Canad. Math. Bull. Vol. 67 (1), 2024, pp. 257–264 http://dx.doi.org/10.4153/S0008439523000711

The Canadian Mathematical Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Ideals with approximate unit in semicrossed products

Charalampos Magiatis

Abstract. We characterize the ideals of the semicrossed product $C_0(X) \times_{\phi} \mathbb{Z}_+$, associated with suitable sequences of closed subsets of X, with left (resp. right) approximate unit. As a consequence, we obtain a complete characterization of ideals with left (resp. right) approximate unit under the assumptions that X is metrizable and the dynamical system (X, ϕ) contains no periodic points.

1 Introduction and notation

The semicrossed product is a nonself-adjoint operator algebra which is constructed from a dynamical system. We recall the construction of the semicrossed product we will consider in this work. Let *X* be a locally compact Hausdorff space, and let $\phi : X \to X$ be a continuous and proper surjection (recall that a map ϕ is *proper* if the inverse image $\phi^{-1}(K)$ is compact for every compact $K \subseteq X$). The pair (X, ϕ) is called a *dynamical system*. An action of $\mathbb{Z}_+ := \mathbb{N} \cup \{0\}$ on $C_0(X)$ by isometric *-endomorphisms α_n , $n \in \mathbb{Z}_+$ is obtained by defining $\alpha_n(f) = f \circ \phi^n$. We write the elements of the Banach space $\ell^1(\mathbb{Z}_+, C_0(X))$ as formal series $A = \sum_{n \in \mathbb{Z}_+} U^n f_n$ with the norm given by $||A||_1 = \sum_{n \in \mathbb{Z}_+} ||f_n||_{C_0(X)}$. Multiplication on $\ell^1(\mathbb{Z}_+, C_0(X))$ is defined by setting

$$(U^n f)(U^m g) = U^{n+m}(\alpha^m(f)g),$$

and extending by linearity and continuity. With this multiplication, $\ell^1(\mathbb{Z}_+, C_0(X))$ is a Banach algebra.

The Banach algebra $\ell^1(\mathbb{Z}_+, C_0(X))$ can be faithfully represented as a (concrete) operator algebra on a Hilbert space. This is achieved by assuming a faithful action of $C_0(X)$ on a Hilbert space \mathcal{H}_0 . Then we can define a faithful contractive representation π of $\ell_1(\mathbb{Z}_+, C_0(X))$ on the Hilbert space $\mathcal{H} = \mathcal{H}_0 \otimes \ell^2(\mathbb{Z}_+)$ by defining $\pi(U^n f)$ as

$$\pi(U^n f)(\xi \otimes e_k) = \alpha^k(f)\xi \otimes e_{k+n}.$$

The semicrossed product $C_0(X) \times_{\phi} \mathbb{Z}_+$ is the closure of the image of $\ell^1(\mathbb{Z}_+, C_0(X))$ in $\mathcal{B}(\mathcal{H})$ in the representation just defined. We will denote an element $\pi(U^n f)$ of $C_0(X) \times_{\phi} \mathbb{Z}_+$ by $U^n f$ to simplify the notation.

Received by the editors May 30, 2023; accepted September 7, 2023.

Published online on Cambridge Core September 12, 2023.

AMS subject classification: 47L65.

Keywords: Semicrossed product, ideal, approximate unit, M-ideal.

For $A = \sum_{n \in \mathbb{Z}_+} U^n f_n \in \ell^1(\mathbb{Z}_+, C_0(X))$, we call $f_n \equiv E_n(A)$ the *nth Fourier coefficient* of *A*. The maps $E_n : \ell^1(\mathbb{Z}_+, C_0(X)) \to C_0(X)$ are contractive in the (operator) norm of $C_0(X) \times_{\phi} \mathbb{Z}_+$, and therefore they extend to contractions $E_n : C_0(X) \times_{\phi} \mathbb{Z}_+ \to C_0(X)$. An element *A* of the semicrossed product $C_0(X) \times_{\phi} \mathbb{Z}_+$ is 0 if and only if $E_n(A) = 0$, for all $n \in \mathbb{Z}_+$, and thus *A* is completely determined by its Fourier coefficients. We will denote *A* by the formal series $A = \sum_{n \in \mathbb{Z}_+} U^n f_n$, where $f_n = E_n(A)$. Note, however, that the series $\sum_{n \in \mathbb{Z}_+} U^n f_n$ does not in general converge to *A* [6, II.9]. The *kth arithmetic mean* of *A* is defined to be $\bar{A}_k = \frac{1}{k+1} \sum_{l=0}^k S_l(A)$, where $S_l(A) = \sum_{n=0}^l U^n f_n$. Then, the sequence $\{\bar{A}_k\}_{k \in \mathbb{Z}_+}$ is norm convergent to *A* [6, Remark, p. 524]. We refer to [3, 4, 6] for more information about the semicrossed product.

Let $\{X_n\}_{n=0}^{\infty}$ be a sequence of closed subsets of X satisfying

$$(*) X_{n+1} \cup \phi(X_{n+1}) \subseteq X_n,$$

for all $n \in \mathbb{N}$. Peters proved in [7] that the subspace $\mathcal{I} = \{A \in C_0(X) \times_{\phi} \mathbb{Z}_+ : E_n(A)(X_n) = \{0\}\}$ is a closed two-sided ideal of $C_0(X) \times_{\phi} \mathbb{Z}_+$. We will write this as $\mathcal{I} \sim \{X_n\}_{n=0}^{\infty}$. We note that if $A \in \mathcal{I} \sim \{X_n\}_{n=0}^{\infty}$, then $U^n E_n(A) \in \mathcal{I}$ for all $n \in \mathbb{Z}_+$. Peters proved in [7] that there is a one-to-one correspondence between closed two-sided ideals $\mathcal{I} \subseteq C_0(X) \times_{\phi} \mathbb{Z}_+$ and sequences $\{X_n\}_{n=0}^{\infty}$ of closed subsets of *X* satisfying (*), under the assumptions that *X* is metrizable and the dynamical system (X, ϕ) contains no periodic points. Moreover, he characterizes the maximal and prime ideals of the semicrossed product $C_0(X) \times_{\phi} \mathbb{Z}_+$ in this case.

Donsig, Katavolos, and Manousos obtained in [4] a characterization of the Jacobson radical for the semicrossed product $C_0(X) \times_{\phi} \mathbb{Z}_+$, where X is a locally compact metrizable space and $\phi : X \to X$ is a continuous and proper surjection. Andreolas, Anoussis, and the author characterized in [2] the ideal generated by the compact elements and in [1] the hypocompact and the scattered radical of the semicrossed product $C_0(X) \times_{\phi} \mathbb{Z}_+$, where X is a locally compact Hausdorff space and $\phi : X \to X$ is a homeomorphism. All these ideals are of the form $\mathbb{J} \sim \{X_n\}_{n=0}^{\infty}$ for suitable families of closed subsets $\{X_n\}_{n=0}^{\infty}$.

In the present paper, we characterize the closed two-sided ideals $\mathbb{J} \sim \{X_n\}_{n=0}^{\infty}$ of $C_0(X) \times_{\phi} \mathbb{Z}_+$ with left (resp. right) approximate unit. As a consequence, we obtain a complete characterization of ideals with left (resp. right) approximate unit under the additional assumptions that *X* is metrizable and the dynamical system (X, ϕ) contains no periodic points.

Recall that a *left* (resp. *right*) *approximate unit* of a Banach algebra A is a net $\{u_{\lambda}\}_{\lambda \in \Lambda}$ of elements of A such that:

(1) for some positive number r, $||u_{\lambda}|| \leq r$ for all $\lambda \in \Lambda$,

(2) $\lim u_{\lambda}a = a$ (resp. $\lim au_{\lambda} = a$), for all $a \in A$, in the norm topology of A.

A net which is both a left and a right approximate unit of A is called an *approximate* unit of A. A left (resp. right) approximate unit $\{u_{\lambda}\}_{\lambda \in \Lambda}$ that satisfies $||u_{\lambda}|| \le 1$ for all $\lambda \in \Lambda$ is called a *contractive left* (resp. *right) approximate unit*.

We will say that an ideal \mathcal{I} of a Banach algebra \mathcal{A} has a left (resp. right) approximate unit if it has a left (resp. right) approximate unit as an algebra.

2 Ideals with approximate unit

In the following theorem, the ideals $\mathbb{J} \sim \{X_n\}_{n=0}^{\infty}$ with right approximate unit are characterized.

Theorem 2.1 Let $\mathbb{J} \sim \{X_n\}_{n=0}^{\infty}$ be a nonzero ideal of $C_0(X) \times_{\phi} \mathbb{Z}_+$. The following are equivalent:

(1) J has a right approximate unit.

(2) $X_n = X_{n+1}$, for all $n \in \mathbb{Z}_+$.

Proof We start by proving that (1) \Rightarrow (2). Let $\mathcal{I} \sim \{X_n\}_{n=0}^{\infty}$ be an ideal with right approximate unit $\{V_\lambda\}_{\lambda \in \Lambda}$. We suppose that there exists $n \in \mathbb{Z}_+$ such that $X_{n+1} \not\subseteq X_n$. Let

$$n_0 = \min\{n \in \mathbb{Z}_+ : X_{n+1} \not\subseteq X_n\},\$$

 $x_0 \in X_{n_0} \setminus X_{n_0+1}$, and $f \in C_0(X)$ such that $f(x_0) = 1$, $f(X_{n_0+1}) = \{0\}$, and ||f|| = 1. Then, for $A = U^{n_0+1}f$, we have $A \in \mathcal{I}$ and

$$||AV_{\lambda} - A|| \ge ||E_{n_0+1}(AV_{\lambda} - A)|| = ||fE_0(V_{\lambda}) - f|| \ge |(fE_0(V_{\lambda}) - f)(x_0)| = 1,$$

for all $\lambda \in \Lambda$, since $x_0 \in X_{n_0}$ and $E_0(V_\lambda)(X_{n_0}) = 0$, which is a contradiction. Therefore, $X_n = X_{n+1}$ for all $n \in \mathbb{Z}_+$.

For (2) \Rightarrow (1), assume that $X_n = X_{n+1}$ for all $n \in \mathbb{Z}_+$. By (*), we get that $\phi(X_0) \subseteq X_0$. We will show that if $\{u_\lambda\}_{\lambda \in \Lambda}$ is a contractive approximate unit of the ideal $C_0(X \setminus X_0)$ of $C_0(X)$, then $\{U^0 u_\lambda\}_{\lambda \in \Lambda}$ is a right approximate unit of \mathcal{I} . Since $||u_\lambda|| \leq 1$, we have $||U^0 u_\lambda|| \leq 1$.

Let $A \in \mathcal{J}$ and $\varepsilon > 0$. Then there exists $k \in \mathbb{Z}_+$ such that

$$\|A-\bar{A}_k\|<\frac{\varepsilon}{4},$$

where \bar{A}_k is the *k*th arithmetic mean of *A*. Since $X_n = X_0$, $E_n(\bar{A}_k) \in C_0(X \setminus X_0)$ and $\{u_\lambda\}_{\lambda \in \Lambda}$ is an approximate unit of $C_0(X \setminus X_0)$, there exists $\lambda_0 \in \Lambda$ such that

$$\|E_l(\bar{A}_k)u_{\lambda}-E_l(\bar{A}_k)\|<\frac{\varepsilon}{2(k+1)}$$

for all $l \le k$ and $\lambda > \lambda_0$. So, for $\lambda > \lambda_0$, we get that

$$\begin{split} \|AU^{0}u_{\lambda} - A\| &= \|AU^{0}u_{\lambda} - \bar{A}_{k}U^{0}u_{\lambda} + \bar{A}_{k}U^{0}u_{\lambda} - \bar{A}_{k} + \bar{A}_{k} - A\| \\ &\leq \|AU^{0}u_{\lambda} - \bar{A}_{k}U^{0}u_{\lambda}\| + \|\bar{A}_{k}U^{0}u_{\lambda} - \bar{A}_{k}\| + \|A - \bar{A}_{k}\| \\ &< \|\bar{A}_{k}U^{0}u_{\lambda} - \bar{A}_{k}\| + \frac{\varepsilon}{2} \\ &\leq \sum_{l=0}^{k} \|E_{l}(\bar{A}_{k})u_{\lambda} - E_{l}(\bar{A}_{k})\| + \frac{\varepsilon}{2} \\ &\leq \varepsilon, \end{split}$$

which concludes the proof.

In the following theorem, the ideals $\mathbb{J} \sim \{X_n\}_{n=0}^{\infty}$ with left approximate unit are characterized.

Theorem 2.2 Let $\mathbb{J} \sim \{X_n\}_{n=0}^{\infty}$ be a nonzero ideal of $C_0(X) \times_{\phi} \mathbb{Z}_+$. The following are equivalent:

- (1) J has a left approximate unit.
- (2) $X_0 \subsetneq X \text{ and } \phi^n(X \setminus X_n) = X \setminus X_0, \text{ for all } n \in \mathbb{Z}_+.$
- (3) $\phi(X \setminus X_1) = X \setminus X_0$ and $\phi(X_{n+1} \setminus X_{n+2}) = X_n \setminus X_{n+1}$, for all $n \in \mathbb{Z}_+$.

Proof We start by proving that (1) \Rightarrow (2). Let $\mathbb{J} \sim \{X_n\}_{n=0}^{\infty}$ be an ideal with left approximate unit $\{V_{\lambda}\}_{\lambda \in \Lambda}$.

First, we prove that $X_0 \subsetneq X$. We suppose that $X_0 = X$. Then $E_0(V_\lambda) = 0$, for all $\lambda \in \Lambda$, and hence for every $U^n f \in \mathcal{J}$, we have

$$||V_{\lambda}U^{n}f - U^{n}f|| \ge ||E_{n}(V_{\lambda}U^{n}f - U^{n}f)|| = ||E_{0}(V_{\lambda}) \circ \phi^{n}f - f|| = ||f||$$

for all $\lambda \in \Lambda$, which is a contradiction. Therefore, $X_0 \subsetneq X$.

Now, we prove that $\phi^n(X \setminus X_n) = X \setminus X_0$, for all $n \in \mathbb{Z}_+$. We suppose that there exists $n \in \mathbb{Z}_+$ such that $\phi^n(X \setminus X_n) \notin X \setminus X_0$ and let

$$n_0 = \min\{n \in \mathbb{Z}_+ : \phi^n(X \setminus X_n) \notin X \setminus X_0\}.$$

The set $X \setminus X_{n_0}$ is nonempty, since $X_{n_0} \subseteq X_0 \subsetneq X$. Then, there exist $x_0 \in X \setminus X_{n_0}$ such that $\phi^{n_0}(x_0) \in X_0$ and a function $f \in C_0(X)$ such that $f(x_0) = 1$, $f(X_{n_0}) = \{0\}$, and ||f|| = 1. If $A = U^{n_0} f$, by the choice of f, we have that $A \in \mathcal{J}$, ||A|| = 1 and

$$||V_{\lambda}A - A|| \ge ||E_{n_0}(V_{\lambda}A - A)||$$

= $||E_0(V_{\lambda}) \circ \phi^{n_0}f - f||$
 $\ge |(E_0(V_{\lambda}) \circ \phi^{n_0}f - f)(x_0)|$
= 1.

for all $\lambda \in \Lambda$, since $\phi^{n_0}(x_0) \in X_0$ and $E_0(V_\lambda)(X_0) = \{0\}$, which is a contradiction. Therefore, $\phi^n(X \setminus X_n) \subseteq X \setminus X_0$. Furthermore, by (*), we get that $\phi^n(X_n) \subseteq X_0$, for all $n \in \mathbb{Z}_+$, and hence

$$X = \phi^n(X) = \phi^n(X_n \cup (X \setminus X_n)) = \phi^n(X_n) \cup \phi^n(X \setminus X_n) \subseteq X_0 \cup \phi^n(X \setminus X_n).$$

Since $\phi^n(X \setminus X_n) \subseteq X \setminus X_0$ and ϕ is surjective, $\phi^n(X \setminus X_n) = X \setminus X_0$, for all $n \in \mathbb{Z}_+$.

For (2) \Rightarrow (1), assume that $X_0 \not\subseteq X$ and $\phi^n(X \setminus X_n) = X \setminus X_0$, for all $n \in \mathbb{Z}_+$. We will show that if $\{u_\lambda\}_{\lambda \in \Lambda}$ is a contractive approximate unit of the ideal $C_0(X \setminus X_0)$ of $C_0(X)$, then $\{U^0 u_\lambda\}_{\lambda \in \Lambda}$ is a left approximate unit of \mathcal{I} . Since $||u_\lambda|| \leq 1$, we have $||U^0 u_\lambda|| \leq 1$.

Let *A* be a norm-one element of \mathcal{I} and $\varepsilon > 0$. Then there exists $k \in \mathbb{Z}_+$ such that

$$\|A-\bar{A}_k\|<\frac{\varepsilon}{4},$$

where \bar{A}_k is the *k*th arithmetic mean of *A*. For $l \leq k$, let

$$D_{\varepsilon}(E_l(\bar{A}_k)) = \left\{ x \in X : |E_l(\bar{A}_k)(x)| \ge \frac{\varepsilon}{4(k+1)} \right\}.$$

Since $A \in J$, we have $E_l(\bar{A}_k)(X_l) = \{0\}$ and hence $D_{\varepsilon}(E_l(\bar{A}_k)) \subseteq X \setminus X_l$. Furthermore, since $\phi^n(X \setminus X_n) = X \setminus X_0$, for all $n \in \mathbb{Z}_+$, we have that $\phi^l(D_{\varepsilon}(E_l(\bar{A}_k))) \subseteq X \setminus X_0$. Moreover, the set $D_{\varepsilon}(E_l(\bar{A}_k))$ is compact, since $E_l(\bar{A}_k) \in C_0(X)$, and hence the set $\phi^l(D_{\varepsilon}(E_l(\bar{A}_k)))$ is also compact. By Urysohn's lemma for locally compact Hausdorff spaces [8, p. 39], there is a norm-one function $v_l \in C_0(X)$ such that

$$v_l(x) = \begin{cases} 1, & x \in \phi^l(D_{\varepsilon}(E_l(\bar{A}_k))), \\ 0, & x \in X_0. \end{cases}$$

Then, there exists $\lambda_0 \in \Lambda$ such that

$$||u_{\lambda}v_l-v_l|| < \frac{\varepsilon}{2(k+1)},$$

for all $l \leq k$ and $\lambda > \lambda_0$, and hence

$$|u_{\lambda}(x)-1| < \frac{\varepsilon}{2(k+1)},$$

for all $x \in \bigcup_{l=0}^{k} \phi^{l}(D_{\varepsilon}(E_{l}(\bar{A}_{k})))$ and $\lambda > \lambda_{0}$. Therefore, if $x \in \bigcup_{l=0}^{k} (D_{\varepsilon}(E_{l}(\bar{A}_{k})))$, then $\phi^{l}(x) \in \bigcup_{l=0}^{k} \phi^{l}(D_{\varepsilon}(E_{l}(\bar{A}_{k})))$ and hence

$$\|((u_{\lambda}\circ\phi^l)E_l(\bar{A}_k)-E_l(\bar{A}_k))(x)\|<\frac{\varepsilon}{2(k+1)},$$

for all $l \leq k$ and $\lambda > \lambda_0$. On the other hand, if $x \notin \bigcup_{l=0}^k (D_{\varepsilon}(E_l(\bar{A}_k)))$, then

$$|E_l(\bar{A}_k)(x)| < \frac{\varepsilon}{4(k+1)},$$

for all $l \leq k$, and hence

$$\|((u_{\lambda}\circ\phi^l)E_l(\bar{A}_k)-E_l(\bar{A}_k))(x)\|<\frac{\varepsilon}{2(k+1)}$$

From what we said so far, we get that

$$\|U^0 u_{\lambda} A - A\| < \|U^0 u_{\lambda} \bar{A}_k - \bar{A}_k\| + \frac{\varepsilon}{2}$$

$$\leq \sum_{l=0}^k \|(u_{\lambda} \circ \phi^l) E_l(\bar{A}_k) - E_l(\bar{A}_k)\| + \frac{\varepsilon}{2}$$

$$< \varepsilon,$$

for all $\lambda > \lambda_0$.

Now, we show that (2) \Rightarrow (3). We assume that $\phi^n(X \setminus X_n) = X \setminus X_0$, for all $n \in \mathbb{Z}_+$. Then, $\phi(X \setminus X_{n+2}) \subseteq X \setminus X_{n+1}$. Indeed, if $x \in X \setminus X_{n+2}$ and $\phi(x) \in X_{n+1}$, then $\phi^{n+2}(x) \in X_0$, by (*), which is a contradiction. Furthermore, by (*), we know that $\phi(X_{n+1}) \subseteq X_n$ and hence $\phi(X_{n+1} \setminus X_{n+2}) \subseteq X_n \setminus X_{n+1}$ for all $n \in \mathbb{Z}_+$.

To prove that $\phi(X_{n+1} \setminus X_{n+2}) = X_n \setminus X_{n+1}$ for all $n \in \mathbb{Z}_+$, we suppose that there exists $n \in \mathbb{Z}_+$ such that $\phi(X_{n+1} \setminus X_{n+2}) \subsetneq X_n \setminus X_{n+1}$. If

$$n_0 = \min\{n \in \mathbb{Z}_+ : \phi(X_{n+1} \setminus X_{n+2}) \subsetneq X_n \setminus X_{n+1}\},\$$

then

$$\phi(X_{n_0+1}) = \phi(X_{n_0+2} \cup (X_{n_0+1} \setminus X_{n_0+2}))$$

= $\phi(X_{n_0+2}) \cup \phi(X_{n_0+1} \setminus X_{n_0+2})$
 $\subseteq X_{n_0+1} \cup \phi(X_{n_0+1} \setminus X_{n_0+2})$
 $\subsetneq X_{n_0+1} \cup (X_{n_0} \setminus X_{n_0+1})$
= X_{n_0} ,

and hence

$$\phi(X) = \phi(X_{n_0+1} \cup (X \setminus X_{n_0+1}))$$
$$= \phi(X_{n_0+1}) \cup \phi(X \setminus X_{n_0+1})$$
$$\subseteq \phi(X_{n_0+1}) \cup (X \setminus X_{n_0})$$
$$\subsetneq X,$$

which is a contradiction, since ϕ is surjective. Therefore, $\phi(X_{n+1} \setminus X_{n+2}) = X_n \setminus X_{n+1}$ for all $n \in \mathbb{Z}_+$.

Finally, we show that (3) \Rightarrow (2). We assume that $\phi(X \setminus X_1) = X \setminus X_0$ and $\phi(X_{n+1} \setminus X_{n+2}) = X_n \setminus X_{n+1}$, for all $n \in \mathbb{Z}_+$. Then, $X_0 \subsetneq X$. Indeed, if $X_0 = X$, then $\mathcal{I} \equiv \{0\}$, which is a contradiction. If n > 1, we have that

$$\phi(X \setminus X_n) = \phi\left[(X \setminus X_1) \cup (X_1 \setminus X_2) \cup \dots \cup (X_{n-1} \setminus X_n) \right]$$

= $\phi(X \setminus X_1) \cup \phi(X_1 \setminus X_2) \cup \dots \cup \phi(X_{n-1} \setminus X_n)$
= $(X \setminus X_0) \cup (X_0 \setminus X_1) \cup \dots \cup (X_{n-2} \setminus X_{n-1})$
= $X \setminus X_{n-1}$,

and hence $\phi^n(X \setminus X_n) = X \setminus X_0$, for all $n \in \mathbb{Z}_+$.

Remark 2.3 It follows from the proofs of Theorems 2.1 and 2.2 that if $\mathbb{J} \sim \{X_n\}_{n=0}^{\infty}$ is an ideal of $C_0(X) \times_{\phi} \mathbb{Z}_+$ with a left (resp. right) approximate unit, then it has a contractive left (resp. right) approximate unit of the form $\{U^0 u_\lambda\}_{\lambda \in \Lambda}$ where $\{u_\lambda\}_{\lambda \in \Lambda}$ a contractive approximate unit of the ideal $C_0(X \setminus X_0)$ of $C_0(X)$.

By Theorem 2.2, if $\mathcal{J} \sim \{X_n\}_{n=0}^{\infty}$ is an ideal of $C_0(X) \times_{\phi} \mathbb{Z}_+$ with a left approximate unit, then $X_{n+1} = X_n$ or $X_{n+1} \subsetneq X_n$ for all $n \in \mathbb{Z}_+$. If $\mathcal{J} \sim \{X_n\}_{n=0}^{\infty}$ and $X_{n+1} = X_n$, for all $n \in \mathbb{Z}_+$, we will write $\mathcal{J} \sim \{X_0\}$. We obtain the following characterization.

Corollary 2.4 Let $\mathbb{J} \sim \{X_0\}$ be a nonzero ideal of $C_0(X) \times_{\phi} \mathbb{Z}_+$. The following are equivalent:

- (1) J has a left approximate unit.
- (2) $\phi(X_0) = X_0 \text{ and } \phi(X \setminus X_0) = X \setminus X_0.$

262

Proof By Theorem 2.2, we have $\phi(X \setminus X_0) = X \setminus X_0$. By (*), we have $\phi(X_0) \subseteq X_0$, and since ϕ is surjective, we get $\phi(X_0) = X_0$.

In the following proposition, the ideals $\mathbb{J} \sim \{X_n\}_{n=1}^{\infty}$ of $C_0(X) \times_{\phi} \mathbb{Z}_+$ with a left approximate unit are characterized, when ϕ is a homeomorphism.

Proposition 2.5 Let $\mathbb{J} \sim \{X_n\}_{n=1}^{\infty}$ be a nonzero ideal of $C_0(X) \times_{\phi} \mathbb{Z}_+$, where ϕ is a homeomorphism. The following are equivalent:

- (1) J has a left approximate unit.
- (2) There exist $S, W \subsetneq X$ such that S is closed and $\phi(S) = S$, the sets $\phi^{-1}(W)$, $\phi^{-2}(W), \ldots$ are pairwise disjoint and $\phi^k(W) \cap S = \emptyset$, for all $k \in \mathbb{Z}$, and

$$X_n = S \cup (\cup_{k=n}^{\infty} \phi^{-k}(W)),$$

for all $n \in \mathbb{Z}_+$.

Proof The second condition implies the second condition of Theorem 2.2 and hence the implication $(2) \Rightarrow (1)$ is immediate. We will prove the implication $(1) \Rightarrow (2)$.

We set $S = \bigcap_{n=0}^{\infty} X_n$. Clearly, the set *S* is closed and, by (*), we have $\phi(S) \subseteq S$. We will prove that $\phi(S) = S$. We suppose $\phi(S) \subsetneq S$. Since ϕ is surjective, there exists $x \in X \setminus S$ such that $\phi(x) \in S$. Moreover, $\phi^n(x) \in S$ for all $n \ge 1$. However, since $x \notin S$, there exists n_0 such that $x \notin X_{n_0}$ and hence $\phi^{n_0}(x) \in X \setminus X_0$, by Theorem 2.2, which is a contradiction since $S \cap (X \setminus X_0) = \emptyset$.

By Theorem 2.2, $\phi(X_{n+1} \setminus X_{n+2}) = X_n \setminus X_{n+1}$ for all $n \in \mathbb{Z}_+$ and hence $\phi^n(X_n \setminus X_{n+1}) = X_0 \setminus X_1$ or equivalently $X_n \setminus X_{n+1} = \phi^{-n}(X_0 \setminus X_1)$ since ϕ is a homeomorphism. Furthermore, the sets $\phi^{-1}(X_0 \setminus X_1), \phi^{-2}(X_0 \setminus X_1), \ldots$ are pairwise disjoint.

We set $W = X_0 \setminus X_1$. Clearly, $\phi^k(W) \cap S = \emptyset$ for all $k \in \mathbb{Z}$, since $\phi(S) = S$ and $\phi(W) \subseteq X \setminus X_0$. Also, $X_0 = S \cup (X_0 \setminus X_1) \cup (X_1 \setminus X_2) \cup \cdots$ and hence

$$X_0 = S \cup (\bigcup_{k=0}^{\infty} \phi^{-k}(W)).$$

Finally, for all $n \in \mathbb{Z}_+$ we have that

$$X_0 = X_n \cup \left(\bigcup_{k=1}^n (X_{k-1} \setminus X_k) \right) = X_n \cup \left(\bigcup_{k=1}^n \phi^{-k+1}(W) \right) = X_n \cup \left(\bigcup_{k=0}^{n-1} \phi^{-k}(W) \right),$$

and so

$$X_n = X_0 \setminus (\bigcup_{k=0}^{n-1} \phi^{-k}(W)) = S \cup (\bigcup_{k=n}^{\infty} \phi^{-k}(W)).$$

In the following corollary, the ideals with an approximate unit are characterized.

Corollary 2.6 Let $\mathbb{J} \sim \{X_n\}_{n=0}^{\infty}$ be a nonzero ideal of $C_0(X) \times_{\phi} \mathbb{Z}_+$. The following are equivalent:

- (1) J has an approximate unit.
- (2) $X_n = X_{n+1}$, for all $n \in \mathbb{Z}_+$, and $\phi(X \setminus X_0) = X \setminus X_0$.

Proof (1) \Rightarrow (2) is immediate from Theorem 2.1 and Corollary 2.4.

We show (2) \Rightarrow (1). If $X_n = X_{n+1}$, by (*), we have $\phi(X_0) \subseteq X_0$. Since $\phi(X \setminus X_0) = X \setminus X_0$ and ϕ surjective, we have $\phi(X_0) = X_0$. Theorem 2.1 and Corollary 2.4 conclude the proof.

Let *B* be a Banach space, and let *C* be a subspace of *B*. The set of linear functionals that vanish on a subspace *C* of *B* is called the *annihilator* of *C*. A subspace *C* of a Banach space *B* is an *M*-*ideal* in *B* if its annihilator is the kernel of a projection *P* on B^* such that ||y|| = ||P(y)|| + ||y - P(y)||, for all *y*, where B^* is the dual space of *B*.

Effros and Ruan proved that the *M*-ideals in a unital operator algebra are the closed two-sided ideals with an approximate unit [5, Theorem 2.2]. Therefore, we obtain the following corollary about the *M*-ideals of a semicrossed product.

Corollary 2.7 Let $\mathbb{J} \sim \{X_n\}_{n=0}^{\infty}$ be a nonzero ideal of $C(X) \times_{\phi} \mathbb{Z}_+$, where X is compact. The following are equivalent:

- (1) \Im is an M-ideal.
- (2) J has an approximate unit.
- (3) $X_n = X_{n+1}$, for all $n \in \mathbb{Z}_+$, and $\phi(X \setminus X_0) = X \setminus X_0$.

Acknowledgment The author would like to thank M. Anoussis and D. Drivaliaris for their support and valuable remarks and comments.

References

- G. Andreolas, M. Anoussis, and C. Magiatis, *Topological radicals of semicrossed products*. Serdica Math. J. 47(2021), 81–92.
- [2] G. Andreolas, M. Anoussis, and C. Magiatis, Compact multiplication operators on semicrossed products. Stud. Math. 269(2023), 193–207.
- [3] K. R. Davidson, A. H. Fuller, and E. T. A. Kakariadis, Semicrossed products of operator algebras: a survey. New York J. Math. 24A(2018), 56–86.
- [4] A. Donsig, A. Katavolos, and A. Manoussos, *The Jacobson radical for analytic crossed products*. J. Funct. Anal. 187(2001), 129–145.
- [5] E. G. Effros and Z.-J. Ruan, On non self-adjoint operator algebras. Proc. Amer. Math. Soc. 110(1990), 915-922.
- [6] J. Peters, Semicrossed products of C*-algebras. J. Funct. Anal. 59(1984), 498-534.
- [7] J. Peters, The ideal structure of certain nonselfadjoint operator algebras. Trans. Amer. Math. Soc. 305(1988), 333–352.
- [8] W. Rudin, Real and complex analysis. 3rd ed., McGraw-Hill Book Co., New York, 1987.

Department of Financial and Management Engineering, University of the Aegean, Kountouriotou 41, Chios 82100, Greece

e-mail: chmagiatis@aegean.gr

264