterated
application of the above exact triangle results in a certain kind of filtered complex (a convolution
of a twisted complex; see below) which is homotopy equivalent to F (β), and whose subquotients
are tensor products of Rouquier complexes and some K`. In favorable situations these have
Hochschild cohomologies which are easy to compute. There then arises the problem of
recovering the homology of the total complex from the homology of its constituents. For certain
computations, we will see that this very serious complication is nullified by an equally serious
miracle: the miracle of parity.

We first explain what sorts of filtered complexes we will use. Suppose Ai (i ∈ I) is a family
of complexes, indexed by a finite partially ordered set I. Suppose dij : Aj → Ai are a collection
of linear maps such that:

– dij increases homological degree by 1;

– dii is the given differential on Ai;

– dij = 0 unless i > j;

– the total differential dtot :=
∑

i>j dij satisfies d2
tot = 0.
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Then C := (
⊕

i∈IAi, dtot) is a chain complex, which we call a convolution of the Ai. More
precisely, this is the convolution of a one-sided twisted complex; see [BK90] for more details
on this construction in homological algebra. We will also say that C =

⊕
iAi with twisted

differential, to indicate that the differential is not merely the sum of the differentials on the Ai.
The differential on this complex may be quite complicated, possibly sending terms in homological
degree m inside Aj to terms in homological degree m + 1 inside many different Ai, but it does
respect the order on I. Thus, convolutions can also be thought of as certain kinds of filtered
complexes, whose subquotients are the Ai.

Note that any exact triangle

A2 → C → A1 → T−1A2

gives rise to an equivalence C ' (A1⊕A2) with twisted differential. Iterated mapping cones can
be regarded as convolutions in a similar way.

Our main application is to the Rouquier complex FTn associated to the full twist braids. In
§ 3 we iterate the equivalence (1.3), obtaining a convolution description of F (yn), the Rouquier
complex associated to the Young–Jucys–Murphy braid. Using the relation FTn = FTn−1F (yn),
we then prove the following.

Theorem 1.2. We have FTn '
⊕

v q
kDv with twisted differential. The sum is over sequences

v ∈ {0, 1}n such that vn = 1. Here, q = Q2 indicates a grading shift, k is the number of zeroes in
v, and Dv is described below. The differential respects the anti-lexicographic order on sequences.

In the antilexicographic order we regard (∗, 1) as larger than (∗, 0), where ∗ denotes any
sequence of zeroes and ones. For each sequence v ∈ {0, 1}n, which we will call a shuffle, there is
a complex which we call Dv. For example, here is D10101101, which occurs (up to shift) in the
expression of FT8:

Inside v, the zeroes indicate which strands are connected to the full twist FTk, and the ones
indicate which are connected to K`, for k + ` = n.

Then, of course, one wants to compute the Hochschild homology of the complexes Dv. Let
us be precise. Given a complex F of Soergel bimodules, let HHi(C) denote the complex obtained
by applying the functor HHi to each bimodule, and let HH(C) = ⊕HHi(C). Let HHH(C) denote
the cohomology of the complex HH(C).

Because Hochschild cohomology of a complex C is unchanged by conjugation C 7→ FCF−1

for any invertible complex F , we can move part of Dv from the bottom to the top, yielding the
complex C ′v:
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Note that FTn = C ′00···0.
For purely combinatorial reasons, we work instead with a similar complex Cv, which is defined

by the same expression as C ′v, but with K` replaced by its reduced version K̂`. Reduced complexes
are discussed in § 4.3. The effect this has on Poincaré polynomials is multiplication by a factor
of (1−Q2).

Let v · w denote the concatenation of two shuffles (sequences of zeroes and ones). For any
shuffle v, we can use our distinguished triangle for Kn to prove the following.

Proposition 1.3. We have HH(Cv·0) ' (HH(C1·v) → Q2 HH(C0·v)).

Next, we can use some relatively easy arguments involving the complex Kn to prove that
HH(Cv·1) is just a direct sum of shifted copies of HH(Cv). For readers familiar with knot theory,
this last statement should be thought of as analogous to the Markov move; it allows us to reduce
the number of strands by 1. Finally, a simple observation (pertaining to reduced complexes)
allows one to replace the computation of HH(C000···0) with HH(C100···0). Combining these three
operations, we obtain a recursive convolution description of any HH(Cv). This is the main result
of § 4.5.

Let us return to the computation of the Hochschild cohomology of the Rouquier complex for
the full twist FTn on n strands.

We are interested in the cohomology HHH(Cv) of the complexes HH(Cv). However, in general,
the cohomology of a convolution of complexes is not the direct sum of the cohomology of the
individual complexes; instead, there is a spectral sequence relating the two. Our final argument
comes from observing a parity miracle! We prove inductively that HHH(Cv) is concentrated in
even homological degrees. This forces every spectral sequence in sight to degenerate at the E1

page, and implies that our convolution description of HH(Cv) gives a direct sum description of
HHH(Cv). See Theorem 4.22 and its proof for further discussion of this parity argument.

Thus, we have a recursive formula for the triply graded cohomologies HHH(Cv), and as a
special case, a formula for HHH(FTn). We discuss this formula in the next section.

Let us pause to point out one of the subtleties we have ignored above. One can conjugate a
complex by a braid and obtain a non-isomorphic complex with the same Hochschild cohomology.
We begin to apply this operation freely in § 4. Above, we have stated that HH(Cv·0) is a
convolution of HH(C0·v) and HH(C1·v), but the same statement does not hold for the original
complexes. Instead, some conjugate of Cv·0 is a convolution of a conjugate of C0·v and a conjugate
of C1·v (conjugating by different braids for each term). For purposes of Hochschild cohomology,
this imprecision is harmless. However, were one to try to actually construct a chain map from R
to Cv using this computation of HHH0(Cv), then one would need to keep track of conjugation
more carefully, which would be rather difficult.

On the other hand, the work done in § 3 describes full twist as a genuine convolution of
complexes Dv, not complexes up to conjugation. This result is not actually needed or used in
the recursive computation of HHH(Cv) which is our main result. We include this auxiliary result
because it can be used to construct chain maps from R to FTn. Our main theorem implies
that the complexes Dv satisfy a parity condition, and therefore our convolution description of
FTn induces a direct sum decompositions on Hochschild cohomology. In particular, any chain
map (up to homotopy) from R to the complex Dv (an element of HHH0(Dv)) can be extended
uniquely (up to homotopy) to a chain map from R to the entire complex FTn. We use this fact
to construct eigenmaps to the full twist in [EH18].

In addition, the convolution description involving Dv from § 3 can be adapted to other torus
links, whereas the results § 4 are fundamentally tied to the case of (n, n)-torus links.
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Remark 1.4. Suppose that one were interested in computing the Hochschild cohomologies of
FT−1

n . One can produce a convolution description of FT−1
n similar to the description of FTn

above, but the parity miracle no longer holds! The corresponding spectral sequence is far from
degenerate, and consequently there are extremely few (non-nulhomotopic) chain maps from R to
FT−1

n . This lack of symmetry between FTn and FT−1
n is an interesting and complicating feature

in categorical representation theory.

1.4 The recursive formula
We will find it convenient to use a non-standard choice of variables for our Poincaré series. We
let t = T 2Q−2, q = Q2, and a = Q−2A, where T denotes the usual homological degree, Q the
bimodule degree (also called internal degree, or quantum degree), and A the Hochschild degree.
For instance, the Poincaré series of the polynomial ring R = Q[x1, . . . , xn] is written 1/(1− q)n,
and the Poincaré series of its Hochschild cohomology is (1 − q)−n(1 + a)n. In general, all our
Poincaré series will be power series in the variables q, a, and t1/2.

Proposition 1.5. There is a unique family of polynomials fv(q, a, t), indexed by integers n > 0
and binary sequences v ∈ {0, 1}n, satisfying f∅ = 1 together with

fv·1(q, a, t) = (t|v| + a)fv, (1.4a)

fv·0(q, a, t) = qf0·v + f1·v. (1.4b)

Here |v| := v1 + · · ·+ vn is the number of ones of v = (v1, . . . , vn) ∈ {0, 1}n.

The following theorem, together with the fact that the fv are rational functions in q, a, t
rather than q, a, t1/2 implies that the parity miracle holds.

Theorem 1.6. The Poincaré series of HHH(Cv) is fv(q, a, t), where Cv are the complexes from
Definition 4.8. In particular, the Hochschild cohomology HHH(FT) is given by fv(q, a, t) for
v = (00 · · · 0). These homologies are all supported in even homological degrees.

These results are restated and proved in § 4.6. The proof of Theorem 1.6 comes from the
convolution description of HH(Cv) discussed in the previous section.

For the reader’s edification, here are the complete power series for HHH(FTn) for n = 1, 2, 3:

f0(q, a, t) =
1 + a

1− q
,

f00(q, a, t) =
1 + a

(1− q)2
(q + t− qt+ a),

f000(q, a, t) =
1 + a

(1− q)3
((t3q2 + q3t2 − 2t2q2 − 2tq3 − 2qt3 + t3 + q3 + tq2 + qt2 + tq)

+ (t2q2 − 2tq2 − 2qt2 + t2 + q2 + tq + t+ q)a+ a2) .

The recursion can be unraveled into the equivalent recursion below, which is more
complicated but faster to implement.

Definition 1.7. For each integer n > 0, we let [n] := {1, . . . , n}. We identify subsets v ⊂ [n]
with binary sequences v ∈ {0, 1}n. For each such v ⊂ [n], we define a rational function fv(q, a, t)
by f∅ = 1, together with the following rules:

f000···0(q, a, t) =
1

1− q
f100···0(q, a, t), (1.5a)
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f11···1(q, a, t) =

n∏
i=1

(ti−1 + a) (n indices), (1.5b)

fv(q, a, t) =
∑
w⊂[k]

Pv,w(a, t)qk−|w|fw(q, a, t), v 6= (0 · · · 0) and v 6= (1 · · · 1). (1.5c)

Here k = n−|v| is the number of zeroes in v. Definition 5.3 contains the description of Pv,w(a, t),
which is a product of n − k factors each of the form (t`+m + a) for various numbers ` and m
depending on the sequences v and w.

The equivalence between these recursions is proven in § 5, which contains various such
numerological considerations. For example, one can show that both rule (1.5a) and (1.5b) are
actually just consequences of rule (1.5c) when applied verbatim, although this is not obvious.

Remark 1.8. In our original version of this manuscript, our convolution argument categorified the
recursive formula of Definition 1.7 rather than Proposition 1.5, thus proving that this complicated
recursion does compute HHH(Cv). Then we discovered the simpler recursion of Proposition 1.5,
drastically simplifying our arguments.

Note that the contribution to higher Hochschild gradings comes only from a factor in rule
(1.5b) and the factor Pv,w(a, t) in rule (1.5c); both of these become explicit monomials in t upon
setting a = 0. Thus, to understand the zeroth Hochschild degree coefficient, i.e. the polynomial
fv(q, 0, t), one use a simplified recursion relation. Using this, we prove the following closed formula
for the power series f00···0(q, 0, t), also known as the Poincaré series of the zeroth Hochschild
cohomology HHH0(FT).

Theorem 1.9. The Hochschild degree zero part of the unreduced triply graded homology of
(n, n) torus links has Poincaré series equal to

Fn(q, t) =
∑
σ

ta(σ)+b(σ)qc(σ),

where the sum is over functions σ : {1, . . . , n} → Z>0, and the integers a(σ), b(σ), c(σ) are
defined by:

(i) a(σ) =
∑

k>0

(|σ−1(k)|
2

)
;

(ii) b(σ) is the number of pairs (i, j) ∈ {1, . . . , n} such that i < j and σ(j) = σ(i) + 1;

(iii) c(σ) =
∑n

i=1 σ(i).

Example 1.10. In case n = 1 we have F1(q, t) = 1 + q + q2 + · · · = 1/(1− q).

Example 1.11. In case n= 2, F2(q, t) is the sum of monomials appearing in the following diagram.

t tq q2 q3 · · ·

q tq2 tq3 q4 · · ·

q2 q3 tq4 tq5 · · ·

q3 q4 q5 tq6 · · ·
...

...
...

...
. . .

After rearranging, this becomes F2(q, t) = t/(1− q) + q/(1− q)2, agreeing with f00(q, 0, t) which
was computed above.
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The proof of this closed formula from Theorem 1.6 is a simple combinatorial argument, and
is found in § 5. Unfortunately, the polynomials Pv,w(q, a, t) are sufficiently complicated so that
we have been unable to produce a closed formula for the higher Hochschild degrees along these
lines.

We conclude with a recursion for the normalized polynomials f̃v(q, a, t) := (1− q)kfv(q, a, t),
where k is the number of zeroes in v. The recursion of Proposition 1.5 immediately gives rise to

f̃v·1(q, a, t) = (t|v| + a)f̃v, (1.6a)

f̃v·0(q, a, t) = qf̃0·v + (1− q)f̃1·v. (1.6b)

Remark 1.12. A clumsy card dealer has a deck of n cards, some face up and some face down.
When the dealer encounters a face down card, he deals it. When the dealer encounters a face up
card, he puts it back on the bottom of the deck, sometimes remembering to flip it face down.
Eventually, the deck is dealt (with probability 1). Every time the dealer deals a card, you, the
player, choose whether to receive 1 silver coin, or a number of dollars equal to the number of
face-up cards in the deck. Then the coefficient of akt` in f̃v(q, a, t) is the number of ways of ending
up with k silver coins and ` dollars, weighted by their probability of occurring. In particular, the
coefficient on an is 1.

Computer experiments suggest the following.

Conjecture 1.13. We have the following symmetry: f̃00···0(q, a, t) = f̃00···0(t, a, q).

This symmetry would follow from a formula of Gorsky, Negut, and Rasmussen, which we
discuss now.

1.5 Flag Hilbert schemes and a magic formula
According to the remarkable work of Gorsky, Negut, and Rasmussen [GN15, GNR16], triply
graded link homology can be extracted from flag Hilbert schemes.5 Roughly, the picture looks like
this: there is a space FHilbn(C2), which parametrizes flags of ideals I1 ⊂ · · · ⊂ In ∈ C[x, y] such
that Ii/Ii−1 is 1-dimensional. Associated to each n-strand braid, Gorsky, Negut, and Rasmussen
conjecture that there exists a line bundle (or sheaf, or complex of sheaves) on FHilbn(C2) whose
space of global sections recovers HHH0(F (β)). The sheaves are meant to be equivariant with
respect to an obvious action of C∗×C∗, and the variables q, t correspond to weights with respect
to this action. The variable a can also be accounted for with more work. A combination of
Atiyah–Bott localization and careful analysis of the flag Hilbert scheme near its torus fixed points
yields a remarkably simple combinatorial formula which, given their conjecture, will describe the
knot homology of positive torus links. Now we state the formulas, and we will make no further
mention of the geometric foundations which motivate them.

Let λ be a Young diagram, drawn in the ‘English style’ as in the following.

5 We warn the reader that this story is related to, but quite different from, other connections between link homology
and algebraic geometry.

174

https://doi.org/10.1112/S0010437X18007571 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007571


On the computation of torus link homology

Suppose a box c is in the ith column and jth row. Here columns and rows are counted left-to-right

and top-to-bottom, starting at zero. To such a box we associated the monomial zc = tiqj .6

To a Young diagram, we let zλ = zλ(q, t) be the product of zc as c ranges over all the boxes of λ.

Note that zλ(q, t) = zλt(t, q), where λt is the transposed partition.

A box in λ is removable if λr c is a Young diagram. Now we discuss boxes, i.e. coordinates

(i, j), which need not be in the given Young diagram λ. We call c /∈ λ an outer corner of λ if

the top left corner of c coincides with the bottom right corner of a removable box in λ. We call

a box c /∈ λ an inner corner of λ if λ ∪ c is a Young diagram. Pictorially, we have the following.

The inner corners are darkly shaded, and the outer corners are lightly shaded. Let In(λ) and

Out(λ) denote the sets of inner and outer corners of λ. If c ∈ In(λ), then we define

fλ,c(q, t) :=

∏
d∈Out(λ)(zc − zd)∏
e∈In(λ)r{c}(zc − ze)

.

It is easy to observe that fλ,c(q, t) = fλt,ct(t, q), where ct is the corresponding transposed inner

corner of λt.

Remark 1.14. Let {x1, . . . , xn} and {y1, . . . , yn+1} be two families of abstract variables. It is not

a hard exercise to show that
n+1∑
i=1

∏
j(yi − xj)∏
k 6=i(yi − yk)

= 1.

Applying this general formula to the definition above, one obtains∑
c∈In(λ)

fλ,c = 1, (1.7)

a fact which has nothing to do with the combinatorics of partitions.

A standard tableau T can be thought of as a sequence of Young diagrams T = (λ1, . . . , λn)

such that λ1 = � and λi+1 r λi = �. Let Sh(T ) = λn denote the shape of T . To each tableau

we set

fT (q, t) :=
n−1∏
i=1

fλi,ci(q, t),

where ci ∈ In(λi) is the box such that λi+1 = λi ∪ ci. Once more, fT (q, t) = fT t(t, q), where T t

is the transposed tableau.

Finally, associated to a Young diagram λ, let gλ(q, a, t) denote the product over all boxes

c ∈ λ of (1 + az−1
c ).

6 In other variables, zc = T 2iQ−2x(c), where x(c) is the content of the box c, which is i− j.
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Conjecture 1.15 (Magic formula). Let Fn,r(q, a, t) denote the Poincaré series of HHH0(FT⊗rn ).
Then

(1− q)nFn,r(q, a, t) =
∑
T

zrSh(T )gSh(T )fT , (1.8)

a sum over all tableaux with n boxes. In particular, the right-hand side is symmetric under
replacing q with t, and thus so is the left-hand side. We remind the reader that zSh(T ) and fT
are functions of q and t, while gSh(T ) is a function of q, a, and t.

When r = 0, the formula yields 1 =
∑

T gSh(λ)(q, a, t)fT (q, t), whose a-degree zero part follows
from (1.7). We have verified the magic formula for r = 1 and for 1 6 n 6 4, using a Mathematica
notebook which is available upon request.

According to the magic formula, the a-degree n part of the Poincaré series of the (n, n) torus
link is supposed to be (1− q)−n times∑

T

zSh(T )z
−1
Sh(T )fT (q, t) = 1.

The factor z−1
Sh(T ) comes from taking the a-degree n part of gSh(T )(q, a, t). This instance of the

magic formula can be proved directly from our recursive description of this series (see
Remark 1.12).

Another consequence of the magic formula concerns the sub-maximal part of the Poincaré
series of full twists.

Conjecture 1.16. The a-degree n− 1 part of the Poincaré series of HHH(FTn) is a geometric
progression

1

(1− q)n
1− (q + t− qt)n

(1− q)(1− t)
=

1

(1− q)n
(1 + (q + t− qt) + · · ·+ (q + t− qt)n−1).

We expect that this is not difficult to prove, but we do not do so here. We have verified this
conjecture up to n = 7 using computer calculations.

In the algorithm to compute f00···0(q, a, t) using (1.5c), one travels from the zero sequence
(00 · · · 0) ∈ {0, 1}n to the sequence ∅ ∈ {0, 1}0 by repeatedly choosing subsets (i.e. smaller
sequences in {0, 1}k) of the previous set of zeroes. Our instinct indicates that such a sequence
of sequences can be thought of as encoding the entries in a Robinson–Shensted row-bumping
algorithm, and can thus be assigned a tableau. The contribution to f00···0(q, a, t) coming from
this sequence of sequences and the contribution to

∑
T zSh(T )gSh(T )fT coming from the tableau

T have many superficial similarities, but no direct relation has yet been found.

1.6 Organization of the paper
In § 2 we provide some background. We describe various elements of the braid group, including
full twists, Young–Jucys–Murphy elements, shuffle braids, and shuffle twists. In § 2.4 we briefly
recall Soergel’s categorification of the Hecke algebra and Rouquier’s categorification of the braid
group. In § 2.5 we define convolutions of complexes, and give the crucial argument involving the
degeneration of a spectral sequence thanks to parity considerations. In § 2.6 we recall the main
result of [Hog18], a complex which categorifies a renormalized Jones–Wenzl projector, and state
its properties. The specifics of the Soergel–Rouquier construction need not concern the reader,
as all we will use in this paper are facts about the braid group and the results of [Hog18].
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In § 3 we find a convolution description of the full twist FTn in terms of certain complexes
Dv associated to v ∈ {0, 1}n.

In § 4 we switch to a Hochschild frame of mind. Since Hochschild cohomology of a complex
is invariant under conjugation by Rouquier complexes of braids, we will allow ourselves to
freely conjugate complexes. In § 4.2 we discuss another result of [Hog18] which is an analog of
the Markov move on braid closures: a relationship between the Hochschild homologies of the
Jones–Wenzl projector on n strands and the projector on n − 1 strands. We also discuss
reduced complexes in § 4.3, finally describing complexes Cv in § 4.4 which may be thought of
as reduced versions of conjugates of Dv. Finally, in §§ 4.5 and 4.6 we state and prove the main
result, which is a convolution description of the Hochschild cohomology of Cv in terms of the
Hochschild cohomologies of smaller Cw, which is an analogue of the recursion of Proposition 1.5.

In § 5 we prove some combinatorial results which justify Theorem 1.9, our closed form solution
for HHH0(FT), and show that the two recursive formulas agree.

In the appendix, we include without proof some computations for other (n,m) torus links.
These were obtained by techniques entirely analogous to the computation for (n, n) torus
links, and many of them have not appeared in the literature before.

1.7 Notation
We collect here some of our notational conventions, for the reader’s convenience. Unfamiliar
concepts will be explained in due course. Soergel bimodules are graded. We denote by (1) the
grading shift, so that M(1)i = M i+1. We let Q = (−1) denote the functor which increases
the degree of each element. Complexes of Soergel bimodules are bigraded. The differentials always
preserve the bimodule degree, and increase homological degree by 1. The shift in homological
degree is denoted by 〈1〉, so that C(a)〈b〉i,j = Ci+a,j+b. We denote by Kb(A) the homotopy
category of finite complexes over an additive category A. Isomorphism in Kb(A), that is, chain
homotopy equivalence, is denoted by '. The existence of a distinguished triangle

A → B → C
δ

→ A〈1〉

will be indicated by writing B ' (C
δ

→ A). We also let T = 〈−1〉 denote the functor which
increases homological degree by 1. If β is a braid, we denote the braid exponent by e(β); this
is the signed number of crossings in a diagram representing β. The Rouquier complex F (β) is
normalized so that if β is a positive braid, then there is a chain map (TQ−1)e(β)R → F (β)
which is the inclusion of the degree e(β) chain bimodule, whereas if β is a negative braid, there
is a chain map F (β) → (TQ−1)e(β)R which is the projection onto the degree e(β) bimodule.
Note, in [AH15] and [Hog18], the shifts (k) and 〈`〉 would have been denoted (−k) and 〈−`〉,
respectively.

Hochschild cohomology gives rise to a functor HH whose input is a graded bimodule, and
whose output is a bigraded vector space. The additional grading is called the Hochschild grading,
and shifts in the Hochschild grading are denoted by A. Extending to complexes gives a functor
from complexes of graded bimodules to complexes of bigraded vector spaces. These are triply
graded objects, so all together we have the shift functors Q,A, T . If C is a complex of bimodules,
then the homology of HH(C) is denoted by HHH(C).

We also find it convenient to introduce t = T 2Q−2, q = Q2, and a = AQ−2. One might call
these the geometric variables, since they appear most naturally in the connection with Hilbert
schemes. When convenient, we express our degree shifts and Poincaré series in terms of these
variables.
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2. Background and key tools

2.1 Braids

Let Brn denote the braid group with n strands. The generators will be denoted by σi, for

1 6 i 6 n − 1, and drawn as an overcrossing of the ith and (i + 1)st strands. The overcrossing

σi and its inverse, the undercrossing σ−1
i , are depicted as

A labeled strand denotes the corresponding number of parallel copies of that strand. We

will always draw our braids in a rectangle, with n boundary points on the top and bottom.

Composition of braids is given by vertical stacking, so that ββ′ is β on top of β′. There is

a group homomorphism e : Brn → Z sending σ±i 7→ ±1. The integer e(β) is called the braid

exponent of β.

A braid is positive if it has an expression only involving overcrossings, and negative if it has

an expression only involving undercrossings. Given an element w of the symmetric group Sn, its

positive braid lift in Brn is the product σi1σi2 · · ·σid , where si1si2 · · · sid is a reduced expression

for w in terms of the usual Coxeter generators {si} of Sn. This element is independent of the

choice of reduced expression. Its negative braid lift is σ−1
i1
· · ·σ−1

id
.

Definition 2.1. We define the following symmetries of Brn.

(i) Rotation about the vertical axis: Let τ : Brn → Brn satisfy τ(σi) = σn−i and τ(αβ) =

τ(α)τ(β). Then τ is an involution.

(ii) Rotation about the horizontal axis: Let ω : Brn → Brn satisfy ω(σi) = σi and ω(αβ) =

ω(β)ω(α). Then ω is an anti-involution.

(iii) Reflection across a horizontal plane: Let (−)∨ : Brn → Brn satisfy σ∨i = σ−1
i and (αβ)∨ =

β∨α∨. Then (−)∨ is an anti-involution, and is just another notation for taking the inverse

braid.

(iv) Crossing swap: Let (−)L : Brn → Brn satisfy σLi = σ−1
i and (αβ)L = (α)L(β)L. Then (−)L

is an involution, and (β)L = ω(β)∨.

The letter L indicates that βL this is the left-handed version of the braid β. This swaps the

positive and negative braid lifts of an element of Sn. Note that τ and ω preserve positive braids,

while (−)∨ and (−)L swap positive braids and negative braids. These symmetries all commute

with each other.

We let t : Brk×Brl → Brk+l denote the homomorphism given by horizontal concatenation.

2.2 Shuffle braids

Definition 2.2. A shuffle permutation is a permutation π ∈ Sn which is a minimal length coset

representative for some coset in Sn/(Sk × S`), for some 0 6 k, ` 6 n with k + ` = n. Said

differently, a shuffle permutation preserves the ordering of {1, . . . , k} and {k+ 1, . . . , n} for some

k, but ‘shuffles’ these two sets together.

Let v ∈ {0, 1}n be a sequence with k zeroes and ` ones. We call v a shuffle. There is a

corresponding shuffle permutation πv, a minimal coset representation for Sn/(Sk×S`), for which

πv({1, . . . , k}) gives the locations of the zeroes, and πv({k + 1, . . . , n}) gives the locations of

the ones.
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Note that a shuffle permutation can come from a shuffle in multiple different ways. For
example, the identity element is a minimal coset representative for Sk × S` for every k and l
with k + ` = n; whenever all the zeroes come before all the ones, π0···01···1 is the identity. When
the shuffle v ∈ {0, 1}n is understood, k will always refer to the number of zeroes, and ` to the
number of ones.

Example 2.3. The shuffle permutation π1···10 is the n-cycle (n, n− 1, . . . , 2, 1).

Definition 2.4. For each v ∈ {0, 1}n, let βv denote the positive braid lift of πv. Let Twv :=
ω(βv)βv, the shuffle twist, denote the positive pure braid obtained by gluing βv with its rotation.

Example 2.5. If v = (0101100), then the shuffle permutation πv, its positive braid lift, and the
associated pure braid are pictured as

Note that v partitions the strands in these diagrams into two subsets: the 0-strands and the
1-strands. In βv the 0-strands cross over the 1-strands. In the ω(βv) portion of Twv, they cross
back under.

The following gives a useful recursive description of the braids Twv.

Proposition 2.6. Let v be a shuffle with k zeroes and ` ones, with k + ` = n. Let · denote
concatenation of shuffles, so that v ·0 and v ·1 are the two shuffles of length n+1 which extend v.
Then

Here a strand labeled ` actually represents ` strands cabled together in the usual way, so that the
‘thick crossings’ in the expression for Twv·0 each represent ` ordinary crossings. This recursion,
together with the base cases Tw0 = Tw1 = 1, produces all the shuffle twists Twv. There is a
similar such recursion which describes Tw0·v and Tw1·v.

Proof. The proof is graphically obvious. 2

We now discuss the behavior of the shuffle braids with respect to the symmetries of the braid
group.

Definition 2.7. For each v ∈ {0, 1}n, let r(v) denote the sequence obtained by reversing the
order, so that r(v)i = vn+1−i. Let v∗ be the sequence obtained by swapping the ones with zeros
and vice versa: (v∗)i = 1− vi.

Proposition 2.8. Let v ∈ {0, 1}n be given. Then

(i) τ(βv) = βr(v)∗ ,

(ii) ω(β−1
v ) = βLv .

Proof. The proof is clear. 2
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2.3 Half twists and shuffle braids
Let HT = HTn ∈ Brn denote the half twist braid

HTn = σ1(σ2σ1)(σ3σ2σ1) · · · (σn−1 · · ·σ2σ1).

The full twist is FTn = HT2
n, and is central in the braid group. This implies that the mapping

β 7→ HTβHT−1 defines an involution on the braid group. Indeed, HTβHT−1 = τ(β). We leave
the proof of this fact to this reader, as it is elementary. It is also elementary that HTn is fixed
by τ and ω.

We will need to know how the shuffle braids interact with HT and FT.

Proposition 2.9. Let v ∈ {0, 1}n be given. Let k and ` be the number of zeroes and ones in v,
respectively. Then:

(i) HTnγv = γr(v)∗HTn, where γv is any of the braids βv, ω(βv), β
L
v , or ω(βv)

L;

(ii) HTnβ
L
v = βr(v)(HTk tHT`);

(iii) FTn TwL
v ∼ Twr(v)(FTk t FT`).

Here ∼ denotes that the given braids are equivalent modulo conjugation.

Proof. Statement (1) follows from Proposition 2.8, since conjugation by HTn acts on the braid
group by τ (180 degree rotation about a vertical axis).

The idea of the proof of (2) is best illustrated with an example. For instance, when v =
(1100101) we have

In the second diagram, the left-handed shuffle braid corresponds to r(v)∗ = (0101100) by
statement (1) of the proposition. In the third diagram we have simply rewritten the half twist
in terms of the ‘thick crossing’ between four cabled strands and three cabled strands. This is a
well-known identity in the braid group. In the last diagram we have performed an isotopy.

Finally, statement (3) follows from (2). First, note that an application of ω to statement (2)
yields

ω(βLv )HT = (HTk tHT`)ω(βr(v)).

Then observe:

FT TwL
v = FTω(βLv )βLv

= ω(βLv )FTβLv
= ω(βLv )HTHTβLv
= (HTk tHT`)ω(βr(v))βr(v)(HTk tHT`)

∼ ω(βr(v))βr(v)(FTk t FT`).

The second equality holds since FTn ∈ Brn is central. The third holds since FT = HTHT. The
fourth holds by (1) and (2). Finally the last ∼ holds by transferring the (HTk t HT`) to
the right-hand side (recall that β ∼ β′ means β is conjugate to β′). This completes the proof. 2
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2.4 Rouquier complexes
Let R = Rn = Q[x1, . . . , xn] be the polynomial ring in n variables, graded so that deg xi = 2.
This is the polynomial ring associated to the standard n-dimensional representation of Sn over
Q. Given a graded R-bimodule M , we let M(1) denote the shifted bimodule for which M(1)d =
M1+d, where Md denotes the degree d part of M . We denote tensor product of graded bimodules
over R simply by juxtaposition: M ⊗R N = MN . We often let 1 = 1n denote the bimodule R,
which is the monoidal identity.

For each i with 1 6 i 6 n− 1, let Bi denote the graded R-bimodule

Bi := R⊗Ri R(1),

where Ri denotes the subring of polynomials invariant under the reflection si = (i, i + 1).
A Bott–Samelson bimodule is any tensor product of the bimodules B1, . . . , Bn−1. Let SBimn

denote the category of Soergel bimodules associated to R. This is the full graded monoidal
additive Karoubian subcategory of graded R-bimodules generated by Bi for 1 6 i 6 n−1. Thus,
its objects are those objects isomorphic to direct sums of direct summands of grading shifts of
Bott–Samelson bimodules.

Let Kb(SBimn) denote the homotopy category of bounded complexes of Soergel bimodules.
Objects of Kb(SBimn) are finite complexes with differentials of degree +1

· · ·→ d
→ Ck

d
→ Ck+1

d
→ · · · , Ck ∈ SBim,

and morphisms in Kb(SBimn) are chain maps modulo homotopy.
Associated to each braid word β we have the Rouquier complex F (β) in Kb(SBimn), defined

by
F (σi) = (Bi → R(1)), F (σ−1

i ) = (R(−1) → Bi)

together with F (ββ′) = F (β)F (β′). The underline indicates which object lies in homological
degree 0. Rouquier proved that there is a canonical homotopy equivalence between F (β) and
F (β′) when β and β′ are braid words expressing the same braid. A more direct proof which
works over Z can also be found in [EK10].

Remark 2.10. Recall the notation Q,T for gradings shifts (see § 1.7). One reason why t is more
natural that T is that any Rouquier complex F (β) always has a unique copy of R which appears
in homological degree e(β) and internal degree −e(β), so that this copy of R appears with shift
t(1/2)e(β), where e(β) is the braid exponent. It was proven in [EW14] that Rouquier complexes
for reduced expressions are perverse (when one works in characteristic zero). A complex is
perverse if each indecomposable bimodule in the complex appears with a grading shift equal
to its homological degree, or equivalently, that the grading and homological shifts are described
only as powers of (TQ−1). Note that the Rouquier complex for the full twist is not perverse,
nor are shuffle twists. We will not use any perversity results in this paper. Nonetheless, we will
express our shifts using the variables t = T 2Q−2 and q = Q2.

The symmetries of the braid group lift to symmetries of SBimn and its homotopy category.
Let τ : R → R denote the map sending xi 7→ xn+1−i.

Definition 2.11. We define the following symmetries of SBimn.

(i) Rotation about vertical axis: Let τ : SBimn → SBimn denote the covariant graded monoidal
functor induced by the Dynkin automorphism of Sn. That is, τ : Bi 7→ Bn−i, and satisfies
τ(MN) = τ(M)τ(N) and τ(M(1)) = τ(M)(1).
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(ii) Rotation about horizontal axis: Let ω : SBimn → SBimn denote the covariant graded anti-
monoidal functor which sends Bi 7→ Bi and satisfies ω(MN) = ω(N)ω(M) and ω(M(1)) =
ω(M)(1).

(iii) Reflection across a horizontal plane: Let (−)∨ : SBimn → SBimop
n denote the contravariant

anti-graded anti-monoidal ‘duality’ functor on SBimn, which sends Bi 7→ Bi and satisfies
(MN)∨ = N∨M∨ and M(1)∨ = M∨(−1).

(iv) Crossing swap: Let (−)L : SBimn → SBimn denote the contravariant anti-graded monoidal
functor (−)∨ ◦ ω.

These symmetries commute up to canonical isomorphism.

Proposition 2.12. These symmetries intertwine the braid symmetries from Definition 2.1,
under Rouquier’s map F , via a canonical isomorphism. In particular, F (β)∨ ∼= F (β−1).

Proof. This is easy. Although we have not stated explicitly what the differentials in F (σi) and
F (σ−1

i ) are, they live in one-dimensional morphism spaces, and are interchanged by duality. 2

There is an isomorphism of rings Rk � Rl → Rk+l given by renaming the variables, where
� denotes tensor product over Q. Correspondingly, there is an inclusion functor t : SBimk �
SBiml → SBimk+l, which sends Bi � 1l to Bi and sends 1k �Bi to Bk+i. This intertwines with
the map t : Brk×Brl → Brk+l after applying Rouquier’s map F .

It was proven by Soergel that morphisms between objects in SBimn are free as left or right
modules over Rn. Using Soergel’s Hom formula [Soe07, Theorem 5.15], one can prove that t is
actually fully faithful, after identifying Rk � Rl with Rn. Another way of phrasing this result
is that the inclusion SBimi → SBimn for i < n, which comes from the functor (−) t 1n−i, is
fully faithful after base change along the inclusion from Ri to Rn. See [EW13, Remark 3.19] for
further discussion.

2.5 Complexes and convolutions
We may write 〈1〉 for the homological shift of a complex, so that the homological degree d part of
F 〈1〉 is the homological degree d+ 1 part of F . By convention, 〈1〉 also negates the differential.

We now introduce some notation which we will be used exhaustively throughout. To motivate
it, we begin with an example. Suppose A and B are complexes, and f : A → B is a chain map.
The mapping cone Cf is the chain complex (Cf )k = Ak+1 ⊕ Bk with differential given by the

matrix
[
−dA 0
f dB

]
. In other words Cf = A〈1〉⊕B with an additional component of the differential

from A〈1〉 to B, given by f . Note that the additional sign on the differential of A〈1〉 is necessary
for the differential on Cf to satisfy d2 = 0. We prefer to keep track of the homological degree
shift explicitly, so that the mapping cone can be written as

Cf = (A〈1〉 f−→ B).

We will also say that Cf = A〈1〉 ⊕B with twisted differential. This notation will come in handy
when we later consider mapping cones of mapping cones, and so on.

For instance, this notation allows us to use explicit shifts instead of underlines in a complex,
so that we may write

F (σi) = (Bi → R(1)〈−1〉), F (σ−1
i ) = (R(−1)〈1〉→ Bi).

182

https://doi.org/10.1112/S0010437X18007571 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007571


On the computation of torus link homology

The general way to describe an iterated cone is using the idea of a convolution of complexes.
Let Fj (j ∈ J) be complexes of R-bimodules indexed by a finite partially-ordered set J .
Let dj denote the differential on the complex Fj (which, in our notation, is a map of bigraded
R-bimodules of homological degree +1 and graded degree 0). Let E =

⊕
j∈J Fj be a bigraded

R-bimodule, and let d be a differential on E such that

– restricted to a map Fj → Fj , d agrees with dj , and

– restricted to a map Fj → Fj′ , d is zero unless j 6 j′.

Then E is called a convolution of the complexes Fj , as is any complex which is homotopy
equivalent to E. We may write d =

∑
i6j dji, where dji is the component of the differential

mapping Fi to Fj .
We refer to Fj as the subquotients of the convolution E. We say that E =

⊕
j∈J Fj with

twisted differential, indicating that the differential is not just the direct sum of the differentials
on each summand. We say that this twisted differential respects the partial order on J because
dji = 0 for i 66 j.

Remark 2.13. By abuse of language, we will refer to a two term convolution E = (A
f−→ B)

as a mapping cone. Note that, strictly speaking f is not a chain map from A to B, but rather
a chain map A〈−1〉 → B. Here J has two elements, with the order determined by the arrow.
A general convolution can be described as an iterated cone of complexes, where each Fj is added
one at a time.

In practice, one can often show indirectly that a complex E is a convolution of other
complexes Fj , in which case the components dji of the differential may be difficult to write
down for i 6= j (the task is complicated further by the presence of homotopy equivalences).
In particular, this makes it difficult to compute the homology H(E). Thankfully, a parity
argument will come to the rescue in this paper.

Proposition 2.14. Suppose E =
⊕

j∈J Fj with twisted differential, for some finite partially
ordered set J . Suppose the homology H(Fj) is supported in even homological degrees, for all
j ∈ J . Then H(E) ∼=

⊕
j H(Fj).

Proof. We induct on the cardinality of J . In the base case J = {j}, we have E = Fj , and
the statement is trivial. Now, assume by induction that we have proved the result for partially
ordered sets of cardinality r, and let J be a partially ordered set of cardinality r + 1. Let j ∈ J
be maximal. Set B := Fj and A =

⊕
i∈Jr{j} Fj with twisted differential. Note that E = A⊕ B

with twisted differential:
E = (A

δ−→ B)

for some map δ of homological degree +1. We have H(A) ∼=
⊕

i 6=j H(Fi) by induction, so we
must prove that H(E) ∼= H(A)⊕H(B).

The short exact sequence 0 → B → E → A → 0 gives rise to a long exact sequence

· · ·→ Hk−1(A) → Hk(B) → Hk(E) → Hk(A) → Hk+1(B) → · · · .

Our parity assumption implies that Hk(A) = Hk(B) = 0 when k is odd. Thus Hk(E) = 0 when
k is odd. When k is even we have a short exact sequence

0 → Hk(B) → Hk(E) → Hk(A) → 0.
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If we work over a field, then this short exact sequence splits. This completes the inductive step,
and completes the proof. 2

Remark 2.15. In general, there is a spectral sequence converging to H(E), whose E2 page is⊕
j H(Fj). If H(Fi) is even, then the subsequent differentials (which have odd homological

degree) must all vanish. This gives an alternate proof of the above.

Remark 2.16. The above presents a ‘computation-free and serendipitous’ approach to computing
homology groups. Suppose we wish to compute the homology of a chain complex E. We may get
lucky and discover a filtration on E whose successive quotients are supported in even homological
degrees. In this case, Proposition 2.14 says that H(E) simply splits as a direct sum of these
homology groups. In this paper we are extraordinarily lucky in this regard.

2.6 Categorified symmetrizers
In this subsection we recall the constructions of the second author in [Hog18], and extract from
them a finite complex Kn ∈ Kb(SBimn) which will play an essential role in this paper. First,
define the following complexes.

Definition 2.17. Let X = Xn = F (σn−1 · · ·σ1) and Y = Yn = F (σ−1
n−1 · · ·σ

−1
1 ) denote the

Rouquier complexes associated to the positive and negative braid lifts of the standard n-cycle
(n, n − 1, . . . , 2, 1). In other words, X = F (βv) and Y = F (βLv ) for v = (11 · · · 10). Note that
τ(X) = ω(X) = Y −1, τ(Y ) = ω(Y ) = X−1.

In this paper we adopt a graphical notation for certain complexes of Soergel bimodules. We
will denote a braid and its Rouquier complex similarly, so for example pictures such as

will denote the complexes Xn and Yn of Definition 2.17. The tensor product of complexes
corresponds to vertical stacking. For example we have

(2.1)

Complexes of the form XY −1 play a very special role in this paper. They are the Rouquier
complexes associated to the Young–Jucys–Murphy braids. Note that braids corresponding to
XkY

−1
k generate a commutative subgroup of the braid group, and their product is the full twist.

The following defines a family of complexes Kn which are compatible with these braids, in a
particular sense.

Proposition 2.18. There exists a family of finite complexes Kn ∈ Kb(SBimn) (n > 1) such that
we have the following.

(i) K1 = R.

(ii) We have Kn−1XY
−1 ' (Kn → qKn−1). Graphically this is

(2.2)
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(iii) Kn kills all generating Bott–Samelson bimodules in SBimn. That is, KnBi ' 0 ' BiKn for
1 6 i 6 n− 1.

Note that finiteness of the Kn follows from the recursion (2).

Proof. In [Hog18] the second author defined a family of complexes Pn ∈ K−(SBimn) such that:

– Pn kills all Bott–Samelson bimodules: Pn ⊗Bi ' 0 ' Bi ⊗ Pn for all 1 6 i 6 n− 1;

– any other complex M ∈ K−(SBimn) kills Bott–Samelson bimodules if and only if Pn⊗M '
M ' Pn ⊗M .

Further, Pn is uniquely characterized up to homotopy equivalence by these properties. The
complexes Pn can be thought of as categorical projections onto the sign representation of the
Hecke algebra.

We will construct the complexes Kn inductively. First, set K1 = R1. Now, assume Kn−1

has been constructed for n > 2. In § 4 of [Hog18] it was shown that there is a chain map
ψ : qPn−1 → Pn−1XY

−1 such that the mapping cone Qn := Cone(ψ) kills Bott–Samelson
bimodules.7 Graphically, this is

(2.3)

From the above characterization of Pn−1, the fact that Kn−1 kills the Bott–Samelson
bimodules in SBimn−1 implies that Kn−1Pn−1 ' Kn−1. We define Kn by tensoring (2.3) on the
left with Kn−1 and applying the equivalence Kn−1Pn−1 ' Kn−1. Note that Kn ' Kn−1Qn. The
recursion (2) is satisfied after rotating triangles. Clearly Kn kills all Bott–Samelson bimodules on
the right since Qn does. It was shown in [Hog18] that a complex kills Bott–Samelson bimodules
from the right if and only if it kills all Bott–Samelson bimodules from the left. This gives
statement (3). 2

Lemma 2.19. The complex Kn absorbs Rouquier complexes: if β is a braid, then KnF (β) '
t(1/2)e(β)Kn ' F (β)Kn. Recall that e(β) is the braid exponent, which records the number of
overcrossings minus the number of undercrossings in a braid word.

Proof. It suffices to prove the result for β = σ±i . In this case the claim is obvious since Kn kills
Bi, hence the only term of KnF (σ±i ) which survives is Kn(±1)〈∓1〉. 2

Remark 2.20. It is sometimes also useful to consider the following equivalence:

(2.4)

This follows from (2.2) by tensoring on the right with Y , applying the equivalence KnY '
t(1/2)(1−n)Kn.

7 Actually, in [Hog18] the renormalized Rouquier complexes F ′(β) := t−(1/2)e(β)F (β) are used, where e(β) is
the braid exponent. To match the conventions, set X ′ = t(1/2)(1−n)X and Y ′ = t(1/2)(n−1)Y . Then the chain
map constructed in [Hog18] is actually ψ′ : qt1−nPn−1 → Pn−1X

′(Y ′)−1. Clearly this gives rise to ψ : qPn−1 →

Pn−1XY
−1 as claimed.
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Example 2.21. There is a chain map qF (σ−1
1 ) → F (σ1) whose mapping cone is the 4-term

complex

K2 = R(−2) - B1(−1)
x2 ⊗ 1− 1⊗ x2- B1(1) - R(2).

There is a projection map K2 → R(−2)〈1〉, the mapping cone on which is

(K2 → qR) ' B1(−1)
x2 ⊗ 1− 1⊗ x2- B1(1) - R(2).

By (2.4), this is homotopy equivalent to the full twist FT2 = F (σ2
1) on two strands. This fact is

also straightforward to check directly.

The construction of Kn appears to be asymmetric. However, Kn is preserved by the
symmetries of the Soergel category up to homotopy.

Proposition 2.22. We have

ω(Kn) ' τ(Kn) ' Kn.

Further,

tn−1K∨n ' (t−1/2q1/2)n−1Kn.

3. Resolving the full twist

In this section we give a new expression for the Rouquier complex associated to the full twist
braid FTn. Our main result is that FTn ∈ Kb(SBimn) is homotopy equivalent to a convolution
whose subquotients are described in terms of shuffle braids and the complexes Kn.

3.1 Young–Jucys–Murphy braids
First, we describe the Rouquier complexes for Young–Jucys–Murphy braids as convolutions. We
write yi = σi−1 · · ·σ2σ1σ1σ2 · · ·σi−1 for the ith Young–Jucys–Murphy braid, which is an element
of Bri. For example, y4 is picture in (2.1). We may also view yi as an element of Brn for any
n > i, which acts on the first i strands; this comes from the inclusion Bri = Bri×1n−i ⊂ Bri×
Brn−i → Brn.

Definition 3.1. Let v ∈ {0, 1}n be a shuffle on n letters, with k zeroes and ` ones, so that
k + ` = n. Let Ev ∈ Kb(SBim) be defined as follows:

Ev := F (βLv )(1k tK`)F (ω(βLv )). (3.1)

Note that the shuffle braids involved here are left-handed.

Example 3.2. For example, when v = (1011001), the complex Ev looks like
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In this section the only complexes that concern us are those of the form Ev·1. Recall that ·
denotes concatenation of sequences, so that v · 1 ranges over all sequences which end in 1. Note
that (analogously to Proposition 2.6) βv·1 is equal to βv t 11, and the right-most strand in Ev·1
is a straight vertical line which does not cross over or under any other strands.

Proposition 3.3. The Rouquier complex F (yn) satisfies

F (yn) '
⊕

v∈{0,1}n−1

t−(`2)qkEv·1

with twisted differential. As usual, k is the number of zeroes in v and ` is the number of ones, with
k + ` = n− 1. The partial order in this convolution is the antilexicographic order on sequences.

Remark 3.4. Consider the ‘thick crossing’ between Km and n −m parallel strands, which one
might picture as

There is an expression of this complex as a direct sum (with twisted differential) of complexes
Ev·1m with shifts, where v ∈ {0, 1}n−m. Proposition 3.3 corresponds to the case m = 1. This is
the only case that concerns us, so we leave the statement (and proof) for m > 1 to the reader.

Proof. We prove this by induction on n > 1. In the base case we have y1 = 1 and F (y1) = K1.
There is exactly one element of {0, 1}0, the empty sequence, so that the sum on the right-hand
side has one term E∅·1, and that term is K1. This establishes the base case.

Assume by induction that the result holds for n > 1. Note that yn+1 = σnynσn. By induction,
we have

F (σn)F (yn)F (σn) '
⊕

v∈{0,1}n−1

GvF (σn)(Ev·1 t 11)F (σn) (3.2)

with twisted differential, for some grading shifts Gv. Each of the above summands can be
rewritten as follows: for fixed v ∈ {0, 1}n−1, let k denote the number of zeroes in v and ` the
number of ones. Then the summand corresponding to v is

The first equality (or rather, homotopy equivalence) is a simple isotopy, pulling one strand
past the cable of l strands. In the second equality we have used (2.4). Applying Lemma 2.19 to the
first complex on the right, K`+2 absorbs the ` negative crossings (in the cabled crossing below
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K`+2) and one positive crossing (above), gaining an additional grading shift of t1/2−(1/2)`.
After absorbing these crossings and applying an isotopy to the right-most complex, we obtain

(3.3)

The first term is just Ev·1·1, and the second is Ev·0·1. Applying this simplification to each term
of the right-hand side of (3.2) completes the inductive step. It remains to verify that the grading
shifts and partial order on the convolution are as claimed.

The grading shifts are determined recursively by Gv·1 = t−|v|Gv and Gv·0 = qGv, from which

the formula Gv = t−(|v|2 )qn−1−|v| follows easily.
Suppose that, for two sequences v, w ∈ {0, 1}n−1, the differential from the summand Ev·1

to the summand Ew·1 is zero in the twisted differential for F (yn). Then replacing F (σn)(Ev·1 t
11)F (σn) and F (σn)(Ew·1 t 11)F (σn) by the equivalent complexes in the right-hand side of
(3.3) does not introduce any differential between any of the corresponding terms in the twisted
differential for F (yn+1). Moreover, there is no differential from Ev·0·1 to Ev·1·1. Therefore,
induction implies that the twisted differential respects the antilexicographic order. 2

3.2 The full twist
It is fairly easy to bootstrap this convolution description of the Young–Jucys–Murphy elements
into a convolution description of the full twist.

Definition 3.5. Let v ∈ {0, 1}n be a shuffle, with k zeroes and ` ones, so that k + ` = n. Then
let Dv ∈ Kb(SBim) be defined as follows:

Dv := F (βv)(FTk tK`)F (ω(βv)). (3.4)

Note that the shuffle braids involved here are right-handed.

Example 3.6. Here is Dv for v = (10101101):

In this example, the last index in v is a one, so the rightmost strand in Dv does not cross the
strands coming from the full twist.

Theorem 3.7. Let FTn denote the full right-handed twist on n-strands. We have

FTn '
⊕

v∈{0,1}n−1

qkDv·1 (3.5)

with twisted differential, respecting the antilexicographic order on {0, 1}n−1. Here k is the number
of zeroes in v.
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We have omitted the functor F from the notation, identifying a braid with its Rouquier
complex. We employ this abuse of notation frequently henceforth.

Proof. Note that the full twist braid factors as FTn+1 = FTnyn+1, where as usual FTn is viewed
as an element inside Brn+1 via the inclusion Brn → Brn+1. Actually it will be more useful to write

FTn+1 = HTnyn+1HTn.

Proposition 3.3 gives an expression of the Jucys–Murphy complex F (yn+1). Tensoring on the left
and right with HTn = HTn t 11 gives

FTn+1 '
⊕
v

Gv(HTn t 11)(βLv t 11)(1k tK`+1)(ω(βLv ) t 11)(HTn t 11)

'
⊕
v

Gv((HTnβ
L
v ) t 11)(1k tK`+1)((ω(βLv )HTn) t 11)

'
⊕
v

Gv(βr(v) t 11)(HTk tHT` t 11)(1k tK`+1)(HTk tHT` t 11)(ω(βr(v)) t 1)

'
⊕
v

Gvt
(`2)(βr(v) t 11)(FTk tK`+1)(ω(βr(v)) t 1).

Here, Gv = t−(`2)qk is the shift determined by Proposition 3.3. The second equivalence is simply
given by reassociating. The third equivalence holds by Proposition 2.9, which describes how HTn

interacts with shuffle braids. The last equivalence holds since K`+1 absorbs the two copies of
HT` (each of which has

(
`
2

)
crossings), and the two copies of HTk contribute a factor of FTk.

The grading shift on each summand is Gvt
(`2) = qk, as claimed. This completes the proof. 2

Remark 3.8. One can construct convolution descriptions of other torus links in much the same
way. At the moment, we have done this ad hoc for small torus links, and have neglected to write
it down here for reasons of space. It would be interesting to find a combinatorial framework
(analogous to shuffles) in order to treat the general torus link in a more holistic fashion.
The results of the next chapter, including the parity miracle which makes these convolution
descriptions useful, can also be adapted to our small examples in a straightforward way. The
fruits of this labor are presented in the appendix.

4. Resolving the Hochschild homology of the full twist

In this section we introduce Hochschild cohomology HH, and we compute HH(FTn) for all n > 1.
Our strategy is recursive. The main result of the previous section expresses FTn as a filtered
complex whose subquotients are of the form Dv. In this section we show that HH(Dv) has a
filtration in terms of other HH(Dw), with smaller w. However, we will find it convenient to work
instead with related complexes Cv, to be defined in § 4.4.

4.1 Hochschild cohomology
The zeroth Hochschild cohomology functor HH0 is the functor which takes a graded R-bimodule
M to the graded vector space

⊕
m∈Z Hom(R,M(m)) of bimodule maps of all degrees. Its higher

derived functors HHk are packaged together in a single functor HH =
⊕

k>0 HHk : SBimn →

Q-vectZ×Z, where this latter category is the category of bigraded vector spaces. The two gradings
are the internal grading of the bimodule (the m in the direct sum above), and the Hochschild
cohomological grading k, which we call the Hochschild grading.
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Extending to complexes gives a functor HH: Kb(SBimn) → Kb(Q-vectZ×Z). Given a complex
C, HH0(C) is the complex RHom(R,C) used to compute maps of all internal and homological
degrees from the complex R (concentrated in a single homological degree) to C. The homology
of HH(C) and HH0(C) are denoted by HHH(C) and HHH0(C). When we wish to emphasize the
index n (which is not a degree, but the number of strands) we will write HH(Rn;C), HH0(Rn;C),
and so on.

Note that HH(C) is triply graded. We will denote shifts in the tridegree by QiAjT k HH(C),
where Q is the usual degree, A is Hochschild degree, and T is homological degree. In previous
sections we found it useful to introduce the variables (or grading shifts) t = T 2Q−2 and q = Q2.
In what follows it will prove convenient to package the Hochschild and q-degrees together by
introducing a = AQ−2. We write PC(q, a, t) for the Poincaré series of HHH(C).

The experienced reader may wish to orient himself or herself by observing that in these
conventions, we have

PR1 =
1 +Q−2A

1−Q2
=

1 + a

1− q
which is the Hochschild cohomology of the ring Q[x] as a bimodule over itself. The reader should
think of (1− q)−1 as the Poincaré series of Q[x] itself, and (1 + a) as the Poincaré series of the
exterior algebra in one variable. Similarly, PRn = (1 + a)n(1− q)−n.

Example 4.1. We have PBs = (1−Q2)−n(1 +Q−2A)n−1(Q+Q−3A). Here is a brief conceptual
explanation. Consider the Koszul complex which resolves R by free R-bimodules. Applying Hom
to R, the differentials all become zero, yielding (1+Q−2A)n times the Poincaré series of R, as for
PR above. Applying Hom to Bs instead, one of the differentials in the Kozsul complex is non-zero,
becoming the middle differential in Example 2.21, except dualized. Thus this differential yields
a factor of (Q+Q−3A) instead. We will not use this computation.

Definition 4.2. We say that two complexes A,B ∈ Kb(SBimn) are HH-equivalent if HH(A) '
HH(B) as complexes of triply graded vector spaces. In this case we will write A ∼ B.

The basic property of Hochschild cohomology which motivates its relationship with braid
closures is that HH(CD) ∼= HH(DC) whenever these tensor products make sense (e.g. if C,
D ∈ K(SBimn) are simultaneously bounded above or below). Thus, any complex C is HH-
equivalent to F (β)CF (β−1) for any braid β.

Note that HHi can actually be viewed as a map from R-bimodules to the subcategory of
R-bimodules for which the left and right actions agree, which can be identified with R-modules.
However, the isomorphism HH(CD) ∼= HH(DC) is not an isomorphism of (complexes of) R-
bimodules, only of their underlying vector spaces. Nonetheless, there is still an action of Rn on
any Hochschild complex HHi(Rn;C).

Remark 4.3. The isomorphism HH(Rn;CD) ∼= HH(Rn;DC) of complexes of vector spaces does
actually lift to an isomorphism of modules over the invariant subring RSn .

4.2 The Markov move for Jones–Wenzl projectors
The Markov move states that the closure of a braid β on n − 1 strands is isotopic (as a link)
to the closure of the braid σ±n−1(β t 11) on n strands. To prove that HHH is a link invariant,
Khovanov [Kho07] proved a result comparing HH(Rn−1;β) and HH(Rn;σ±n−1(β t 11)). In this
paper, we will need a similar result, comparing HH(Rn−1;Kn−1) and HH(Rn;Kn).
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Proposition 4.4. Suppose that 2 6 n. Let C ∈ Kb(SBimn−1) be viewed as a complex in
Kb(SBimn) via the usual inclusion functor. We have

HH(Rn;CKn) ' tn−1 HH(Rn−1;CKn−1)⊕ aHH(Rn−1;CKn−1). (4.1)

This can also be described as

HH(Rn;CKn) ' tn−1 HH(Rn−1;CKn−1)⊗ Λ[ξn],

where deg(ξn) = t1−na. Hence PCKn = (tn−1 + a)PCKn−1 .

Proof. We use results in [Hog18]. Let Cn denote the bounded derived category of graded (Rn, Rn)-
bimodules, where Rn = Q[x1, . . . , xn] as usual. Let Dn = Kb(Cn) denote the homotopy category
of Cn. Note that SBimn includes as a full subcategory of Cn, and Kb(SBimn) includes as a full
subcategory of Dn. In case n = 0, D0 is equivalent to the category QZ×Z×Z of triply graded
vector spaces.

There is a partial Hochschild cohomology functor Tn : Dn →Dn−1, such that HH = T1◦· · ·◦Tn.
These can be defined as the right adjoints to the standard inclusions In : Dn−1 → Dn. We usually
abuse notation, and write C when we mean I(C). For each C ∈ Dn−1 and each D ∈ Dn we have

T (CD) ∼= CT (D) and T (DC) ∼= T (D)C.

Recall from the proof of Proposition 2.18 that Kn ' Kn−1Qn, so that Tn(Kn) ' Kn−1Tn(Qn).
It was proven in § 4 of [Hog18] that Tn(Qn) ' tn−1Pn−1 ⊗ Λ[ξn]. Since Kn−1Pn−1 ' Kn−1, we
conclude that

Tn(Kn) ' Kn−1T (Qn) ' tn−1Kn−1 ⊗ Λ[ξn]. (4.2)

From this, the proposition follows from the observation that HH = T1 ◦ · · · ◦ Tn. 2

In our reduction algorithm to come, we need a relative version of the above proposition.

Corollary 4.5. Suppose that 2 6 ` 6 n, with n = k + `. Let C ∈ Kb(SBimn−1) be viewed as
a complex in Kb(SBimn) via the usual inclusion functor. We have

HH(Rn;C(1k tK`)) ' t`−1 HH(Rn−1;C(1k tK`−1))⊗ Λ[ξ`]. (4.3)

Hence PC(1ktK`) = (t`−1 + a)PC(1ktK`−1).

Proof. We picture the partial trace Tn : Dn → Dn−1 graphically as identifying the top right and
bottom right strands. The statement of the Lemma then becomes

(4.4)

whose proof is immediate given (4.2). 2

This corollary allows one to slowly shrink copies of K` that appear, reducing the number of
strands in the process. However, the case ` = 1 is separate; diagrammatically, this corresponds
to taking the complex C and adding a circle, since K1 is the identity.
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Proposition 4.6. Let C ∈ Kb(SBimn−1) be viewed as a complex in Kb(SBimn) via the usual
inclusion functor. We have

HH(Rn;C tK1) ' HH(Rn−1;C)⊗Q[xn]⊗ Λ[ξ1], (4.5)

where deg(ξ1) = Q−2A = a. Hence PCtK1 = (1− q)−1(1 + a)PC .

Proof. In general, HHH(A tB) ∼= HHH(A)⊗ HHH(B). Hence this proposition just amounts to
the observation that HHH(Q[xn]) ∼= Q[xn]⊗ Λ[ξ1]. This may be pictured as

2

We will also call results like these HH-equivalences.

Definition 4.7. We extend Definition 4.2 above to say that two complexes A ∈ Kb(SBimn) and
B ∈ Kb(SBimk) are HH-equivalent, written A ∼ B, if HH(A) ' HH(B) as complexes of triply
graded vector spaces. Note that n and k need not be equal. The complexes A and B are allowed
to have built-in formal Hochschild grading shifts.

4.3 Reduced complexes
Observe that the formulas for PC(1ktK`) for ` > 2 and ` = 1 do not follow the same pattern, as
the ` = 1 case has an extra factor of (1− q)−1. We will need to use both (4.3) and (4.5) in our
recursion for HHH(FTn), and the differences between these two formulas lead to a bookkeeping
nightmare. Instead, we will introduce the reduced complexes K̂`, which admit a streamlined
formula which works for ` = 1 as well as for ` > 2.

Definition 4.8. For each complex C ∈ K(SBimn) and each element f ∈ Rn of the ground ring,
let f IdC and IdC f denote the endomorphisms of C given by left and right multiplication by f ,
respectively. Set Ĉ := Cone(xn IdC).

Remark 4.9. Effectively, Ĉ is the result of killing the left action of xn on C. Indeed, since Rn
acts freely on Soergel bimodules, standard arguments imply that Ĉ ' C/xnC. Thus, one may
think of Ĉ as a reduced version of C. The usual reduced complex is the mapping cone on e1 IdC
(equivalently, the quotient C/e1C), where e1 = x1 + · · · + xn. The two notions are related, but
generally different. Our sole reason for introducing Ĉ is have a functorial way of converting
expressions involving Kn to expressions involving K̂n.

The relationship between K̂n and Kn is best understood as follows. Let Pn be the complex
introduced in [Hog18], whose definition is recalled in the proof of Proposition 2.18. Let END(Pn)
denote the bigraded ring spanned by all homogeneous chain maps QiT jPn → Pn modulo
homotopy. In [Hog18] the second author showed that END(Pn) ∼= Q[u1, u2, . . . , un], where the
uk are variables of bidegree deg(uk) = Q2kT 2−2k = qt1−k. In particular, u1 has degree q, and is
represented by left or right multiplication by xi ∈ R in the ground ring (in [Hog18] it is shown
that all such maps are homotopic; see also the proof of Lemma 4.10 below).

The complex Kn can be interpreted as the total complex of the Koszul complex associated
to the action of u2, . . . , un acting on Pn. Precisely: Kn ' Cone(u2)Cone(u3) · · ·Cone(un),

192

https://doi.org/10.1112/S0010437X18007571 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007571


On the computation of torus link homology

where concatenation denotes tensor product. This description clarifies the manner in which
our definition of Kn gives special treatment to the case n = 1. A more equitable construction
would also include a factor of Cone(u1). By our comments above, this is precisely what K̂n does:
K̂n ' Cone(u1)Cone(u2) · · ·Cone(un).

Lemma 4.10. We have K̂n ' K̂1Kn.

Proof. It is clear that K̂1Kn = Cone(x1 IdKn), while K̂n = Cone(xn IdKn) by definition. Thus,
it suffices to prove that x1 IdKn ' xn IdKn , and the lemma will follow by homotopy invariance of
mapping cones. It is a standard fact that there are canonical maps R(−1) → Bi and Bi(−1) → R
whose composition is αi := xi − xi+1. Thus, BiKn ' 0 implies that αi IdKn factors through a
contractible complex, and hence is null-homotopic for all 1 6 i 6 n − 1. This implies that
x1 IdKn ' xn IdKn , and completes the proof. 2

Remark 4.11. Applying the functor C 7→ Ĉ to the result of Theorem 3.7 yields an equivalence
F̂Tn '

⊕
v∈{0,1}n−1 qkD̂v·1 with twisted differential. Further, D̂v·1 is given by the same formula

as Dv·1, except with K` replaced by K̂`.

Our next result will later be used to show that the computation of HHH(FTn) reduces to a
computation of HHH(F̂Tn). In particular PFTn = (1/(1− q))PF̂Tn

.

Proposition 4.12. If C ∈ Kb(SBimn) is such that HHH(Ĉ) is supported in even homological
degrees, then so is HHH(C), and HHH(C)∼= Q[xn]⊗HHH(Ĉ). In particular, if PC(q, a, t) denotes
the Poincaré series of HHH(C), then

PC =
1

1− q
PĈ .

Proof. Consider a more general situation in which M is a chain complex on which some
polynomial ring Q[x] acts. Let Z denote the dg algebra Q[x, y, θ] with d(θ) = x − y, d(x) = 0,
and d(y) = 0. Here, θ is an odd variable, and hence we assume that θ2 = 0. The differential
ensures that y ' x. More precisely, there is a chain map Z → Q[x] sending θ 7→ 0, x 7→ x, and
y 7→ x. This map is a homotopy equivalence Z → Q[x]. Further, the inverse map and the relevant
homotopies can all be chosen to be Q[x]-equivariant.

Consider the chain complex M ′ ' Z ⊗Q[x] M . This is regarded as a dg Q[x]-module in
a slightly non-standard way, where x acts by multiplication by y on the first tensor factor.
The above paragraph implies that there is a homotopy equivalence M ′ 'M which commutes the
Q[x] actions up to homotopy. Now, M ′ ∼= Q[y, θ]⊗M with twisted differential:

– d(y ⊗m) = y ⊗ d(m);

– d(θ ⊗m) = 1⊗ xm− y ⊗m− θ ⊗ d(m).

After rearranging, we see that M 'M ′ ' Q[y]⊗ M̂ with twisted differential, where M̂ denotes

the ‘reduced complex’ M̂ := Cone(M
x
→ M). This construction is formally analogous to the fact

that if X is a topological space on which a group G acts, then there is a space X ′ on which G
acts freely, such that X ' X ′ via a G-equivariant homotopy equivalence.

Now we apply this construction to the case of interest. Since HH is a linear functor which is
extended to complexes, we have that HH commutes with mapping cones. In particular HH(Ĉ)
is the mapping cone of xn acting on HH(C). The above construction then produces a twisted
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differential on Q[xn]⊗HH(Ĉ) such that the resulting complex is homotopy equivalent to HH(C).

Thus we may regard HH(C) as a convolution of complexes qk HH(Ĉ), indexed by k ∈ Z>0. The

result now follows by the parity miracle (Proposition 2.14). Strictly speaking the parity miracle

does not directly apply, because the indexing set is not finite. To fix this problem we fix r

and consider the subcomplex of HH(C) consisting of chains with q-degree r. Each of these is a

convolution with only finitely many terms, since qk HH(Ĉ) is supported in large q-degrees for

k large. Thus, the parity miracle can be applied separately to each q-degree. The details are

straightforward, so we omit them. 2

Proposition 4.13. The complexes K̂n satisfy the same recursion as Kn. That is,

(4.6)

This holds for all n > 1, where by convention we set K̂0 = Q ∈ SBim0.

Proof. For n > 2 simply tensor (2.2) on the left with K̂1 and use Lemma 4.10. For the somewhat

degenerate case n = 1, the result follows from the following argument. Note that when n = 1, the

left-hand side of (4.6) is Q[x1], and the second term on the right-hand side can be identified with

x1Q[x1]. Then the result follows from the observation that K̂1 ' Q, and Q[x1] ∼= Q⊕x1Q[x1]. 2

We have the following streamlined version of the Markov move for the reduced Jones–Wenzl

complexes.

Corollary 4.14. Suppose that 1 6 ` 6 n, with n = k + `. Let C ∈ Kb(SBimn−1) be viewed as

a complex in Kb(SBimn) via the usual inclusion functor. We have

HH(Rn;C(1k t K̂`)) ' t`−1 HH(Rn−1;C(1k t K̂`−1))⊗ Λ[ξ`], (4.7)

where Λ denotes an exterior algebra, and deg ξi = t1−ia. Hence PC(1ktK̂`) = (t`−1+a)PC(1ktK̂`−1).

Proof. For ` > 1 this follows by the same argument in the proof of Corollary 4.5. For ` = 1

this follows from the fact that HH(K̂1) is the mapping cone of x1 acting on HH(Q[x1];Q[x1]) =

Q[x1]⊗Λ[ξ1]. Since x1 acts freely, standard arguments imply that this mapping cone is equivalent

to the quotient Λ[ξ1], which has Poincaré polynomial 1 + a. 2

Corollary 4.15. Let Λ = Λ[ξ1, . . . , ξn] be the exterior algebra, where deg(ξi) = at1−i. Let PΛ

denote its Poincaré polynomial. Then PK̂n = t(
n
2)PΛ.

Note that

PK̂n =
n∏
i=1

(ti−1 + a) =
n−1∏
i=0

(ti + a). (4.8)
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4.4 The complexes we use

Now let us return to the convolution description of the full twist.

Definition 4.16. For each v ∈ {0, 1}n with k zeroes and ` ones, let Cv = Twv(FTktK̂`). Recall

that the shuffle twist Twv was described in Definition 2.4. Again, we identify a braid with its

Rouquier complex.

Example 4.17. If v = (0101100), then we have

It is clear that Cv is conjugate to D̂v, where Dv is as in Definition 3.5. These will be the

complexes we use in our inductive computation of Hochschild cohomology.

Example 4.18. We have C00···0 = FTn while C10···0 = F̂Tn. In general C1···10··· ,0 is given by a

diagram of the form

exemplified here in the case of v = (1111000). The empty white box represents K̂4.

We now present a simple convolution recursion for HH(Cv).

4.5 The key recursion

Lemma 4.19. Let v ∈ {0, 1}n be a sequence with k zeroes and ` = n− k ones. Then

Proof. This is simply the result of Proposition 2.6, followed by an isotopy. 2

Proposition 4.20. We have HH(Cv·0) ' (HH(C1·v) → qHH(C0·v)).
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Proof. Let v ∈ {0, 1}n be a sequence with k zeroes and ` = n − k ones. Observe that Cv·0 can
be written

where we have used Lemma 4.19 to rewrite Twv·0. Now, the exact triangle for Kn (2.2) says that
this complex is homotopy equivalent to a convolution of the form

To prove the Proposition, we must show that the term on the left is HH-equivalent to C1·v,
and the term on the right is HH-equivalent to C0·v. For the term on the right, simply slide the
left-handed crossing (rather, the cabled crossing between 1 strand and k parallel strands) from
the top to the bottom, through the full twist, where it meets and annihilates the right-handed
crossing. The resulting complex is C0·v. For the term on the left, we have the following sequence
of simplifications:

The first equivalence is obtained by rewriting the full-twist as FTk+1 = FTkJk+1, where Jk+1

is the Jucys–Murphy braid. The second is an HH-equivalence which slides the Jucys–Murphy
braid from the bottom to the top. The final equivalence is an obvious isotopy. The braid on the
top of the resulting complex is Tw1·v (similar to the statement of Proposition 2.6 for Twv·0).
The resulting complex is therefore C1·v. Each of the above equivalences corresponds to an honest
homotopy equivalence after applying the functor HH(−). This completes the proof. 2

4.6 Our main result
In this section we prove our main theorem, which gives a recursion formula for the Poincaré
series for HHH(Cv).

196

https://doi.org/10.1112/S0010437X18007571 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007571


On the computation of torus link homology

Proposition 4.21. There is a unique family of rational functions fv(q, a, t), indexed by binary
sequences v ∈ {0, 1}n with n ∈ Z>0, satisfying

fv·1(q, a, t) = (t|v| + a)fv(q, a, t), (4.9a)

fv·0(q, a, t) = qf0·v + f1·v(q, a, t) (4.9b)

together with f∅ = 1.

Proof. Let us first prove uniqueness. Note that (4.9b) applied to the sequence v = (00 · · · 0) yields
f00···0 = qf00···0 + f10···0. In other words,

f00···0 =
1

1− q
f10···0. (4.10)

Now, define a partial order on the set of binary sequences as follows. Given v ∈ {0, 1}n and
w ∈ {0, 1}m, write v < w if one of the following conditions is met:

– n < m;

– n = m and v has fewer zeroes than w;

– n = m, v and w have the same number of zeroes, and the number of inversions in the shuffle
permutation πv is less than the number of inversions in πw.

Then < defines a partial order on the set of binary sequences. The number of inversions in πv is
the number of pairs (i < j) where vi = 1 and vj = 0. Thus, 0 · v 6 v · 0 with equality if and only
if v = (00 · · · 0). Clearly the empty sequence is the unique minimum with respect to this partial
order, and relations (4.9a), (4.9b) (where we use (4.10) to rewrite the all zeroes sequence) for
express any fv in terms of fw with w < v. This proves uniqueness.

For existence, we need to prove consistency of the relations (4.9a), (4.9b). However, this is
clear since for each v, exactly one of the relations (4.9a) or (4.9b) can be applied. 2

We now have our main theorem.

Theorem 4.22. The Poincaré series for HHH(Cv) equals the rational function fv(q, a, t) from
Proposition 4.21. In particular, HHH(Cv) is supported in even homological degrees. As a special
case we have that HHH(FTn) = f00···0(q, a, t) is the Poincaré series of the triply graded homology
of the (n, n) torus link, up to an overall shift.

Proof. Let Pv = PCv denote the Poincaré series for HHH(Cv). We will show that Pv = fv by
induction on v, using the partial order on the set of binary sequences introduced in the proof of
Proposition 4.21.

In case v = ∅, we have C∅ = Q, which satisfies HHH(R0;Q) = HHH(Q;Q) = Q. Thus
P∅ = 1 = f∅.

Now, fix v ∈ {0, 1}n, and assume by induction that Pw = fw for all w < v. If v = (00 · · · 0),
then P10···0 = f10···0 by induction. Further, C10···0 = Ĉ00···0, so Proposition 4.12 says that P00···0 =
(1/(1− q))P10···0, which equals f00···0 by (4.10). This takes care of the case where v is the zero
sequence. Thus, we assume below that v is non-zero.

There are two cases: either v = w ·1 or w ·0 for some w. In the first case, then Corollary 4.14
says that Pw·1 = (t|v| + a)Pw, hence Pw·1 = fw·1 by (4.9a) and induction. Thus, we may assume
that v = w · 0. Since v is non-zero, we have 1 · w < w · 0 (fewer zeroes) and 0 · w < w · 0
(fewer inversions). Thus, by induction, we have P1·w = f1·w and P0·w = f0·w. Also by induction,
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we may assume that HHH(C1·w) and HHH(C0·w) are supported in even homological degrees.
Thus, the terms of the convolution Proposition 4.20 have the same parity after taking HHH.
Proposition 2.14 implies that HHH(Cw·0) splits as a direct sum

HHH(Cw·0) ∼= qHHH(C0·w)⊕HHH(C1·w).

Taking Poincaré series, we see that Pw·0 = qP0·w + P1·w. It follows that Pv = fv, by induction
and the uniqueness statement of Proposition 4.21. 2

5. Numerological considerations

Below, we give an alternate recursive formula for the power series fv(q, a, t) for sequences
v ∈ {0, 1}n. We then give a closed formula for a = 0 specialization f00···0(q, 0, t).

5.1 An alternate recursive formula
The recursion described in this section was actually discovered before the recursion that appears
in Proposition 4.21. We originally proved our main result (Theorem 4.22) using this recursion,
and later found a much more elegant route which now appears in our § 4.6. Nonetheless this
alternate recursion is quite useful, and will lead us to a closed formula for the a-degree zero part
of HHH(FTn) in § 5.3. We introduce some combinatorial notions which will be relevant below.

Definition 5.1. Fix a sequence v ∈ {0, 1}n. We will call a pair of sequences (v, w) compatible
if w ∈ {0, 1}k, where k is the number of zeroes in v. If (v, w) is a compatible pair, we define a
sequence v ◦ w by ‘inserting w into the zeroes of v.’ That is, let (v ◦ w)i = 1 if either vi = 1, or
if vi is the jth zero in v and wj = 1. We let Iv,w ⊂ {1, . . . , n} denote the subset of indices such
that vi = 0 but (v ◦ w)i = 1. We say that i is a one in v if vi = 1, and i is a one in w (relative
to v) if vi = 0 but (v ◦ w)i = 1. When v is understood, we omit the phrase relative to v.

Example 5.2. Let v = (1101001) and w = (001). In this case we have v ◦ w = (1101011), where
the underlined terms indicate where we have inserted w into v.

Definition 5.3. Fix v ∈ {0, 1}n and w ∈ {0, 1}k as above. For each index i, let `(i) denote
the number of ones of v strictly to the left of i, and let m(i) denote the number of ones in w
strictly to the right of i. Let Pv,w,i denote (t`(i)+m(i) + a) if vi = 1 and Pv,w,i = 1 otherwise. Set
Pv,w :=

∏n
i=1 Pv,w,i.

Lemma 5.4. The following relations hold:

(i) Pv·1,w = (t|v| + a)Pv,w;

(ii) Pv·0,w·0 = Pv,w;

(iii) P1·v,w = (t|w| + a)Pv·0,w·1;

(iv) P0·v,0·w = Pv,w;

(v) P0·v,1·w = Pv,w.

Proof. These are easily verified directly from the definition. 2

Proposition 5.5. The functions fv(q, a, t) defined in Proposition 4.21 can also be defined by
the recursion:

f00···0(q, a, t) = (1− q)−1f10...0(q, a, t), (5.1a)
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fv(q, a, t) =
∑

w∈{0,1}k
Pv,w(q, a, t)qk−|w|fw(q, a, t) (if v 6= 0). (5.1b)

The base of the recursion is still f∅ = 1.

Note that we regard {0, 1}0 as the set containing the empty set. Thus, (5.1b) gives

f11···1(q, a, t) = P11···1,∅(q, a, t) =

n∏
i=1

(ti−1 + a)

as a special case.

Proof. Both recursions uniquely pin down a collection of functions fv(q, a, t). Therefore, if one
of these definitions satisfies the other’s recursive formula, then they are equivalent definitions.
The recursions are clearly equivalent when computing fv for sequences of length n 6 1. Let us
temporarily denote by gv the family of functions determined by (5.1a) and (5.1b). We will show
that the gv also satisfy the recursion which defines fv (equations (4.9a) and (4.9b)).

First, note that gv·1 =
∑

w∈{0,1}k Pv·1,wqk1gw, where k1 is the number of zeroes in w. By part

(1) of Lemma 5.4, we have Pv·1,w = (t|v| + a)gw, which implies that

gv·1 = (t|v| + a)gv. (5.2)

Thus, the rule (4.9a) is satisfied by gv.
We now check that gv·0 satisfies (4.9b). If v = (00 · · · 0), then this translates precisely to rule

(5.1a), which we are assuming is valid. Thus, we may assume that v is non-zero. We must show
that gv·0 = qg0·v+g1·v. To do this, fix v ∈ {0, 1}n, let ` = |v| the number of ones in v and k = n−`
the number of zeroes. Below, we let k1 denote the number of zeroes in w, so that

gv =
∑
w

Pv,wqk1gw.

Let us expand gv·0(q, a, t) using the rule (5.1b). Because of the extra zero, there are twice as
many terms in this sum as there were for gv, corresponding to sequences w · 0 and sequences
w · 1. We obtain

gv·0 =
∑
w

qk1(qPv·0,w·0gw·0 + Pv·0,w·1gw·1).

For the sequence w · 0 relative to w, there is an extra zero yielding an extra factor of q. By
Lemma 5.4, we have Pv·0,w·0 = Pv,w, and by (5.2), we have gw·1 = (t|w| + a)gw. This yields

gv·0 =
∑
w

qk1(qPv,wgw·0 + (t|w| + a)Pv·0,w·1gw). (5.3)

Recall that we are assuming v is not the zero-sequence, hence k < n. Now we apply induction
on n, assuming (4.9a) and (4.9b) hold for gw. Applying both of these equations to the right-hand
side of (5.3) we obtain

gv·0 =
∑
w

qk1(q2Pv,wg0·w + qPv,wg1·w + (t|w| + a)Pv·0,w·1gw). (5.4)

Similarly,

g0·v =
∑
w

qk1(qP0·v,0·wg0·w + P0·v,1·wg1·w)
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and
g1·v =

∑
w

P1·v,wq
k1gw.

Lemma 5.4 says P0·v,0·w = Pv,w = P0·v,1·w and P1·v,w = (t|w| + a)Pv·0,w·1. Thus,

qg0·v + g1·v =
∑
w

qk1(q2Pv,wg0·w + qPv,wg1·w + (t|w| + a)Pv·0,w·1gw). (5.5)

Comparing (5.4) to (5.5), we have shown that gv·0 = qg0·v + g1·v, as desired. 2

5.2 The redundancy of rule (5.1a)
Proposition 5.6. Equation (5.1a) follows from a verbatim application of (5.1b) to the case of
the zero sequence v = (00 · · · 0).

Proof. Let v be the zero sequence of length n. When we expand f00···0 using (5.1b), we obtain
a sum of 2n terms, indexed by sequences w ∈ {0, 1}n. We claim that the sum of the terms with
w ending in 1 is actually just f10···0; that the sum of the terms with w ending in 10 is actually
just qf10···0; the sum of the terms with w ending in 100 is q2f10···0; and so forth. Of course, the
unique term where w ends in 10 · 0 (length n) is just qn−1f10···0, because qn−1 is easy observed
to be the coefficient of f10···0 in this expansion.

Given this claim, we have

f00···0 = qnf00···0 + (1 + q + q2 + . . .+ qn−1)f10···0,

which immediately implies (5.1a). So it is enough to show the claim.
The claim is proven by an easy induction, using (4.9b). For instance,

qn−2f10···0 = qn−1f010···0 + qn−2f110···0,

by one application of (4.9b). These are the two terms which end in (10 · · · 0) (length n− 1). This
proves one statement of the claim. For the next, we apply (4.9b) again and decrease the power
of q, obtaining

qn−3f10···0 = qn−1f0010···0 + qn−2(f1010···0 + f0110···0) + qn−3f1110···0.

These are the four terms which end in 10 · · · 0 (length n− 2), and each appears with the correct
power of q. This proves the second statement of our claim. The remaining parts of the claim
follow by repeating this argument. We leave the details to the reader. 2

5.3 The closed form of HHH0(FTn)
One useful consequence of the alternate recursion is that it leads to a simple derivation of
Theorem 1.9. To remind the reader, this theorem stated that

f00···0(q, 0, t) =
∑
σ

ta(σ)+b(σ)qc(σ),

where the sum is over functions σ : {1, . . . , n} → Z>0, and the integers a(σ), b(σ), c(σ) are
defined by:

(i) a(σ) =
∑

k>0

(|σ−1(k)|
2

)
;

(ii) b(σ) is the number of pairs (i, j) ∈ {1, . . . , n} such that i < j and σ(j) = σ(i) + 1;

(iii) c(σ) =
∑n

i=1 σ(i).
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Definition 5.7. Recall Definition 5.1. If (v, w) is a compatible pair of sequences, let c(v, w)
denote the number of pairs of indices i < j such that i is a one in v and j is a one in w (relative
to v).

Example 5.8. Let v = (1101000101) and w = (10110). In this case we have v ◦w = (1111011101),
where the underlined terms indicate where we have inserted w into v. Then c(v, w) = 8. We
interpret c(v, w) as the number of crossings in a certain diagram associated to (v, w). First, draw
the shuffle permutation associated to v.

The ones in the sequence w tell us which strands corresponding to zeroes of v are ‘on’. We will
indicate the ‘on’ and ‘off’ strands by dotted [green] lines and dashed [red] lines, respectively, in
the case of w = (10110).

Then c(v, w) is the total number of crossings between the 1-strands and the ‘on’ 0-strands, shown
here as dots.

We now prove the following.

Lemma 5.9. Let v ∈ {0, 1}n be a sequence with `0 ones and k0 = n − `0 zeroes. The functions
fv(q, 0, t) satisfy the recursion f∅(q, 0, t) = 1 and

fv(q, 0, t) =
∑

w∈{0,1}k0

t(
`0
2 )+c(v,w)qk1fw(q, 0, t),

where w has k1 zeroes.

Proof. Setting a = 0 in Definition 5.3, we see that Pv,w(q, 0, t) is the product of t`(i)+m(i) over

all indices i such that vi = 1. The t`(i) factors contribute t(
`0
2 ) and the tm(i) factors contribute

tc(v,w). Thus, setting a = 0 in the alternate recursion Proposition 5.5 gives the statement. We
are also using the result of Proposition 5.6 in the special case where v is the zero sequence. 2

Proof of Theorem 1.9. Consider a sequence v = (v(0), v(1), . . . , ) of sequences v(r) ∈ {0, 1}n such

that v
(r)
i 6 v

(r+1)
i for all i ∈ {1, . . . , n} and all r > 0. Assume that v(r) = (1, 1, . . . , 1) for r � 0.

Then v defines a function σ : {1, . . . , n}→ Z>0, where σ(i) is the smallest r such that v
(r)
i = 1.

It is easy to see that this yields a bijection between sequences v and functions σ.
Let k(r) denote the number of zeroes of v(r), and let w(r) ∈ {0, 1}k(r) denote the sequence

such that w(0) = v(0) and v(r−1) ◦ w(r) = v(r) for r > 1. Clearly this establishes a bijection
between increasing sequences v and eventually empty sequences w = (w(1), w(2), . . .) such that
(w(r), w(r+1)) are compatible for all r.
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With these notions in place, we apply Lemma 5.9 to f(00···0) iteratively. After one application,

we see that f00···0 is a sum over sequences w(0) of fw(0) , weighted by some monomials in q
and t. We apply the recursion again. The result can be viewed as a sum over sequences w(0) and
w(1) with (w(0), w(1)) compatible. Iterating indefinitely, we see that f00···0 can be expressed as
a sum over all sequences w of some monomials in q and t. Using the bijection between the w
sequences and the v sequences, we regard this as a sum over all sequences v of some monomials
gv computed from v. We claim that gv = ta(σ)+b(σ)qc(σ), which would prove the theorem.

Suppose an index i is such that v(r−1) = 0 but v(r) = 1, with r > 1. Then the t contribution

at the rth step is tc(w
(r−1),w(r))+(σ

−1(r)
2 ) by Lemma 5.9. Taking the product over all r > 1 accounts

for the factor of ta(σ)+b(σ).
Finally, the number of zeroes in w(r) equals the number of indices i ∈ {1, . . . , n} such that

σ(i) > r, that is,
∑

s>r |σ−1(s)|. Each of these contributes a factor of q. Taking the product over
all r > 0 yields q to the power of

∑
06r<s

|σ−1(s)| =
∑
06s

s|σ−1(s)| =
n∑
i=1

σ(i) = c(σ).

This accounts for the factor of qc(σ). 2
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Appendix A. Miscellaneous computations

In this appendix we illustrate the usefulness of our method with a few computations of triply
graded homology for certain torus knots. For the reader’s convenience we present our results
with the proper normalization, and we state how to obtain classical invariants from them.

Let Pβ(Q,A, T ) denote the Poincaré series of HHH(F (β)), where Q,A, T denote the usual
quantum degree, homological degree, and Hochschild degree, respectively. This Pβ is an invariant

of the braid closure L = β̂ up to multiplication by a unit in Z[A±, Q±, T±]. The precise
normalization which yields a link invariant requires that we introduce half-integral powers of
A and T :

PL(Q,A, T ) = T−e(β)Qn(Q−1A1/2T 1/2)e(β)−nPβ(Q,A, T ),

where e(β) is the braid exponent (signed number of crossings). The decategorification corresponds
to specializing T = −1. To avoid choosing a square root of −1, we first rewrite PL in terms of
Q,T , and the Homfly variable α = A1/2T 1/2Q−1:

PL(Q,α, T ) := T−e(β)Qnαe(β)−nPβ(Q,α, T ).

We call PL the super polynomial. Setting T = −1 recovers the Homfly polynomial in variables
α,Q. The slN specialization is then obtained by setting α = QN . For reference, the invariant of
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the unknot is

PU (Q,α, T ) =
α−1 + αT−1

Q−1 −Q
.

Recall that we prefer the variables t = T 2Q−2, q = Q2, a = AQ−2. Thus, we will usually

rewrite PL in terms of these variables. The decategorification is obtained by setting t1/2 =−q−1/2;

if one wishes to avoid working in a ring with
√
−1, then one should also set a1/2(tq)1/4 = −α.

For knots, it turns out that the reduced superpolynomial P̃L(q, a, t) := PL(q, a, t)/PU (q, a, t) is

a Laurent polynomial in q1/2, a, t1/2, so no technical issue arises from the decategorification

t1/2 7→ −q−1/2. The slN specialization is then obtained by setting a = −qN . The following

computations were all done by hand. We omit their derivations, in the interest of readability and

length.

Example A.1. The reduced superpolynomial of the (2, 2k + 1) torus knot is

ak(tq)−k/2(tk + qtk−1 + · · ·+ qk + a(tk−1 + qtk−2 + · · ·+ qk−1)).

In particular, the superpolynomial of the right-handed trefoil, that is, the (2, 3) torus knot,

is a(tq)−1/2(q + t + a). The decategorification is −a(q + q−1 + a), and the slN specialization is

qN−1 + qN+1 − q2N .

Example A.2. The reduced superpolynomial of the (3, 4) torus knot is

a3(tq)−3/2(t3 + qt2 + qt+ q2t+ q3 + a(t2 + t+ qt+ q + q2) + a2).

The decategorification is

−a3(q−3 + q−1 + 1 + q + q3 + a(q−2 + q−1 + 1 + q + q2) + a2).

Setting a = −q2 and tq = 1 gives the correct sl2 specialization (Jones polynomial):

q6(q−3 + q−1 + 1 + q + q3 − (1 + q + q2 + q3 + q4) + q4)) = q3 + q5 − q8.

Example A.3. The reduced superpolynomial of the (3, 5) torus knot is a4(tq)−2 times

t4 + qt3 + qt2 + q2t2 + q2t+ q3t+ q4 + a(t3 + t2 + qt2 + 2qt+ q2t+ q2 + q3) + a2(q + t).

Example A.4. The reduced superpolynomial of the (4, 5) torus knot is

a6(tq)−3 (t6 + qt5 + qt4 + qt3 + q2t4 + q3t2 + q2t3 + q2t2 + q3t+ q3t3 + q4t2 + q4t+ q5t+ q6

+ a (t5 + t4 + t3 + qt4 + q2t3 + 2qt3 + 2qt2 + qt+ 2q2t2 + 2q2t+ 2q3t+ q3t2

+ q4t+ q3 + q4 + q5) + a2(t3 + t2 + t+ qt2 + qt+ q2t+ q + q2 + q3) + a3) .

Observation A.5. Each of the above polynomials is symmetric with respect to exchanging q

and t. Further, the smallest a-degree summands of the Poincaré series of the (n, n + 1) torus

knots are the q, t Catalan numbers, for n = 2, 3, 4. This verifies a conjecture in [GORS14] in

these cases.
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