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DIRECT P R O D U C T S A N D P R O P E R L Y 3-REALISABLE G R O U P S

MANUEL CARDENAS, FRANCISCO F. LASHERAS AND RANJA ROY

In this paper, we show that the direct product of infinite finitely presented groups
is always properly 3-realisable. We also show that classical hyperbolic groups are
properly 3-realisable. We recall that a finitely presented group G is said to be properly
3-realisable if there exists a compact 2-polyhedron K with TTI(K) = G and whose
universal cover K has the proper homotopy type of a (p.l.) 3-manifold with boundary.
The question whether or not every finitely presented is properly 3-realisable remains
open.

1. INTRODUCTION

The following question was formulated in [9] for an arbitrary finitely presented group
G: does there exist a compact 2-polyhedron K with ni(K) = G and whose universal cover
K is proper homotopy equivalent to a 3-manifold? If so, the group G is said to be properly
3-realisable. It is known that the proper homotopy type of any locally finite 2-dimensional
CW-complex can be represented by a subpolyhedron in R4 (see [4]), thus K would always
be proper homotopy equivalent to a 4-manifold. The question of whether or not every
finitely presented G group is properly 3-realisable still remains open. In case of a positive
answer, this property would allow us to use duality arguments in the study of certain
low-dimensional ((co)homological) proper invariants of the group G, see [9]. There are
several results in the literature regarding the proper 3-realisability question for finitely
presented groups (see [1, 5, 9, 10]). See also [6] for a survey on this question. In this
paper, we prove the following.

THEOREM 1 . 1 . IfG and H are infinite finitely presented groups, then the direct
product G x H is properly 3-realisable.

Observe that if G is properly 3-realisable and H is finite, then the direct product
G x H has a copy of G as a subgroup of finite index and hence it is properly 3-realisable,
by ([1, Theorem 1.1]).

COROLLARY 1 . 2 . Every finitely generated Abelian group is properly 3-realisable.

The techniques used in the Proof of Theorem 1.1 also yield the following.
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PROPOSITION 1 . 3 . IfG is the fundamental group of a manifold which can be
covered by an Euclidean space, then G is properly 3-realisable.

As an example, we have that all "classical" hyperbolic groups (that is, the funda-
mental group of a closed Riemannian manifold with negative sectional curvature) are
properly 3-realisable.

2. PRELIMINARIES

In order to prove Theorem 1.1, we first need some preliminaries from proper homo-
topy theory. In what follows, we shall be working within the category tow — Gr of towers
of groups whose objects are inverse sequences of groups

A = {Ao A - At A - A2 < }

A morphism in this category will be called a pro-morphism. See [2, 11] for a general

reference.

A tower L is a free tower if it is of the form

L_ = \LQ +-— L\ <-— L2 A ' ' ' }

where Li = (Bi) are free groups of basis Bi such that Bi+i C Bit the differences
00

Bi — Bi+i are finite and f] Bi = 0, and the bonding homomorphisms i* are given by the
i=0

corresponding basis inclusions. On the other hand, a tower P is a telescopic tower if it is
of the form

P = {P0<E^Pl^P2< }

where Pi = (A) are free groups of basis D{ such that £>j_i C A , the differences
We shall also use the full subcategory (Gr, tow-Gr) of Mor(tow — Gr) whose objects
are arrows A —> G, where A is an object in tow — Gr and G is a group regarded as a
constant tower whose bonding maps are the identity. Morphisms in (Gr, tow — Gr) will
also be called pro-morphisms.

From now on, X will be a (strongly) locally finite CW-complex. A proper map
to : [0, oo) —> X is called a proper ray in X. We say that two proper rays u>, UJ' define the
same end if their restrictions w|N,w'|N are properly homotopic. Moreover, we say that
they define the same strong end if u and u' are in fact properly homotopic.

Given a base ray w i n X and a collection of compact subsets C\ C C2 C • • • C X so
oo

that X = (J Cn, the following tower
7 1 = 1

p r o - 7 n ( A » = {jr!(.Y,w(0)) <- m(X - Ci,w(*i)) <- vx{X - C2,u{t2)) <

can be regarded as an object in (Gr, tow — Gr) and it is called the fundamental pro-group

of (X,u>), where CL>([^,OO)) C X — Ci and the bonding homomorphisms are induced by
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the inclusions. This tower does not depend (up to pro-isomorphism) on the sequence
of subsets {Ci}i. It is worth mentioning that if w and u' define the same strong end,
then pro-7Ti(X,w) and pro— n\(X,w') are pro-isomorphic. In particular, we may always
assume that w is a cellular map. Moreover, if X is strongly connected at each end
(that is, any two proper rays defining the same end define the same strong end), then
TT\{X,W) — lim pro— TT\{X,W) is a well-defined useful invariant which only depends (up
to isomorphism) on the end determined by w (see [8]). In a similar way, one can define
objects in (Gr, tow — Gr) corresponding to the higher homotopy pro-groups of (X, to).

DEFINITION 2 .1 : Given n ^ 1, a tree T and a proper ray w : [0,oo) —• T, a
spherical object S" under T is a space obtained from T by attaching finitely n-spheres
5 " at each vertex of w([0,oo)). Observe that any two of such spherical objects (along w)
are proper homotopy equivalent (under T), by ([2, Propisition 4.5(b)]).

The following result, which characterises those one-ended 2-dimensional proper co-
H-spaces, will be crucial for the Proof of Theorem 1.1.

THEOREM 2 . 2 . [7, Corollary 6.4]. If X is a one-ended 2-dimensional locally
finite CW-complex, then the following are equivalent

(a) pro — 7Ti (X, UJ) is pro-isomorphic to a (coproduct) tower of the form L V P.

(b) There exist spherical objects S* and S%> and a proper homotopy equivalence
(under [0, oo)J X V S£ ~ B(L V P) V S£,.

Here, (B(L V P),OJ') is the properly based 2-polyhedron defined as the proper wedge
(that is, along a base ray) of a one-ended spherical object S^, with pro —7ri(S*,w') = L
(u' : [0, oo) <-+ Si the canonical inclusion), and a proper wedge C of a decreasing sequence
(possibly infinite) of cylinders Cn — S1 x [n, oo) and/or Euclidean planes R^, = S1

x [m, oo)/51 x {m} attached along the half line [0, oo) for which pro — TTI (C, U') = F,
with w' : [0, oo) <-> C the canonical inclusion. Thus, B(L V P) can be seen as a "proper
Eilenberg-MacLane space" K(L V P, 1).

3. D I R E C T PRODUCTS

The purpose of this section is to prove Theorem 1.1 and Proposition 1.3. First, we
shall roughly outline the generalised van Kampen theorem in a naive way (see [3, 12] for
a proof using groupoids). For simplicity, we shall not take care of base points in what
follows (see [14] for details).

Let X 0 ,Xi ,X 2 be subcomplexes of a CW-complex X so that Xi,X2 are connected
and satisfy X = Xi U X2, Xt n X2 = Xo. Suppose Xo is not connected, say it has two
connected components Y and Z. Let Z denote the CW-complex obtained by identifying
a copy of X\ with a copy of X2 along Z, and let X denote the CW-complex (homotopy
equivalent to X) obtained from Y x I and Z by identifying Y x {i} to the copy V +̂1 of
Y in Xi+i, i — 0,1. Then, one can check that we have the following push-out diagrams
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in the category of groups:

TTi ( Z ) IT! (X{) * 7T! (Y) -?-* (t) * IT, (Z)

where t is represented by a loop ({yo} x /) U 7, with y0 € Y and 7 a path in Z from
(y0,0) to (2/0,1); and tp is given by 9 t-t 9 on the first factor, and by 6 >-¥ t9t~1 on the sec-
ond factor. From now on, we shall denote fti(Xi)*ni(Z)'Ki(X2) = n"i(Z) and ^ ( Z J ^ ^ y )
= TTI(X) = TTI(X) the corresponding fundamental groups obtained by the process de-
scribed above.

PROPOSITION 3 . 1 . Let X and Y be locally Unite, simply connected non-

compact CW-complexes. Then, pro—TTI(X X V) ispro-isomorphic to a telescopic tower

P.

COROLLARY 3 . 2 . With X and Y as above, we have lim1 pro -TTI(XXY) = {1}.

Note that Mihalik [13] already showed that the product X x Y of locally finite,
connected non-compact CW-complexes is semistable at 00.

P R O O F OF PROPOSITION 3.1: Let X and Y be locally finite, simply connected non-

compact CW-complexes. In [8], the computation of pro — ITI(X X Y) is done in detail for
Y = R (and X not necessarily simply connected). The computations in the general case
we are concerned with are similar to those in [8], so we shall not take care of base rays
or base points in what follows, for simplicity. Notice that X x Y is strongly connected
at infinity, that is, it only has one strong end (see [13]).

Let Ci C C2 C • • • C X and Dx C Z)2 C • • • C Y be sequences of compact
00 00

subsets with X = (J d and Y = [ J A , and so that X - d = C M U • • • U-Cj,mj and
t=i 1 = 1

Y — Di = A,i U • • • U DiiHi are the corresponding collections of connected components

satisfying Ci+i,i C Cj,i, for all i, and Ci+i^ C Cii2 if mt ^ 2.

Consider U{ = (X x Y) - (d x Dt) = ((j X x D{_,) U ( [} d3 x Y) , i ^ 1. We wish

to compute 7r1([/i) as well as the bonding homomorphism Tri(Ui+i) —> fti(Ui) induced by
inclusion. By the generalised van Kampen theorem, ni{Ui) can be expressed as follows
(the picture roughly describes the case m* = rii = 2):

C, x ,
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X Y)

Ci.jxDj.j) j

Moreover, if we take Pt — F({titjtk,2 ^ j ^ m^2 ^ k < n*}) (here, •F(.A) stands for

the free group on the set ^4), then there are homomorphisms c^ : Pi —> Ti(fi) and

commutative diagrams

where:

(i) a* maps each i ^ * to the new generator added when considering the corres-

ponding push-out (...)^1(Ci,ixDi,/fc) in the expression of TTI(C/i) given above,

(ii) &+i(£i+ij,fc) = t j j - ^ whenever d+\j C dj' {f ^ 2) and A+i,fc C A,*'

(*' > 2).

(iii) A-+i(ti+ij,fc) = 1 if Ci+ij C C M .

Observe that the group inside the curly brackets in the expression of it\{Ui) given above

is the trivial group, since X and Y are both simply connected and hence the group

homomorphisms involved in the corresponding push-out diagrams can be regarded as

induced by the corresponding projections dj x Di>k — • dj and dj x £>ii4 —> Ditk.

Moreover, it is not hard to check that each homomorphism a{ : Pi —> n\(Ui) is in fact

an isomorphism, with the above considerations.

Finally, after an appropriate change of basis for the free groups Pt (in terms of the

original generators itj.t), one can see that the tower

can be regarded as a telescopic tower, and the conclusion of the proposition follows. D

P R O O F OF T H E O R E M 1.1: Let G and H be infinite finitely presented groups, and

let X and Y be compact 2-polyhedra with in{X) = G and n^Y) 2* H. Let X and Y

denote the universal covers of X and Y respectively. Observe that X and Y are non-

compact polyhedra, since G and H are infinite. It is clear that iti(X x Y) = G x H

and X x Y is the universal cover of X x Y. Let p : X x Y —> X x Y be the universal

covering projection and let W denote the 2-skeleton of X x Y. Then, 7Ti(W) = GxH and

W = p~l{W) C X x Y is the universal cover of W, with pro — ̂ \{W) = pro — TTI{X X Y)

which is pro-isomorphic to a telescopic tower P_, by Proposition 3.1. Pick a base ray ui in
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W. Since W is 2-dimensional and (strongly) one-ended, there exist spherical objects S2

and S2, and a proper homotopy equivalence W V S2 ~ B(P) V S2,, by Theorem 2.2. Let
l ^ c W b e the set of vertices in w([0, co)), with p{V) = {v\,..., vr} C W, and denote by
W the polyhedron obtained from W VS2 by attaching one sphere S2 through every vertex
in p~l(p(V)) — <J([0, oo)). Thus, W is the universal cover of the compact 2-polyhedron
obtained from W by attaching one sphere S2 at each of the vertices V\,... ,vT (which is

homotopy equivalent to a wedge W\/ ( V S2)). On the other hand, W is proper homotopy

equivalent to a polyhedron Q obtained from B(P) V S2, by attaching infinitely many
spheres S2 in a proper way (that is, via the corresponding proper homotopy equivalence
given by Theorem 2.2). Finally, the proper homotopy type of the proper wedge B(iP)vS2,
can be represented by the closed subpolyhedron in R3 shown in the figure below. It is
then easy to check that the proper homotopy type of Q can also be represented by a
closed subpolyhedron Q in R3.

t—i

<L< i
< l

<I

Therefore, the universal cover of the compact 2-polyhedron W\/ ( V S2) (with ni(W

V ( V 52)) = G x H) turns out to be proper homotopy equivalent to the 3-manifold

obtained by taking a regular neighbourhood of Q in R3, and the conclusion of the theorem
follows. Q

P R O O F OF PROPOSITION 1.3: Let G be the fundamental group of an n-manifold
M whose universal cover M can be identified with the Euclidean space R". Thus,
pro— 7i"i(M) is clearly pro-isomorphic to a telescopic tower. Therefore, using an argu-
ment similar to that of Theorem 1.1, there is a finite wedge V S2 so that the universal

cover of W V ( V S2) IS proper homotopy equivalent to a 3-manifold, where W is the

2-skeleton of M. D
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