The Canadian Mathematical Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Ideals with approximate unit in semicrossed products

Charalampos Magiatis

Abstract

We characterize the ideals of the semicrossed product $C_{0}(X) \times{ }_{\phi} \mathbb{Z}_{+}$, associated with suitable sequences of closed subsets of X, with left (resp. right) approximate unit. As a consequence, we obtain a complete characterization of ideals with left (resp. right) approximate unit under the assumptions that X is metrizable and the dynamical system (X, ϕ) contains no periodic points.

1 Introduction and notation

The semicrossed product is a nonself-adjoint operator algebra which is constructed from a dynamical system. We recall the construction of the semicrossed product we will consider in this work. Let X be a locally compact Hausdorff space, and let $\phi: X \rightarrow X$ be a continuous and proper surjection (recall that a map ϕ is proper if the inverse image $\phi^{-1}(K)$ is compact for every compact $\left.K \subseteq X\right)$. The pair (X, ϕ) is called a dynamical system. An action of $\mathbb{Z}_{+}:=\mathbb{N} \cup\{0\}$ on $C_{0}(X)$ by isometric $*$-endomorphisms $\alpha_{n}, n \in \mathbb{Z}_{+}$is obtained by defining $\alpha_{n}(f)=f \circ \phi^{n}$. We write the elements of the Banach space $\ell^{1}\left(\mathbb{Z}_{+}, C_{0}(X)\right)$ as formal series $A=\sum_{n \in \mathbb{Z}_{+}} U^{n} f_{n}$ with the norm given by $\|A\|_{1}=\sum_{n \in \mathbb{Z}_{+}}\left\|f_{n}\right\|_{C_{0}(X)}$. Multiplication on $\ell^{1}\left(\mathbb{Z}_{+}, C_{0}(X)\right)$ is defined by setting

$$
\left(U^{n} f\right)\left(U^{m} g\right)=U^{n+m}\left(\alpha^{m}(f) g\right),
$$

and extending by linearity and continuity. With this multiplication, $\ell^{1}\left(\mathbb{Z}_{+}, C_{0}(X)\right)$ is a Banach algebra.

The Banach algebra $\ell^{1}\left(\mathbb{Z}_{+}, C_{0}(X)\right)$ can be faithfully represented as a (concrete) operator algebra on a Hilbert space. This is achieved by assuming a faithful action of $C_{0}(X)$ on a Hilbert space \mathcal{H}_{0}. Then we can define a faithful contractive representation π of $\ell_{1}\left(\mathbb{Z}_{+}, C_{0}(X)\right)$ on the Hilbert space $\mathcal{H}=\mathcal{H}_{0} \otimes \ell^{2}\left(\mathbb{Z}_{+}\right)$by defining $\pi\left(U^{n} f\right)$ as

$$
\pi\left(U^{n} f\right)\left(\xi \otimes e_{k}\right)=\alpha^{k}(f) \xi \otimes e_{k+n}
$$

The semicrossed product $C_{0}(X) \times_{\phi} \mathbb{Z}_{+}$is the closure of the image of $\ell^{1}\left(\mathbb{Z}_{+}, C_{0}(X)\right)$ in $\mathcal{B}(\mathcal{H})$ in the representation just defined. We will denote an element $\pi\left(U^{n} f\right)$ of $C_{0}(X) \times_{\phi} \mathbb{Z}_{+}$by $U^{n} f$ to simplify the notation.

[^0]For $A=\sum_{n \in \mathbb{Z}_{+}} U^{n} f_{n} \in \ell^{1}\left(\mathbb{Z}_{+}, C_{0}(X)\right)$, we call $f_{n} \equiv E_{n}(A)$ the nth Fourier coefficient of A. The maps $E_{n}: \ell^{1}\left(\mathbb{Z}_{+}, C_{0}(X)\right) \rightarrow C_{0}(X)$ are contractive in the (operator) norm of $C_{0}(X) \times_{\phi} \mathbb{Z}_{+}$, and therefore they extend to contractions $E_{n}: C_{0}(X) \times_{\phi}$ $\mathbb{Z}_{+} \rightarrow C_{0}(X)$. An element A of the semicrossed product $C_{0}(X) \times_{\phi} \mathbb{Z}_{+}$is 0 if and only if $E_{n}(A)=0$, for all $n \in \mathbb{Z}_{+}$, and thus A is completely determined by its Fourier coefficients. We will denote A by the formal series $A=\sum_{n \in \mathbb{Z}_{+}} U^{n} f_{n}$, where $f_{n}=$ $E_{n}(A)$. Note, however, that the series $\sum_{n \in \mathbb{Z}_{+}} U^{n} f_{n}$ does not in general converge to $A\left[6\right.$, II.9]. The k th arithmetic mean of A is defined to be $\bar{A}_{k}=\frac{1}{k+1} \sum_{l=0}^{k} S_{l}(A)$, where $S_{l}(A)=\sum_{n=0}^{l} U^{n} f_{n}$. Then, the sequence $\left\{\bar{A}_{k}\right\}_{k \in \mathbb{Z}_{+}}$is norm convergent to A [6, Remark, p. 524]. We refer to $[3,4,6]$ for more information about the semicrossed product.

Let $\left\{X_{n}\right\}_{n=0}^{\infty}$ be a sequence of closed subsets of X satisfying

$$
\begin{equation*}
X_{n+1} \cup \phi\left(X_{n+1}\right) \subseteq X_{n}, \tag{*}
\end{equation*}
$$

for all $n \in \mathbb{N}$. Peters proved in [7] that the subspace $\mathcal{J}=\left\{A \in C_{0}(X) \times_{\phi} \mathbb{Z}_{+}\right.$: $\left.E_{n}(A)\left(X_{n}\right)=\{0\}\right\}$ is a closed two-sided ideal of $C_{0}(X) \times_{\phi} \mathbb{Z}_{+}$. We will write this as $\mathcal{J} \sim\left\{X_{n}\right\}_{n=0}^{\infty}$. We note that if $A \in \mathcal{J} \sim\left\{X_{n}\right\}_{n=0}^{\infty}$, then $U^{n} E_{n}(A) \in \mathcal{J}$ for all $n \in \mathbb{Z}_{+}$. Peters proved in [7] that there is a one-to-one correspondence between closed two-sided ideals $\mathcal{J} \subseteq C_{0}(X) \times_{\phi} \mathbb{Z}_{+}$and sequences $\left\{X_{n}\right\}_{n=0}^{\infty}$ of closed subsets of X satisfying $(*)$, under the assumptions that X is metrizable and the dynamical system (X, ϕ) contains no periodic points. Moreover, he characterizes the maximal and prime ideals of the semicrossed product $C_{0}(X) \times_{\phi} \mathbb{Z}_{+}$in this case.

Donsig, Katavolos, and Manousos obtained in [4] a characterization of the Jacobson radical for the semicrossed product $C_{0}(X) \times_{\phi} \mathbb{Z}_{+}$, where X is a locally compact metrizable space and $\phi: X \rightarrow X$ is a continuous and proper surjection. Andreolas, Anoussis, and the author characterized in [2] the ideal generated by the compact elements and in [1] the hypocompact and the scattered radical of the semicrossed product $C_{0}(X) \times_{\phi} \mathbb{Z}_{+}$, where X is a locally compact Hausdorff space and $\phi: X \rightarrow X$ is a homeomorphism. All these ideals are of the form $\mathcal{J} \sim\left\{X_{n}\right\}_{n=0}^{\infty}$ for suitable families of closed subsets $\left\{X_{n}\right\}_{n=0}^{\infty}$.

In the present paper, we characterize the closed two-sided ideals $\mathcal{J} \sim\left\{X_{n}\right\}_{n=0}^{\infty}$ of $C_{0}(X) \times_{\phi} \mathbb{Z}_{+}$with left (resp. right) approximate unit. As a consequence, we obtain a complete characterization of ideals with left (resp. right) approximate unit under the additional assumptions that X is metrizable and the dynamical system (X, ϕ) contains no periodic points.

Recall that a left (resp. right) approximate unit of a Banach algebra \mathcal{A} is a net $\left\{u_{\lambda}\right\}_{\lambda \in \Lambda}$ of elements of \mathcal{A} such that:
(1) for some positive number $r,\left\|u_{\lambda}\right\| \leq r$ for all $\lambda \in \Lambda$,
(2) $\lim u_{\lambda} a=a$ (resp. $\lim a u_{\lambda}=a$), for all $a \in \mathcal{A}$, in the norm topology of \mathcal{A}.

A net which is both a left and a right approximate unit of \mathcal{A} is called an approximate unit of \mathcal{A}. A left (resp. right) approximate unit $\left\{u_{\lambda}\right\}_{\lambda \in \Lambda}$ that satisfies $\left\|u_{\lambda}\right\| \leq 1$ for all $\lambda \in \Lambda$ is called a contractive left (resp. right) approximate unit.

We will say that an ideal \mathcal{J} of a Banach algebra \mathcal{A} has a left (resp. right) approximate unit if it has a left (resp. right) approximate unit as an algebra.

2 Ideals with approximate unit

In the following theorem, the ideals $\mathcal{J} \sim\left\{X_{n}\right\}_{n=0}^{\infty}$ with right approximate unit are characterized.

Theorem 2.1 Let J ~ $\left\{X_{n}\right\}_{n=0}^{\infty}$ be a nonzero ideal of $C_{0}(X) \times{ }_{\phi} \mathbb{Z}_{+}$. The following are equivalent:
(1) J has a right approximate unit.
(2) $X_{n}=X_{n+1}$, for all $n \in \mathbb{Z}_{+}$.

Proof We start by proving that (1) \Rightarrow (2). Let $\mathcal{J} \sim\left\{X_{n}\right\}_{n=0}^{\infty}$ be an ideal with right approximate unit $\left\{V_{\lambda}\right\}_{\lambda \in \Lambda}$. We suppose that there exists $n \in \mathbb{Z}_{+}$such that $X_{n+1} \mp X_{n}$. Let

$$
n_{0}=\min \left\{n \in \mathbb{Z}_{+}: X_{n+1} \mp X_{n}\right\},
$$

$x_{0} \in X_{n_{0}} \backslash X_{n_{0}+1}$, and $f \in C_{0}(X)$ such that $f\left(x_{0}\right)=1, f\left(X_{n_{0}+1}\right)=\{0\}$, and $\|f\|=1$. Then, for $A=U^{n_{0}+1} f$, we have $A \in \mathcal{J}$ and

$$
\left\|A V_{\lambda}-A\right\| \geq\left\|E_{n_{0}+1}\left(A V_{\lambda}-A\right)\right\|=\left\|f E_{0}\left(V_{\lambda}\right)-f\right\| \geq\left|\left(f E_{0}\left(V_{\lambda}\right)-f\right)\left(x_{0}\right)\right|=1,
$$

for all $\lambda \in \Lambda$, since $x_{0} \in X_{n_{0}}$ and $E_{0}\left(V_{\lambda}\right)\left(X_{n_{0}}\right)=0$, which is a contradiction. Therefore, $X_{n}=X_{n+1}$ for all $n \in \mathbb{Z}_{+}$.

For (2) $\Rightarrow(1)$, assume that $X_{n}=X_{n+1}$ for all $n \in \mathbb{Z}_{+}$. By $(*)$, we get that $\phi\left(X_{0}\right) \subseteq X_{0}$. We will show that if $\left\{u_{\lambda}\right\}_{\lambda \in \Lambda}$ is a contractive approximate unit of the ideal $C_{0}\left(X \backslash X_{0}\right)$ of $C_{0}(X)$, then $\left\{U^{0} u_{\lambda}\right\}_{\lambda \in \Lambda}$ is a right approximate unit of \mathcal{J}. Since $\left\|u_{\lambda}\right\| \leq 1$, we have $\left\|U^{0} u_{\lambda}\right\| \leq 1$.

Let $A \in \mathcal{J}$ and $\varepsilon>0$. Then there exists $k \in \mathbb{Z}_{+}$such that

$$
\left\|A-\bar{A}_{k}\right\|<\frac{\varepsilon}{4},
$$

where \bar{A}_{k} is the k th arithmetic mean of A. Since $X_{n}=X_{0}, E_{n}\left(\bar{A}_{k}\right) \in C_{0}\left(X \backslash X_{0}\right)$ and $\left\{u_{\lambda}\right\}_{\lambda \in \Lambda}$ is an approximate unit of $C_{0}\left(X \backslash X_{0}\right)$, there exists $\lambda_{0} \in \Lambda$ such that

$$
\left\|E_{l}\left(\bar{A}_{k}\right) u_{\lambda}-E_{l}\left(\bar{A}_{k}\right)\right\|<\frac{\varepsilon}{2(k+1)},
$$

for all $l \leq k$ and $\lambda>\lambda_{0}$. So, for $\lambda>\lambda_{0}$, we get that

$$
\begin{aligned}
\left\|A U^{0} u_{\lambda}-A\right\| & =\left\|A U^{0} u_{\lambda}-\bar{A}_{k} U^{0} u_{\lambda}+\bar{A}_{k} U^{0} u_{\lambda}-\bar{A}_{k}+\bar{A}_{k}-A\right\| \\
& \leq\left\|A U^{0} u_{\lambda}-\bar{A}_{k} U^{0} u_{\lambda}\right\|+\left\|\bar{A}_{k} U^{0} u_{\lambda}-\bar{A}_{k}\right\|+\left\|A-\bar{A}_{k}\right\| \\
& <\left\|\bar{A}_{k} U^{0} u_{\lambda}-\bar{A}_{k}\right\|+\frac{\varepsilon}{2} \\
& \leq \sum_{l=0}^{k}\left\|E_{l}\left(\bar{A}_{k}\right) u_{\lambda}-E_{l}\left(\bar{A}_{k}\right)\right\|+\frac{\varepsilon}{2} \\
& <\varepsilon,
\end{aligned}
$$

which concludes the proof.

In the following theorem, the ideals $\mathcal{J} \sim\left\{X_{n}\right\}_{n=0}^{\infty}$ with left approximate unit are characterized.

Theorem 2.2 Let $\mathcal{J} \sim\left\{X_{n}\right\}_{n=0}^{\infty}$ be a nonzero ideal of $C_{0}(X) \times{ }_{\phi} \mathbb{Z}_{+}$. The following are equivalent:
(1) J has a left approximate unit.
(2) $\quad X_{0} \mp X$ and $\phi^{n}\left(X \backslash X_{n}\right)=X \backslash X_{0}$, for all $n \in \mathbb{Z}_{+}$.
(3) $\phi\left(X \backslash X_{1}\right)=X \backslash X_{0}$ and $\phi\left(X_{n+1} \backslash X_{n+2}\right)=X_{n} \backslash X_{n+1}$, for all $n \in \mathbb{Z}_{+}$.

Proof We start by proving that (1) \Rightarrow (2). Let $\mathcal{J} \sim\left\{X_{n}\right\}_{n=0}^{\infty}$ be an ideal with left approximate unit $\left\{V_{\lambda}\right\}_{\lambda \in \Lambda}$.

First, we prove that $X_{0} \mp X$. We suppose that $X_{0}=X$. Then $E_{0}\left(V_{\lambda}\right)=0$, for all $\lambda \in \Lambda$, and hence for every $U^{n} f \in \mathcal{J}$, we have

$$
\left\|V_{\lambda} U^{n} f-U^{n} f\right\| \geq\left\|E_{n}\left(V_{\lambda} U^{n} f-U^{n} f\right)\right\|=\left\|E_{0}\left(V_{\lambda}\right) \circ \phi^{n} f-f\right\|=\|f\|,
$$

for all $\lambda \in \Lambda$, which is a contradiction. Therefore, $X_{0} \mp X$.
Now, we prove that $\phi^{n}\left(X \backslash X_{n}\right)=X \backslash X_{0}$, for all $n \in \mathbb{Z}_{+}$. We suppose that there exists $n \in \mathbb{Z}_{+}$such that $\phi^{n}\left(X \backslash X_{n}\right) \nsubseteq X \backslash X_{0}$ and let

$$
n_{0}=\min \left\{n \in \mathbb{Z}_{+}: \phi^{n}\left(X \backslash X_{n}\right) \nsubseteq X \backslash X_{0}\right\} .
$$

The set $X \backslash X_{n_{0}}$ is nonempty, since $X_{n_{0}} \subseteq X_{0} \mp X$. Then, there exist $x_{0} \in X \backslash X_{n_{0}}$ such that $\phi^{n_{0}}\left(x_{0}\right) \in X_{0}$ and a function $f \in C_{0}(X)$ such that $f\left(x_{0}\right)=1, f\left(X_{n_{0}}\right)=\{0\}$, and $\|f\|=1$. If $A=U^{n_{0}} f$, by the choice of f, we have that $A \in \mathcal{J},\|A\|=1$ and

$$
\begin{aligned}
\left\|V_{\lambda} A-A\right\| & \geq\left\|E_{n_{0}}\left(V_{\lambda} A-A\right)\right\| \\
& =\left\|E_{0}\left(V_{\lambda}\right) \circ \phi^{n_{0}} f-f\right\| \\
& \geq\left|\left(E_{0}\left(V_{\lambda}\right) \circ \phi^{n_{0}} f-f\right)\left(x_{0}\right)\right| \\
& =1,
\end{aligned}
$$

for all $\lambda \in \Lambda$, since $\phi^{n_{0}}\left(x_{0}\right) \in X_{0}$ and $E_{0}\left(V_{\lambda}\right)\left(X_{0}\right)=\{0\}$, which is a contradiction. Therefore, $\phi^{n}\left(X \backslash X_{n}\right) \subseteq X \backslash X_{0}$. Furthermore, by $(*)$, we get that $\phi^{n}\left(X_{n}\right) \subseteq X_{0}$, for all $n \in \mathbb{Z}_{+}$, and hence

$$
X=\phi^{n}(X)=\phi^{n}\left(X_{n} \cup\left(X \backslash X_{n}\right)\right)=\phi^{n}\left(X_{n}\right) \cup \phi^{n}\left(X \backslash X_{n}\right) \subseteq X_{0} \cup \phi^{n}\left(X \backslash X_{n}\right) .
$$

Since $\phi^{n}\left(X \backslash X_{n}\right) \subseteq X \backslash X_{0}$ and ϕ is surjective, $\phi^{n}\left(X \backslash X_{n}\right)=X \backslash X_{0}$, for all $n \in \mathbb{Z}_{+}$.
For (2) \Rightarrow (1), assume that $X_{0} \mp X$ and $\phi^{n}\left(X \backslash X_{n}\right)=X \backslash X_{0}$, for all $n \in \mathbb{Z}_{+}$. We will show that if $\left\{u_{\lambda}\right\}_{\lambda \in \Lambda}$ is a contractive approximate unit of the ideal $C_{0}\left(X \backslash X_{0}\right)$ of $C_{0}(X)$, then $\left\{U^{0} u_{\lambda}\right\}_{\lambda \in \Lambda}$ is a left approximate unit of \mathcal{J}. Since $\left\|u_{\lambda}\right\| \leq 1$, we have $\left\|U^{0} u_{\lambda}\right\| \leq 1$.

Let A be a norm-one element of \mathcal{J} and $\varepsilon>0$. Then there exists $k \in \mathbb{Z}_{+}$such that

$$
\left\|A-\bar{A}_{k}\right\|<\frac{\varepsilon}{4},
$$

where \bar{A}_{k} is the k th arithmetic mean of A. For $l \leq k$, let

$$
D_{\varepsilon}\left(E_{l}\left(\bar{A}_{k}\right)\right)=\left\{x \in X:\left|E_{l}\left(\bar{A}_{k}\right)(x)\right| \geq \frac{\varepsilon}{4(k+1)}\right\}
$$

Since $A \in \mathcal{J}$, we have $E_{l}\left(\bar{A}_{k}\right)\left(X_{l}\right)=\{0\}$ and hence $D_{\varepsilon}\left(E_{l}\left(\bar{A}_{k}\right)\right) \subseteq X \backslash X_{l}$. Furthermore, since $\phi^{n}\left(X \backslash X_{n}\right)=X \backslash X_{0}$, for all $n \in \mathbb{Z}_{+}$, we have that $\phi^{l}\left(D_{\varepsilon}\left(E_{l}\left(\bar{A}_{k}\right)\right)\right) \subseteq X \backslash X_{0}$. Moreover, the set $D_{\varepsilon}\left(E_{l}\left(\bar{A}_{k}\right)\right)$ is compact, since $E_{l}\left(\bar{A}_{k}\right) \in C_{0}(X)$, and hence the set $\phi^{l}\left(D_{\varepsilon}\left(E_{l}\left(\bar{A}_{k}\right)\right)\right)$ is also compact. By Urysohn's lemma for locally compact Hausdorff spaces [8, p. 39], there is a norm-one function $v_{l} \in C_{0}(X)$ such that

$$
v_{l}(x)= \begin{cases}1, & x \in \phi^{l}\left(D_{\varepsilon}\left(E_{l}\left(\bar{A}_{k}\right)\right)\right) \\ 0, & x \in X_{0}\end{cases}
$$

Then, there exists $\lambda_{0} \in \Lambda$ such that

$$
\left\|u_{\lambda} v_{l}-v_{l}\right\|<\frac{\varepsilon}{2(k+1)}
$$

for all $l \leq k$ and $\lambda>\lambda_{0}$, and hence

$$
\left|u_{\lambda}(x)-1\right|<\frac{\varepsilon}{2(k+1)},
$$

for all $x \in \cup_{l=0}^{k} \phi^{l}\left(D_{\varepsilon}\left(E_{l}\left(\bar{A}_{k}\right)\right)\right)$ and $\lambda>\lambda_{0}$. Therefore, if $x \in \cup_{l=0}^{k}\left(D_{\varepsilon}\left(E_{l}\left(\bar{A}_{k}\right)\right)\right)$, then $\phi^{l}(x) \in \cup_{l=0}^{k} \phi^{l}\left(D_{\varepsilon}\left(E_{l}\left(\bar{A}_{k}\right)\right)\right)$ and hence

$$
\left\|\left(\left(u_{\lambda} \circ \phi^{l}\right) E_{l}\left(\bar{A}_{k}\right)-E_{l}\left(\bar{A}_{k}\right)\right)(x)\right\|<\frac{\varepsilon}{2(k+1)},
$$

for all $l \leq k$ and $\lambda>\lambda_{0}$. On the other hand, if $x \notin \cup_{l=0}^{k}\left(D_{\varepsilon}\left(E_{l}\left(\bar{A}_{k}\right)\right)\right)$, then

$$
\left|E_{l}\left(\bar{A}_{k}\right)(x)\right|<\frac{\varepsilon}{4(k+1)},
$$

for all $l \leq k$, and hence

$$
\left\|\left(\left(u_{\lambda} \circ \phi^{l}\right) E_{l}\left(\bar{A}_{k}\right)-E_{l}\left(\bar{A}_{k}\right)\right)(x)\right\|<\frac{\varepsilon}{2(k+1)} .
$$

From what we said so far, we get that

$$
\begin{aligned}
\left\|U^{0} u_{\lambda} A-A\right\| & <\left\|U^{0} u_{\lambda} \bar{A}_{k}-\bar{A}_{k}\right\|+\frac{\varepsilon}{2} \\
& \leq \sum_{l=0}^{k}\left\|\left(u_{\lambda} \circ \phi^{l}\right) E_{l}\left(\bar{A}_{k}\right)-E_{l}\left(\bar{A}_{k}\right)\right\|+\frac{\varepsilon}{2} \\
& <\varepsilon,
\end{aligned}
$$

for all $\lambda>\lambda_{0}$.
Now, we show that (2) \Rightarrow (3). We assume that $\phi^{n}\left(X \backslash X_{n}\right)=X \backslash X_{0}$, for all $n \in \mathbb{Z}_{+}$. Then, $\phi\left(X \backslash X_{n+2}\right) \subseteq X \backslash X_{n+1}$. Indeed, if $x \in X \backslash X_{n+2}$ and $\phi(x) \in X_{n+1}$, then $\phi^{n+2}(x) \in X_{0}$, by $(*)$, which is a contradiction. Furthermore, by ($*$), we know that $\phi\left(X_{n+1}\right) \subseteq X_{n}$ and hence $\phi\left(X_{n+1} \backslash X_{n+2}\right) \subseteq X_{n} \backslash X_{n+1}$ for all $n \in \mathbb{Z}_{+}$.

To prove that $\phi\left(X_{n+1} \backslash X_{n+2}\right)=X_{n} \backslash X_{n+1}$ for all $n \in \mathbb{Z}_{+}$, we suppose that there exists $n \in \mathbb{Z}_{+}$such that $\phi\left(X_{n+1} \backslash X_{n+2}\right) \mp X_{n} \backslash X_{n+1}$. If

$$
n_{0}=\min \left\{n \in \mathbb{Z}_{+}: \phi\left(X_{n+1} \backslash X_{n+2}\right) \varsubsetneqq X_{n} \backslash X_{n+1}\right\},
$$

then

$$
\begin{aligned}
\phi\left(X_{n_{0}+1}\right) & =\phi\left(X_{n_{0}+2} \cup\left(X_{n_{0}+1} \backslash X_{n_{0}+2}\right)\right) \\
& =\phi\left(X_{n_{0}+2}\right) \cup \phi\left(X_{n_{0}+1} \backslash X_{n_{0}+2}\right) \\
& \subseteq X_{n_{0}+1} \cup \phi\left(X_{n_{0}+1} \backslash X_{n_{0}+2}\right) \\
& \mp X_{n_{0}+1} \cup\left(X_{n_{0}} \backslash X_{n_{0}+1}\right) \\
& =X_{n_{0}},
\end{aligned}
$$

and hence

$$
\begin{aligned}
\phi(X) & =\phi\left(X_{n_{0}+1} \cup\left(X \backslash X_{n_{0}+1}\right)\right) \\
& =\phi\left(X_{n_{0}+1}\right) \cup \phi\left(X \backslash X_{n_{0}+1}\right) \\
& \subseteq \phi\left(X_{n_{0}+1}\right) \cup\left(X \backslash X_{n_{0}}\right) \\
& \mp X,
\end{aligned}
$$

which is a contradiction, since ϕ is surjective. Therefore, $\phi\left(X_{n+1} \backslash X_{n+2}\right)=X_{n} \backslash X_{n+1}$ for all $n \in \mathbb{Z}_{+}$.

Finally, we show that (3) \Rightarrow (2). We assume that $\phi\left(X \backslash X_{1}\right)=X \backslash X_{0}$ and $\phi\left(X_{n+1} \backslash X_{n+2}\right)=X_{n} \backslash X_{n+1}$, for all $n \in \mathbb{Z}_{+}$. Then, $X_{0} \mp X$. Indeed, if $X_{0}=X$, then $\mathcal{J} \equiv\{0\}$, which is a contradiction. If $n>1$, we have that

$$
\begin{aligned}
\phi\left(X \backslash X_{n}\right) & =\phi\left[\left(X \backslash X_{1}\right) \cup\left(X_{1} \backslash X_{2}\right) \cup \cdots \cup\left(X_{n-1} \backslash X_{n}\right)\right] \\
& =\phi\left(X \backslash X_{1}\right) \cup \phi\left(X_{1} \backslash X_{2}\right) \cup \cdots \cup \phi\left(X_{n-1} \backslash X_{n}\right) \\
& =\left(X \backslash X_{0}\right) \cup\left(X_{0} \backslash X_{1}\right) \cup \cdots \cup\left(X_{n-2} \backslash X_{n-1}\right) \\
& =X \backslash X_{n-1},
\end{aligned}
$$

and hence $\phi^{n}\left(X \backslash X_{n}\right)=X \backslash X_{0}$, for all $n \in \mathbb{Z}_{+}$.
Remark 2.3 It follows from the proofs of Theorems 2.1 and 2.2 that if $\mathcal{J} \sim\left\{X_{n}\right\}_{n=0}^{\infty}$ is an ideal of $C_{0}(X) \times{ }_{\phi} \mathbb{Z}_{+}$with a left (resp. right) approximate unit, then it has a contractive left (resp. right) approximate unit of the form $\left\{U^{0} u_{\lambda}\right\}_{\lambda \in \Lambda}$ where $\left\{u_{\lambda}\right\}_{\lambda \in \Lambda}$ a contractive approximate unit of the ideal $C_{0}\left(X \backslash X_{0}\right)$ of $C_{0}(X)$.

By Theorem 2.2, if $\mathcal{J} \sim\left\{X_{n}\right\}_{n=0}^{\infty}$ is an ideal of $C_{0}(X) \times_{\phi} \mathbb{Z}_{+}$with a left approximate unit, then $X_{n+1}=X_{n}$ or $X_{n+1} \mp X_{n}$ for all $n \in \mathbb{Z}_{+}$. If $\mathcal{J} \sim\left\{X_{n}\right\}_{n=0}^{\infty}$ and $X_{n+1}=X_{n}$, for all $n \in \mathbb{Z}_{+}$, we will write $\mathcal{J} \sim\left\{X_{0}\right\}$. We obtain the following characterization.

Corollary 2.4 Let $\mathcal{J} \sim\left\{X_{0}\right\}$ be a nonzero ideal of $C_{0}(X) \times_{\phi} \mathbb{Z}_{+}$. The following are equivalent:
(1) J has a left approximate unit.
(2) $\phi\left(X_{0}\right)=X_{0}$ and $\phi\left(X \backslash X_{0}\right)=X \backslash X_{0}$.

Proof By Theorem 2.2, we have $\phi\left(X \backslash X_{0}\right)=X \backslash X_{0}$. By (*), we have $\phi\left(X_{0}\right) \subseteq X_{0}$, and since ϕ is surjective, we get $\phi\left(X_{0}\right)=X_{0}$.

In the following proposition, the ideals $\mathcal{J} \sim\left\{X_{n}\right\}_{n=1}^{\infty}$ of $C_{0}(X) \times{ }_{\phi} \mathbb{Z}_{+}$with a left approximate unit are characterized, when ϕ is a homeomorphism.

Proposition 2.5 Let $\mathcal{J} \sim\left\{X_{n}\right\}_{n=1}^{\infty}$ be a nonzero ideal of $C_{0}(X) \times{ }_{\phi} \mathbb{Z}_{+}$, where ϕ is a homeomorphism. The following are equivalent:
(1) J has a left approximate unit.
(2) There exist $S, W \mp X$ such that S is closed and $\phi(S)=S$, the sets $\phi^{-1}(W)$, $\phi^{-2}(W), \ldots$ are pairwise disjoint and $\phi^{k}(W) \cap S=\varnothing$, for all $k \in \mathbb{Z}$, and

$$
X_{n}=S \cup\left(\cup_{k=n}^{\infty} \phi^{-k}(W)\right),
$$

for all $n \in \mathbb{Z}_{+}$.
Proof The second condition implies the second condition of Theorem 2.2 and hence the implication (2) $\Rightarrow(1)$ is immediate. We will prove the implication $(1) \Rightarrow(2)$.

We set $S=\cap_{n=0}^{\infty} X_{n}$. Clearly, the set S is closed and, by $(*)$, we have $\phi(S) \subseteq S$. We will prove that $\phi(S)=S$. We suppose $\phi(S) \mp S$. Since ϕ is surjective, there exists $x \in$ $X \backslash S$ such that $\phi(x) \in S$. Moreover, $\phi^{n}(x) \in S$ for all $n \geq 1$. However, since $x \notin S$, there exists n_{0} such that $x \notin X_{n_{0}}$ and hence $\phi^{n_{0}}(x) \in X \backslash X_{0}$, by Theorem 2.2, which is a contradiction since $S \cap\left(X \backslash X_{0}\right)=\varnothing$.

By Theorem 2.2, $\phi\left(X_{n+1} \backslash X_{n+2}\right)=X_{n} \backslash X_{n+1}$ for all $n \in \mathbb{Z}_{+}$and hence $\phi^{n}\left(X_{n} \backslash\right.$ $\left.X_{n+1}\right)=X_{0} \backslash X_{1}$ or equivalently $X_{n} \backslash X_{n+1}=\phi^{-n}\left(X_{0} \backslash X_{1}\right)$ since ϕ is a homeomorphism. Furthermore, the sets $\phi^{-1}\left(X_{0} \backslash X_{1}\right), \phi^{-2}\left(X_{0} \backslash X_{1}\right), \ldots$ are pairwise disjoint.

We set $W=X_{0} \backslash X_{1}$. Clearly, $\phi^{k}(W) \cap S=\varnothing$ for all $k \in \mathbb{Z}$, since $\phi(S)=S$ and $\phi(W) \subseteq X \backslash X_{0}$. Also, $X_{0}=S \cup\left(X_{0} \backslash X_{1}\right) \cup\left(X_{1} \backslash X_{2}\right) \cup \cdots$ and hence

$$
X_{0}=S \cup\left(\cup_{k=0}^{\infty} \phi^{-k}(W)\right) .
$$

Finally, for all $n \in \mathbb{Z}_{+}$we have that

$$
X_{0}=X_{n} \cup\left(\cup_{k=1}^{n}\left(X_{k-1} \backslash X_{k}\right)\right)=X_{n} \cup\left(\cup_{k=1}^{n} \phi^{-k+1}(W)\right)=X_{n} \cup\left(\cup_{k=0}^{n-1} \phi^{-k}(W)\right),
$$

and so

$$
X_{n}=X_{0} \backslash\left(\cup_{k=0}^{n-1} \phi^{-k}(W)\right)=S \cup\left(\cup_{k=n}^{\infty} \phi^{-k}(W)\right) .
$$

In the following corollary, the ideals with an approximate unit are characterized.
Corollary 2.6 Let $\mathcal{J} \sim\left\{X_{n}\right\}_{n=0}^{\infty}$ be a nonzero ideal of $C_{0}(X) \times_{\phi} \mathbb{Z}_{+}$. The following are equivalent:
(1) J has an approximate unit.
(2) $X_{n}=X_{n+1}$, for all $n \in \mathbb{Z}_{+}$, and $\phi\left(X \backslash X_{0}\right)=X \backslash X_{0}$.

Proof $\quad(1) \Rightarrow(2)$ is immediate from Theorem 2.1 and Corollary 2.4.
We show (2) $\Rightarrow(1)$. If $X_{n}=X_{n+1}$, by $(*)$, we have $\phi\left(X_{0}\right) \subseteq X_{0}$. Since $\phi\left(X \backslash X_{0}\right)=$ $X \backslash X_{0}$ and ϕ surjective, we have $\phi\left(X_{0}\right)=X_{0}$. Theorem 2.1 and Corollary 2.4 conclude the proof.

Let B be a Banach space, and let C be a subspace of B. The set of linear functionals that vanish on a subspace C of B is called the annihilator of C. A subspace C of a Banach space B is an M-ideal in B if its annihilator is the kernel of a projection P on B^{*} such that $\|y\|=\|P(y)\|+\|y-P(y)\|$, for all y, where B^{*} is the dual space of B.

Effros and Ruan proved that the M-ideals in a unital operator algebra are the closed two-sided ideals with an approximate unit [5, Theorem 2.2]. Therefore, we obtain the following corollary about the M-ideals of a semicrossed product.

Corollary 2.7 Let $\mathcal{J} \sim\left\{X_{n}\right\}_{n=0}^{\infty}$ be a nonzero ideal of $C(X) \times_{\phi} \mathbb{Z}_{+}$, where X is compact. The following are equivalent:
(1) J is an M-ideal.
(2) J has an approximate unit.
(3) $X_{n}=X_{n+1}$, for all $n \in \mathbb{Z}_{+}$, and $\phi\left(X \backslash X_{0}\right)=X \backslash X_{0}$.

Acknowledgment The author would like to thank M. Anoussis and D. Drivaliaris for their support and valuable remarks and comments.

References

[1] G. Andreolas, M. Anoussis, and C. Magiatis, Topological radicals of semicrossed products. Serdica Math. J. 47(2021), 81-92.
[2] G. Andreolas, M. Anoussis, and C. Magiatis, Compact multiplication operators on semicrossed products. Stud. Math. 269(2023), 193-207.
[3] K. R. Davidson, A. H. Fuller, and E. T. A. Kakariadis, Semicrossed products of operator algebras: a survey. New York J. Math. 24A(2018), 56-86.
[4] A. Donsig, A. Katavolos, and A. Manoussos, The Jacobson radical for analytic crossed products. J. Funct. Anal. 187(2001), 129-145.
[5] E. G. Effros and Z.-J. Ruan, On non self-adjoint operator algebras. Proc. Amer. Math. Soc. 110(1990), 915-922.
[6] J. Peters, Semicrossed products of C^{*}-algebras. J. Funct. Anal. 59(1984), 498-534.
[7] J. Peters, The ideal structure of certain nonselfadjoint operator algebras. Trans. Amer. Math. Soc. 305(1988), 333-352.
[8] W. Rudin, Real and complex analysis. 3rd ed., McGraw-Hill Book Co., New York, 1987.
Department of Financial and Management Engineering, University of the Aegean, Kountouriotou 41, Chios 82100, Greece
e-mail: chmagiatis@aegean.gr

[^0]: Received by the editors May 30, 2023; accepted September 7, 2023.
 Published online on Cambridge Core September 12, 2023.
 AMS subject classification: 47L65.
 Keywords: Semicrossed product, ideal, approximate unit, M-ideal.

