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Abstract

Let k = C be the field of complex numbers. In this article we construct Hodge realization
functors defined on the triangulated categories of étale motives with rational coefficients.
Our construction extends to every smooth quasi-projective k-scheme, the construction
done by Nori over a field, and relies on the original version of the basic lemma proved by
Bĕılinson. As in the case considered by Nori, the realization functor factors through the
bounded derived category of a perverse version of the Abelian category of Nori motives.
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1. Introduction

Let C be the field of complex numbers and k be a field of characteristic zero with a fixed embedding
of fields σ : k ↪→ C.

1.1 In the present article we consider the triangulated categories of étale motives DAét(−,Q)

over quasi-projective k-schemes. These categories were introduced by Ayoub in [Ayo07a, Ayo07b]
and are the Q-linear étale counterpart of the stable homotopy category of schemes of Morel and
Voevodsky. The theory developed in [Ayo07b] provides these categories with a formalism
of six operations. As shown in [MVW06, Ayo14], the category DAét(k,Q) is equivalent to
the triangulated category of motives DM(k,Q) considered by Voevodsky. Hence the category
DMgm(k,Q) of geometric motives of [Voe00] can be seen as a full subcategory of DAét(k,Q).
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1.2 As part of the vision of Grothendieck, these categories should have realization functors. For
Betti cohomology (see [Ayo10]) or `-adic cohomology (see [Hub00, Hub04, Ivo07, Ivo10, Ayo14])
such functors have been constructed.

On the Hodge-theoretic side, however, the picture is far from complete as the only realization
functor available is defined over Spec(k). Let MHSpQ be the Abelian category of polarizable mixed
Q-Hodge structures. Three different constructions of such a realization functor

DMgm(k,Q)→ Db(MHSpQ)

have been given in the literature: one due to Levine [Lev98], one due to Huber [Hub00, Hub04]
(a different approach is sketched in [DG05]) and one due to Nori (though unpublished, Nori’s
construction has been sketched in [Lev05, Nor]). The first two constructions do not use directly
the category of polarizable mixed Hodge structures; they use instead as target the more flexible
category of polarizable mixed Hodge complexes Db

H p . This category was defined by Bĕılinson in
[Bĕı86] where he also constructs an equivalence of categories

Db(MHSpQ)→ Db
H p .

However, such an equivalence is not available in higher dimensions, though partial results have
been obtained in [Ivo15]. They are not sufficient to get a realization except perhaps on the
triangulated category of smooth motives. Let us also mention that Levine’s construction is also
indirect as the source category is rather is own category of motives DM(k,Q) (known to be
equivalent to DMgm(k,Q) by [Lev98]).

1.3 The approach we generalize to higher dimensions in this work is the construction due to
Nori. Recall that, using a Tannakian approach, he defined an Abelian category of mixed motives
NMM(k) over k. Roughly speaking, being a motive in NMM(k) is the best structure that one
can put on the relative homology of a pair of k-varieties. In particular, as the relative homology
of pairs carries a (polarizable) mixed Hodge structure, one has a faithful exact functor

NMM(k)→ MHSpQ.

Using the so-called ‘basic lemma’, a special case of a more general result on perverse sheaves due
to Bĕılinson, Nori constructs a finer realization functor

DMgm(k)→ Db(NMM(k)). (1)

1.4 In this work we use the original version of the basic lemma proved by Bĕılinson to extend the
construction of Nori to all smooth quasi-projective k-schemes. Recall that if A is an essentially
small Q-linear Abelian category, then the Yoneda functor

i : A → Sha(A ,Q),

where Sha(A ,Q) is the Abelian category of additive sheaves of Q-vector spaces on A for
the topology defined by epimorphisms, is exact and fully faithful (this is the Gabriel–Quillen
embedding). Moreover, it induces a fully faithful functor

Db(A )→ D(Sha(A ,Q)).

Let us state our main results.
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Main results. Let X be a smooth quasi-projective k-scheme and M (X) be either the category
N (X) of perverse Nori motives (see [Ivo16]), the category H (X) := MHM(X,Q) of mixed
Hodge modules [Sai88, Sai90], or the category P(X) of perverse sheaves.

(i) We construct two triangulated functors defining an adjunction

RLM
X : DAét(X,Q)� D(Sha(M (X),Q)) : RRM

X ,

the right-hand side being the unbounded derived category of Sha(M (X),Q).
(ii) Let DAét

ct(X,Q) be the full triangulated category of constructible étale motives. The left
adjoint RLM

X then induces a triangulated functor

RLM
X : DAét

ct(X,Q)→ Db(M (X))

which returns (1) when X = Spec(C).
(iii) If a : Y → X is a smooth quasi-projective morphism of k-schemes and Y is affine, then

the image of the homological motive MX(Y ) under RLH
X is isomorphic to the Hodge homology

complex aH
! a!

H (QH
X ) where

aH
! : Db(MHM(Y,Q))� Db(MHM(X,Q)) : a!

H

are the extraordinary adjoint functors part of the formalism of the six operations developed by
Saito.

By construction there are Q-linear faithful exact functors RH
X : N (X)→ MHM(X,Q) and

ratHX : MHM(X,Q)→ P(X) (the latter associates its underlying perverse sheaf with a mixed
Hodge module). The functors RLH

X and RLP
X are obtained from RLN

X via these functors.
However, for readers interested only in the Hodge realization, let us note that the present work

is completely independent of [Ivo16]. The construction does not need the categories of perverse
motives of that work and can be done directly using mixed Hodge modules. Note that for the
usual Nori motives (i.e., Nori motives over Spec(k)), a similar realization has been constructed
independently in [CDS14].

1.5 This article is the first part of an ongoing project devoted to the construction of Hodge
realization functors and their compatibility with the six operations. Such results are needed,
for example, in [Wil12] (see [Wil12, Remark 3.12]) to compare the motivic intersection complex
defined by Wildeshaus unconditionally in certain situations with its Hodge-theoretic analog.

More generally, they would allow us to deduce results in Hodge theory from results proved in
the motivic context. As a motivating example, we sketch an application of this principle to the
Hodge theory of symmetric spaces. Various compactifications of arithmetic quotients of Hermitian
symmetric spaces have been introduced. Though such a quotient X is algebraic (by [BB66] it is
the analytic space associated with the C-points of a quasi-projective C-scheme X), some of these
compactifications, such as the Borel–Serre compactification introduced in [BS73] or its reductive
variant X rbs (see [Zuc01, Zuc82]), are purely topological. The Baily–Borel compactification X bb,
introduced in [BB66], is the analytic space associated with the C-points of a normal C-scheme
X

bb and is therefore algebraic. Although the reductive Borel–Serre compactification is neither an
algebraic variety nor even an analytic space, a procedure to construct a mixed Hodge structure
on its cohomology has been given in [Zuc04]. This suggests that the reductive Borel–Serre
compactification, in some sense, is not that far from being algebraic and might even be motivic.
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This has been shown in [AZ12]. More precisely, the two compactifications are related by a
morphism p : X rbs

→ X bb, and the main theorem of [AZ12] shows that the complex of sheaves
Rp∗QX rbs on the Baily–Borel compactification is the Betti realization of an étale motive on

X
bb. Hodge realization functors may then be used to produce a mixed Hodge structure of the

cohomology of the Borel–Serre compactification, presumably the same as in [Zuc04] (see [AZ12,
Remark 5.9]), or even in the relative context to see that Rp∗QX rbs itself underlies a complex of

mixed Hodge modules on Xbb.
As another application, note that, using [IS13, AIS13], it should be possible to relate the

nearby cycle functors in the mixed Hodge modules context to tubes in rigid analytic geometry
or motivic integration theory. Hodge realization functors could also have applications to periods
and motivic Galois groups (see, for example, [CDS14]).

2. Background on étale motives

In this section we briefly recall the construction of the categories DAét(X,Q) of étale motives
over a quasi-projective k-scheme X and some of their properties. For model categories introduced
by Quillen in [Qui67] we refer, for example, to [Hir03, Hov99].

2.1 The triangulated categories DAét(X,Q) were introduced in [Ayo07a, Ayo07b], where they
are particular cases of the categories SHM(X) obtained by choosing the topology to be the étale
topology and the model category M of coefficients to be the model category Ch(Q) of chain
complexes of Q-vector spaces. They are the Q-linear étale counterpart of the stable homotopy
category ofX-schemes of Morel and Voevodsky (see [Jar00, MV01, Voe98]) and have been studied
in further detail in [Ayo14].

They are part of a stable homotopic 2-functor DAét(−,Q) on the category of quasi-projective
k-schemes as defined in [Ayo07a, Définition 2.4.13]. The theory developed by Ayoub in [Ayo07a,
Ayo07b] provides, for these triangulated categories, a formalism of six operations as envisioned
by Grothendieck.

We consider ultimately the full triangulated category DAét
ct(X,Q) of constructible motives,

defined as the smallest triangulated subcategory of DAét(X,Q) stable by direct factors and
containing the homological motives of smooth quasi-projective X-schemes. As shown in [Ayo07a,
Scholie 2.2.34], these categories of constructible motives are stable under the six operations.

2.2 If A is an additive category, we denote by Ch(A ) the category of chain complexes of objects
in A . Let Λ be a commutative ring. We denote simply by Ch(Λ) := Ch(Mod(Λ)) the category of
chain complexes of Λ-modules. We consider on Ch(Λ) the projective model category structure for
which the weak equivalences are the quasi-isomorphisms and the fibrations are the epimorphisms.

2.3 Let X be a quasi-projective k-scheme. Let Sm/X be the category of smooth quasi-projective
X-schemes. The construction of the category DAét(X,Q) starts with the category of presheaves
ofQ-vector spacesPSh(Sm/X,Ch(Q)) endowed with its projective model structure: the fibrations
(respectively, equivalences) are the maps of presheaves of complexes X → Y such that X (Y )→

Y (Y ) is a fibration (respectively, an equivalence) in Ch(Q) for every Y ∈ Sm/X.
A left Bousfield localization of this projective model structure provides the ét-local model

structure. For the ét-local structure, the weak equivalences are the morphisms of complexes of
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presheaves that induce isomorphisms on the étale sheafification of the homology presheaves. Note
that the étale sheafification functor then induces an equivalence of triangulated categories

aét : Hoét(PSh(Sm/X,Ch(Q)))
∼−→ D(Shét(Sm/X,Q))

where the left-hand side is the homotopy category for the ét-local projective model structure and
the right-hand side is the unbounded derived category of the Abelian category of étale sheaves
of Q-vector spaces on Sm/X (see [Ayo07b, Corollaire 4.4.42] for a proof).

The ét-local model structure is then further localized with respect to the class of maps

A1
Y ⊗Q→ Y ⊗Q

where Y ∈ Sm/X. The left Bousfield localization of the ét-local model structure with respect to
the above maps is called the (A1, ét)-local projective model structure. Its homotopy category

DAeff,ét(X,Q) := HoA1,ét(PSh(Sm/X,Ch(Q)))

is called the category of effective étale motives (with rational coefficients).
The last step of the construction is the stabilization. Let TX be the presheaf

TX :=
Gm,X ⊗Q
X ⊗Q

.

Consider the category SptTX (PSh(Sm/X,Ch(Q))) of TX -spectra of presheaves of complexes of
Q-vector spaces (see [Ayo07b, Définition 4.3.6]). The (A1, ét)-local projective model structure
induces on it a model structure (see [Ayo07b, Définition 4.3.29]): the so-called (A1, ét)-local
stable projective model structure. Its homotopy category

DAét(X,Q) := Ho(A1,ét)−st(SptTX (PSh(Sm/X,Ch(Q))))

is the triangulated category of étale motives with rational coefficients.
With a scheme Y ∈ Sm/X is associated a homological motive MX(Y ) given by the TX -

spectrum Sus0TX (X ⊗Q).

2.4 It follows from [DHI04] that the fibrant objects for the ét-local projective model structure
are the fibrant objects for the projective model structure that satisfy étale descent (see [DHI04,
Définition 4.3] or [CD13, Définition 3.2.5, § 3.2.9] for the definition). Working with rational
coefficients substantially simplifies the description of these ét-local fibrant objects.

It follows from [Voe10, Proposition 3.8] and [CD13, Theorem 3.3.23] that an object X ∈
PSh(Sm/X,Ch(Q)) is fibrant for the ét-local projective model structure if and only if it is
fibrant for the projective model structure, satisfies elementary Galois descent (in the sense of
Definition A.2), the B.G. property in the Nisnevich topology, and is such that X (∅) is acyclic.

As a consequence the fibrant objects for the (A1, ét)-local projective model structure are the
presheaves X ∈ PSh(Sm/X,Ch(Q)) that are fibrant for the projective model structure, satisfy
Galois descent, the A1-B.G. property in the Nisnevich topology and such that X (∅) is acyclic.

By [Mor12, Theorem A.14], if an object X ∈ PSh(Sm/X,Ch(Q)) satisfies the A1-B.G.
property in the Zariski topology and the affine B.G. property in the Nisnevich topology, then it
satisfies the B.G. property in the Nisnevich topology.
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This description may be reinterpreted as follows:

Proposition 2.1. The (A1, ét)-local projective model structure on the category PSh(Sm/X,
Ch(Q)) is the left Bousfield localization of the projective model structure with respect to the
following classes of maps:

∅⊗Q

��
0

(Y ′ ⊗Q)G

��
Y ⊗Q

A1
Y ⊗Q

��
Y ⊗Q

(V ⊗Q) // (U ⊗Q)⊕ (E ⊗Q)

��
(Y ⊗Q)

(2)

where r : Y ′→ Y is a Galois cover with Galois group G and

V
v //

e′

��
�

E

e

��
U

u // Y

is either an elementary Zariski square or an elementary affine Nisnevich square.

Remark 2.2. Let G be a finite group of order m. The functor M 7→MG is an exact functor from
the category of left Q[G]-modules to the category of Q-vector spaces. Indeed, using restriction
and corestriction, it is easy to see that the cohomology group H i(G,M) has m-torsion for every
integer i > 0 and every left Z[G]-module M . In particular, if M is a left Q[G]-module, then
H i(G,M) = 0 for i > 0 which implies the exactness.

Proof of Proposition 2.1. It is enough to check that both model structures have the same fibrant
objects. Let Ho(PSh(Sm/X,Ch(Q))) be the homotopy category associated with the projective
model structure and L be a class of maps inPSh(Sm/X,Ch(Q)). Note that the fibrant objects for
the left Bousfield localization with respect to L are the L -local objects, that is, the presheaves
X that are fibrant for the projective model structure and satisfy the following property: for every
map w : V → W in L and every integer n ∈ Z, the induced morphism of Q-vector spaces

HomHo(PSh(Sm/X,Ch(Q)))(W ,X [n])→ HomHo(PSh(Sm/X,Ch(Q)))(V ,X [n])

is an isomorphism.
Let us first observe that a fibrant presheaf X ∈ PSh(Sm/X,Ch(Q)) has elementary Galois

descent (in the sense of Definition A.2) if and only it is L -local with respect to the class L
consisting of the second type of maps. Indeed, let r : Y ′ → Y be a Galois cover with Galois
group G. Then one has a commutative square

HomHo(PSh(Sm/X,Ch(Q)))(Y ⊗Q,X [n]) // HomHo(PSh(Sm/X,Ch(Q)))((Y
′ ⊗Q)G,X [n])

Hn(X (Y )) // Hn(X (Y ′))G

by the additivity of the functor HomHo(PSh(Sm/X,Ch(Q)))(−,X [n]) and the definition of the
G-invariants in Appendix A. Our observation follows from the fact that the right-hand side
is isomorphic to Hn(X (Y ′)G) by Remark 2.2.
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Similarly, the L -local presheaves, when L consists of the third and the fourth type of maps,
are exactly the fibrant presheaves that satisfy the A1-B.G. property in the Zariski topology and
the affine B.G. property in the Nisnevich topology. Since X (∅) is acyclic if and only if the map

Hn(X (∅)) = HomHo(PSh(Sm/X,Ch(Q)))(∅⊗Q,X [n])→ HomHo(PSh(Sm/X,Ch(Q)))(0,X [n]) = 0

is an isomorphism for every integer n ∈ Z, we see that a presheaf X is L -local when L consists of
all four types of maps if and only if X is fibrant for the (A1,ét)-local projective model structure.
This concludes the proof. 2

2.5 The category DAét(k,Q) is equivalent to the triangulated category of motives DM(k,Q)
considered by Voevodsky. This result is a particular case of [CD13, Corollary 16.2.22] (see also
[Ayo14, Théorème B.1]). Hence the category DMgm(k,Q) of geometric motives of [Voe00] can be
seen as a full subcategory of DAét(k,Q), that contains the additive category Mrat(k,Q) of Chow
motives (over k with rational coefficients).

In [CD13, Définition 14.2.1] Cisinski and Déglise introduced the category DMБ(X) of
Bĕılinson motives. As shown in [CD13, Theorem 15.2.16] this category turns out to be equivalent
to the previously defined DAét(X,Q). Note that the category of Bĕılinson motives is Q-linear
and was defined only after Ayoub introduced and constructed the formalism of six operations on
the category of étale motives.

3. Perverse homology of pairs

Let k be a field of characteristic zero with a fixed embedding of fields σ : k ↪→ C.

3.1 LetX be a quasi-projective k-scheme. For the sake of brevity of notation, we denote by P(X)
the category of perverse sheaves with rational coefficients (or the full subcategory P(X)go of
perverse sheaves of geometric origin [BBD82, 6.2.4]) and by H (X) the category of mixed Hodge
modules MHM(X,Q) introduced by Saito in [Sai88, Sai90] (or the full subcategory MHM(X,Q)go

of mixed Hodge modules of geometric origin [Sai91, (2.6) Définition]).
Let M ∈ {H ,P}. Recall that the derived categories of the Abelian categories M (X) are

endowed with a six-functor formalism. More precisely, every morphism f : Y → X of quasi-
projective k-schemes induces two pairs of adjoint functors

Db(M (X))
fM
∗

// D
b(M (Y ))

f∗Moo
fM
! //

Db(M (X)).
f !

M

oo

We denote by
HiM : Db(M (X))→M (X), i ∈ Z,

the cohomological functor associated with the usual t-structure. Recall that by definition QM
Y =

π∗QM
k , where π : Y → Spec(k) is the structural morphism and QM

k is either the trivial Hodge
structure of weight 0 or Q. We set HM

i = H−iM . In this section we fix an integer d ∈ N (later taken
to be the dimension of X).

Remark 3.1. Let A ,B be Q-linear Abelian categories and A → B be a Q-linear faithful exact
functor. Then the induced functor Db(A )→ Db(B) is conservative (i.e., a morphism in Db(A ) is
an isomorphism if and only if its image in Db(B) is an isomorphism). In particular, the canonical
functor Db(H (X))→ Db(P(X)) is conservative.
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3.2 A relative X-triple is a triple (Y
a−→ X,Z, i) where Y is a quasi-projective k-scheme, a : Y →

X is a morphism of k-schemes, Z is a closed subset of Y , and i ∈ Z is an integer.

Definition 3.2. Let M ∈ {H ,P} and (Y,Z, i) be a relative X-triple. We set

THM
X (Y

a−→ X,Z, i) := H2d−i
M (aM

! (uM
∗ u

!
M a!

M (QM
X )))

where u : U ↪→ Y is the open immersion of the complement of Z in Y .

Note that by definition THM
X (Y

a−→ X,Z, i) is an object in M (X) which depends only on the
reduced structure of Y . If there is no possibility of confusion, we will also use the notation (Y, Z, i)

to denote a relative X-triple and write THM
X (Y,Z, i) instead of THM

X (Y
a−→ X,Z, i). Recall that

QM
Y is not in general an object in M (Y ). If Y is smooth over k of pure dimension n, then QM

Y [n]

belongs to M (Y ).

Remark 3.3. With the notation of [Ivo16], one has

THM
X (Y,Z, i) = TM

X (Y, Z, i− 2d).

3.3 Let (Y1, Z1, i) and (Y2, Z2, i) be relative X-triples. Assume that f : Y2 → Y1 is a morphism
of X-schemes, such that f(Z2) ⊆ Z1. Then there are morphisms in M (X),

fM
TH : THM

X (Y2, Z2, i)→ THM
X (Y1, Z1, i), (3)

such that if (Y3, Z3, i) is a relative X-triple, and g : Y3 → Y2 is a morphism of X-schemes such
that g(Z3) ⊆ Z2, then

fM
TH ◦ gM

TH = (fg)M
TH.

Recall that the morphism (3) is obtained as follows. Consider the commutative diagram

f−1(U1)

�f

��

u // U2
u2 // Y2

f

��

a2

��
U1

u1 // Y1 a1

// X

in which U1 (respectively, U2) is the open complement of Z1 (respectively, Z2) and all arrows
are the canonical morphisms. Using smooth base change and adjunction, we have a morphism in
Db(M (Y1)),

fM
! (u2)M

∗ (u2)!
M (a2)!

M
// fM

! (u2)M
∗ u

M
∗ u

!
M (u2)!

M (a2)!
M

fM
! (u2)M

∗ u
M
∗ f

!
M (u1)!

M (a1)!
M

fM
! f !

M (u1)M
∗ (u1)!

M (a1)!
M

// (u1)M
∗ (u1)!

M (a1)!
M .

Successively applying (a1)M
! and the cohomological functor H2d−i

M to this morphism, we obtain
the morphism (3) in M (X).
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3.4 Now let (Y, Z, i) be a relative X-triple, and W ⊆ Z be a closed subset. Then we have a
boundary morphism

∂M
TH : THM

X (Y,Z, i)→ THM
X (Z,W, i− 1) (4)

defined as follows. Consider the commutative diagram

U := Y \Z j //

u

&&
Y \W vY // Y

a // X

V := Z\W

�

v //

zV

OO

Z

z

OO

b

@@

where v, vY , j are the open immersions, z the closed immersion and a, b the structural morphisms.
Since j is an open immersion, j∗ = j! and the localization triangle in Db(M (Y \W ))

(zV )M
! (zV )!

M → id→ jM
∗ j∗M

+1−→,

applied to (vY )!
M a!

M (QM
X ), provides a morphism

jM
∗ u!

M a!
M (QM

X )→ (zV )M
! v!

M b!M (QM
X )[1].

As z and zV are closed immersions, applying (vY )M
∗ yields a morphism

uM
∗ u

!
M a!

M (QM
X )→ zM

! v∗v
!
M b!M (QM

X )[1].

By applying aM
! and the cohomological functor H2d−i one gets the boundary map (4).

3.5 Recall that in [Ivo16] we have constructed a Q-linear Abelian category N (X) with a faithful
exact functor N (X) → P(X) that factors through MHM(X,Q). By construction, to every
relative X-triple (Y,Z, i) is attached an object THN

X (Y,Z, i) in N (X). These objects enjoy the
same functorialities as previously described. More precisely, if (Y1, Z1, i) and (Y2, Z2, i) are relative
X-triples and f : Y2→ Y1 is a morphism of X-schemes, such that f(Z2) ⊆ Z1, then the category
N (X) contains a morphism

fN
TH : THN

X (Y2, Z2, i)→ THN
X (Y1, Z1, i) (5)

which maps to (3) via the functor N (X)→M (X). Similarly, if (Y,Z, i) is a relative X-triple,
and W ⊆ Z is a closed subset, then N (X) contains a morphism. Then we have a boundary
morphism

∂N
TH : THN

X (Y, Z, i)→ THN
X (Z,W, i− 1) (6)

compatible again with (4).

3.6 The next lemma is elementary but will be useful in what follows.

Lemma 3.4. Let (Y,Z, i) be a relative triple. Then

· · ·→ THM
X (Z,∅, i)→ THM

X (Y,∅, i)→ THM
X (Y, Z, i)→ THM

X (Z,∅, i− 1)→ · · · (7)

is a long exact sequence in M (X).
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Proof. Since the functor N (X) → P(X) is exact and faithful, we may assume that M ∈
{H ,P}. Apply the distinguished triangle zM

! z!
M → Id→ uM

∗ u
∗
M

+1−→ to a!
M (QM

X ) and take its
image by aM

! to get the distinguished triangle

(a ◦ z)M
! (a ◦ z)!

M (QM
X )→ aM

! a!
M (QM

X )→ aM
! uM
∗ u

!
M a!

M (QM
X )

+1−→ .

The associated long exact sequence yields the desired long exact sequence. 2

The morphisms (3) and (4) (or (5) and (6) as well) are compatible. More precisely, we have
the following lemma.

Lemma 3.5. Let f : Y2→ Y1 be a X-morphism of quasi-projective k-varieties. Let W2 ⊆ Z2 and
W1 ⊆ Z1 such that f(Z2) ⊆ Z1 and f(W2) ⊆W1. Then the square of morphisms in M (X)

THM
X (Y2, Z2, i)

∂M
TH //

fM
TH
��

THM
X (Z2,W2, i− 1)

fM
TH
��

THM
X (Y1, Z1, i)

∂M
TH // THM

X (Z1,W1, i− 1)

is commutative.

Proof. To prove the lemma, it is enough to use the definition of the different maps and the
three properties, listed below, of the boundary morphisms appearing in localization triangles
(the details are left to the reader).

(a) Let f : Y ′→ Y be a morphism of quasi-projective k-schemes, Z be a closed subset in Y ,
and U be its open complement. Consider the commutative square of morphisms of quasi-projective
k-schemes

U ′
u′ //

f

��
�

Y ′

f

��
�

Z ′
z′oo

f

��
U

u // Y Z
zoo

The canonical morphisms

(z′)M
! (z′)!

M f !
M = (z′)M

! f !
M z!

M → f !
M zM

! z!
M , (u′)M

∗ (u′)∗M f !
M = (u′)M

∗ f
!
Mu∗M → f !

MuM
∗ u
∗
M

are isomorphisms by smooth base change and fit into a morphism of localization distinguished
triangles

(z′)M
! (z′)!

M f !
M

//

��

f !
M

// (u′)M
∗ (u′)∗M

//

��

(z′)M
! (z′)!

M f !
M [1]

��
f !

M zM
! z!

M
// f !

M
// f !

MuM
∗ u
∗
M

// f !
M zM

! z!
M [1]

(b) Let Y be a quasi-projective k-scheme, and Z (respectively, W ) be a closed subset of Y
with open complement U (respectively, V ). Assume W ⊆ Z (so that U ⊆ V ). We then have the
open and closed immersions

U
j //

u

  
V

v // Y Z
zoo W

ioo

w

~~
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and the canonical morphisms

vM
∗ v
∗
M → vM

∗ j
M
∗ j∗M v∗M = uM

∗ u
∗
M , wM

! w!
M = zM

! iM! i!M z!
M → zM

! z!
M

fit into the morphism of localization distinguished triangles

wM
! w!

M
//

��

Id // vM
∗ v
∗
M

//

��

wM
! w!

M [1]

��
zM

! z!
M

// Id // uM
∗ u
∗
M

// zM
! z!

M [1]

(c) Let j : Y ′ → Y be an open immersion of quasi-projective k-schemes, Z be a closed
subset in Y , and U be its open complement. Consider the commutative square of morphisms of
quasi-projective k-schemes

U ′
u′ //

j

��
�

Y ′

j

��
�

Z ′
z′oo

j

��
U

u // Y Z
zoo

The canonical morphisms

j∗M zM
! z!

M → (z′)M
! j∗M z!

M = (z′)M
! (z′)!

M j∗M , j∗MuM
∗ u
∗
M f !

M → (u′)M
∗ j
∗
Mu∗M → (u′)M

∗ (u′)∗M j∗M

are isomorphisms by smooth base change and fit into a morphism of localization distinguished
triangles

j∗M zM
! z!

M
//

��

j∗M
// j∗MuM

∗ u
∗
M

//

��

j∗M zM
! z!

M [1]

��
(z′)M

! (z′)!
M j∗M

// j∗M
// (u′)M

∗ (u′)∗M j∗M
// (z′)M

! (z′)!
M j∗M [1] 2

3.7 We now give some properties of relative M -homology objects needed later to construct the
realization functors.

Lemma 3.6. Let M ∈ {H ,P}. Let (Y, Z, i) be a relative X-triple and

V
v //

e′

��
�

E

e

��
U

u // Y

be a Nisnevich square. Then there is a long exact sequence in M (X):

· · · // THM
X (Y, Z, i+ 1) // THM

X (V,ZV , i)

��
THM

X (U,ZU , i)⊕ THM
X (E,ZE , i) // THM

X (Y, Z, i) // · · ·
(8)

where ZV := Z ×X V , ZU := Z ×X U and ZE := Z ×X E.
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Proof. Let w : W ↪→ Y be an open immersion of the complement of Z in Y . Consider the diagram
obtained by base change

V
v //

e′

��
�

E

e

��
U

u // Y

VW
vW //

wV ))e′W
��

�

EW

eW
��

wE

((

UW
uW //

wU ))

W
w

((

Let h = e ◦ v = u ◦ e′ and hW = eW ◦ vW = uW ◦ e′W . We have a distinguished triangle

hM
! h!

M → uM
! u!

M ⊕ eM! e!
M → Id

+1−→ .

Applying this triangle to wM
∗ w

∗
M yields the distinguished triangle

hM
! (wV )M

∗ (wV )∗Mh!
M

// uM
! (wU )M

∗ (wU )∗Mu!
M ⊕ eM! (wE)M

∗ (wE)∗M e!
M

��

wM
∗ w

∗
M

+1−→

(9)

since using smooth base change, we get

eM! e!
MwM

∗ w
∗
M = eM! (wE)M

∗ (wE)∗M e!
M , uM

! u!
MwM

∗ w
∗
M = uM

! (wU )M
∗ (wU )∗Mu!

M ,

hM
! h!

MwM
∗ w

∗
M = hM

! (wV )M
∗ (wV )∗Mh!

M .

Applying the triangle (9) to a!
M (QM

X ) and taking the image under aM
! yields a new distinguished

triangle. Then the long exact sequence (8) is the long exact sequence associated with this triangle.
2

Corollary 3.7. Let (Y,Z, i) be a relative X-triple and

V
v //

e′

��
�

E

e

��
U

u // Y

be a Nisnevich square. Then there is an exact sequence in N (X):

THN
X (V,ZV , i)→ THN

X (U,ZU , i)⊕ THN
X (E,ZE , i)→ THN

X (Y, Z, i) (10)

where ZV := Z ×X V , ZU := Z ×X U and ZE := Z ×X E.

Proof. This follows from Lemma 3.6 since the functor N (X) → P(X) is exact and faithful.
(Note that it is not clear a priori that the boundary morphism in the long exact sequence (8)
exists in the category of perverse Nori motives N (X).) 2

Lemma 3.8. Let (Y,Z, i) be a relative triple and p : Y ′ → Y be a Galois covering with Galois
group G. Then the morphism

THM
X (Y ′, Z ′, i)G→ THM

X (Y,Z, i)

is an isomorphism.
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Proof. Since the functor N (X) → P(X) is exact and faithful, we may assume that M ∈
{H ,P}. Let z : Z ↪→ Y be a closed immersion and u : U ↪→ Y be the open immersion of the
complement. Consider their pullbacks u′ : U ′ ↪→ Y ′ and z′ : Z ′ ↪→ Y ′ along p. Let A ∈ Db(M (Y )).
Then we have the commutative diagram[

p!
M (z′)M

! (z′)!
M p!

M (A)
]G //

��

[
pM

! p!
M (A)

]G //

��

[
pM

! (u′)M
∗ (u′)∗M p!

M (A)
]G +1 //

��
zM

! z!
M (A) // A // uM

∗ u
!
M (A)

+1 //

in which the lines are distinguished triangles in Db(M (Y )). The first two vertical arrows are
isomorphisms by étale descent for Betti cohomology (the result in Hodge theory follows from the
case of perverse sheaves by Remark 3.1), hence so is the map

[pM
! (u′)M

∗ (u′)∗M p!
M (A)]G→ uM

∗ u
!
M (A).

This implies that the maps THM
X (Y ′, Z ′, i)G → THM

X (Y,Z, i) are isomorphisms for every integer
i ∈ Z. 2

Lemma 3.9. Let Y be a quasi-projective k-scheme and T → Y be a finite-rank vector bundle.
Then for every integer i ∈ Z,

THM
X (T, Y, i) = 0

where Y is embedded in T via the zero section.

Proof. Since the functor N (X) → P(X) is exact and faithful, we may assume that M ∈
{H ,P}. Now consider the zero section σ : Y → T and denote the open immersion of the
complement by u. Let p : T → Y be the projection. By homotopy invariance

pM
! p!

M → Id

is an isomorphism. We have the distinguished triangle σM
! σ!

M → Id→ uM
∗ u

!
M

+1−→. But p ◦σ = Id,
hence the canonical morphism

aM
! pM

! σM
! σ!

M p!
M a!

M (QM
X )→ aM

! pM
! p!

M a!
M (QM

X )

is an isomorphism, and thus

aM
! pM

! uM
∗ u

!
M p!

M a!
M (QM

X ) = 0

in Db(M (X)). In particular, for all integers i ∈ Z, we have the vanishing THM
X (T, Y, i) = 0. 2

Lemma 3.10. Let (Y,Z, i) be a relative X-triple. We have a decomposition into direct summands

THM
X (Gm,Y ,Gm,Z , i) = THM

X (Y,Z, i)⊕ THM
X (Y, Z, i− 1)(1). (11)

If W ⊆ Z is a closed subset, then the decomposition (11) is compatible with boundary maps,
that is, the square

THM
X (Gm,Y ,Gm,Z , i) // THM

X (Gm,Z ,Gm,W , i− 1)

THM
X (Y, Z, i)⊕ THM

X (Y, Z, i− 1)(1) // THM
X (Z,W, i− 1)⊕ THM

X (Z,W, i− 2)(1)

is commutative.
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Proof. Again we may assume M ∈ {H ,P}. Let z : Z ↪→ Y be a closed immersion, and
u : U ↪→ Y be its open complement. We denote by π : Gm,k → Spec(k) the projection. Recall
that there is an isomorphism

πM
! π!

M (QM
k ) = QM

k ⊕QM
k (1)[1]

in Db(M (Spec(k))). We have an isomorphism

(u×k Id)!
M (a×k π)!

M (QM
X ) = u!

M a!
M (QM

X )� π!
M (QM

k ).

The object (a×k π)M
! (u×k Id)M

∗ (u×k Id)!
M (a×k π)!(QM

X ) of Db(M (X)) is therefore isomorphic
to

(aM
! uM
∗ u

!
M a!

M (QM
X ))� (πM

! π!
M (QM

k ) = aM
! uM
∗ u

!
M a!

M (QM
X )⊕ (aM

! uM
∗ u

!
M a!

M (QM
X ))(1)[1].

This yields the decomposition into direct summands in (11). The commutativity of the square is
easy to verify from the definition of boundary maps. 2

4. Perverse cellular complexes

We assume that X is a smooth quasi-projective k-variety. We may assume that X is connected
of dimension d. We denote by SmAff/X the category of smooth quasi-projective X-schemes that
are affine.

In this section, given a scheme Y ∈ SmAff/X, we use the basic lemma [Bĕı87, Lemma 3.3]
proved by Bĕılinson to associate with certain stratifications of Y an explicit complex of mixed
Hodge modules, perverse sheaves or perverse motives that computes its relative homology. This
construction is the crucial step towards the realization functor. Note that the assumption on the
smoothness of X is used in the proof of Proposition 4.15.

4.1 Let Y be a quasi-projective k-scheme. A stratification Y• of Y is a sequence of closed subsets
of Y ,

Y• : · · · ⊆ Yi ⊆ Yi+1 ⊆ · · · , i ∈ Z,

such that dim(Yi) 6 i for every integer i ∈ Z. Note that the condition on dimensions implies that
Y−1 = ∅.

Let Y• and Y ′• be two stratifications of Y . We say that Y ′• is finer than Y•, and write Y• 6 Y ′• , if
Yi ⊆ Y ′i for every integer i ∈ Z. This defines an order relation on the set StratY of all stratifications
of Y . The ordered set StratY is filtered. Indeed, since

dim(Yi ∪ Y ′i ) 6 i,

there is a stratification Y ′′• given by Y ′′i := Yi ∪ Y ′i and it is finer than Y• and Y ′• .
Let f :Y → Y ′ be a morphism of schemes of quasi-projective X-schemes and Y• be a

stratification of Y . Let
Y ′i := f(Yi)

be the closure of the image of Yi in Y ′. Then Y ′• is a stratification of Y ′. Indeed, by [EGAIVa,
Théorème (4.1.2)], for every integer i ∈ Z,

dim(Y ′i ) 6 dim(Yi) 6 i.
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We call this stratification the image of Y• by f and write f](Y•) := Y ′• . This defines a functor
f] : StratY → StratY ′ . Let g :Y ′→ Y ′′ be another morphism of quasi-projective X-schemes. Then,
for every integer i ∈ Z,

g(f(Yi)) = g(f(Yi)).

This means that the two stratifications g](f](Y•)) and (gf)](Y•) are the same. In other words,
g] ◦ f] = (g ◦ f)] as functors.

Remark 4.1. We do not require a stratification to be exhaustive, that is, we do not require the
existence of an integer n such that Yn = Y . If f is a closed immersion of codimension greater
than zero, the image of an exhaustive stratification by f is not an exhaustive stratification.
For functoriality reasons, it is therefore essential to work with all stratifications, not only the
exhaustive ones. Note that every stratification admits a finer stratification that is exhaustive.

4.2 The following definition is essential in what follows.

Definition 4.2. Let Y be a quasiprojective X-scheme. A stratification

Y• : ∅ = Y−1 ⊆ Y0 ⊆ Y1 ⊆ · · · ⊆ Yn−1 ⊆ Yn = Y

of Y is said to be cellular if and only if there exists an integer n such that Yn = Y and for every
i ∈ Z the following conditions are satisfied:
• if dim(Yi) = i, then for every k ∈ Z, k 6= i, one has

THM
X (Yi, Yi−1, k) = 0

in M (X);
• if dim(Yi) 6 i− 1, then Yi = Yi−1.

Note that in the second case THM
X (Yi, Yi−1, k) = 0 for every k ∈ Z. Assume Y 6= ∅ and let

n ∈ N be the smallest integer such that Yn = Y . Then we must have n 6 dim(Y ) by the second
condition. For a stratification, Y• being cellular is not a property with respect to Y but with
respect to the morphism Y → X. This will cause no confusion in what follows as our scheme X
is fixed once and for all.

If f : Y → Y ′ is a morphism of quasi-projective X-schemes, the image of a cellular
stratification under the functor f] may not be a cellular stratification. It may not even be
exhaustive (see Remark 4.1). So as far as functoriality is concerned, it is essential to consider all
stratifications and not only the cellular ones.

Remark 4.3. The long exact sequence (7) provides the exact sequences

THM
X (Yi, Yi−1, k + 1)→ THM

X (Yi−1,∅, k)→ THM
X (Yi,∅, k)→ THM

X (Yi, Yi−1, k).

In particular, if Y• is a cellular stratification of Y , then for k < i − 1 or k > i the canonical
morphism

THM
X (Yi−1,∅, k)→ THM

X (Yi,∅, k)

is an isomorphism in M (X). This implies that, for k < i or k > n, the morphism

THM
X (Yi,∅, k)→ THM

X (Y,∅, k)

is an isomorphism in M (X).
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Remark 4.4. Let Y• be a cellular stratification of Y and n be an integer such that Y = Yn. It is
easy to see by induction that THM

X (Y, ∅, i) = 0 for every integer i ∈ Z such that i < 0 or i > n.
Indeed, for n = 0, this follows from Definition 4.2. For n > 0, Remark 4.3 implies that

THM
X (Yn−1,∅, i)

'−→ THM
X (Yn,∅, i) = THM

X (Y,∅, i)

for i < 0 or i > n and vanishing follows by induction.

The following result is an immediate application of [Bĕı87, Lemma 3.3].

Lemma 4.5. Let a : Y → X be an affine morphism of finite type. Assume that dim(Y ) = n. For
a closed subset W such that dim(W ) 6 n− 1, there exists a closed subset Z of Y containing W
and such that dim(Z) 6 n− 1 and for every integer i 6= n,

THM
X (Y,Z, i) = 0.

If Y is integral then we may choose Z such that its open complement is smooth over k.

Note that we do not have to assume here that the scheme Y is affine, only that the morphism
a : Y → X is affine.

Proof. As the functor N (X)→P(X) is exact and faithful, we may assume that M ∈ {H ,P}.
We may assume that Y is reduced. By replacing W by the union of W and the irreducible
components of Y of dimension less than or equal to n − 1, we may assume that W contains all
the irreducible components of Y of dimension less than or equal to n− 1. Then Y \W is open in
Y and of pure dimension n (i.e., all its irreducible components are of dimension n). As k is of
characteristic zero, by [EGAIVb, Proposition (17.15.12)], there is an affine dense open subset V
in Y \W which is smooth over k. Since V is smooth of pure dimension n, QM

V [n] is an object in
M (V ) and

A := vM
∗ v

!
M a!

M (QM
X )[2d− n]

belongs to M (Y ). Apply [Bĕı87, Lemma 3.3] to this object A ∈M (Y ). This yields an affine open
U ′ in Y such that dim(Y \U ′) 6 n− 1 and such that

HiM (aM
! (u′)M

∗ (u′)∗MA) = 0

in M (X) for every integer i ∈ Z\{0}. Let U be the intersection of the two dense open subsets
U ′ and V , and Z its complement in Y . We have W ⊆ Z, dim(Z) 6 n− 1 and the square of open
immersions

U

�

j′ //

j

��

U ′

u′

��
V

v // Y

is cartesian. By smooth base change

(u′)M
∗ (u′)∗MA = (u′)M

∗ (u′)∗M vM
∗ v

!
M a!

M (QM
X )[2d− n]

= (u′)M
∗ (j′)M

∗ j
∗
M v!

M a!
M (QM

X )[2d− n]

= (u)M
∗ (u)!

M a!
M (QM

X )[2d− n].

Hence THM
X (Y,Z, i) = 0 for i 6= n and the proof is complete. 2
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Remark 4.6. In the above proof, the application of [Bĕı87, Lemma 3.3] allows us to choose
the open immersion u′ : U ′ ↪→ Y so that the canonical morphism A → (u′)M

∗ (u′)∗MA is a
monomorphism in M (Y ). This property is not used in the proof of Lemma 4.5 but plays an
essential role in the proof of Proposition 4.15.

Note that for X = Spec(k), Lemma 4.5 is nothing more than the so-called basic lemma of Nori
[Nor02, Basic Lemma – first form]. As a consequence, the subset CellY of cellular stratifications
is cofinal in StratY . That is to say, we have the following lemma.

Lemma 4.7. Let a : Y → X be an affine morphism of finite type and Y• be a stratification of Y .
Then there exists a cellular stratification of Y finer than Y•.

Proof. We construct the stratification by induction. Let us set Y ′n = Yn. Assume that we have
constructed a sequence of closed subsets Y ′r ⊆ Y ′r+1 ⊆ · · · ⊆ Y ′n = Y such that Yi ⊆ Y ′i and
dim(Y ′i ) 6 i for every r 6 i 6 n and such that for r + 1 6 i 6 n the following conditions are
satisfied:
• if dim(Y ′i ) = i, then for every k ∈ Z, k 6= i, one has

THM
X (Y ′i , Y

′
i−1, k) = 0

in M (X);
• if dim(Y ′i ) 6 i− 1, thenY ′i = Y ′i−1.
If dim(Y ′r ) 6 r − 1, then we set Y ′r−1 = Y ′r . Otherwise dim(Y ′r ) = r, and since Yr−1 ⊆ Y ′r and
dim(Yr−1) 6 r − 1, we may apply Lemma 4.5 to obtain a closed subset Y ′r−1, such that Yr−1 ⊆
Y ′r−1 ⊆ Y ′r , dim(Y ′r−1) 6 r − 1 and

THM
X (Y ′r , Y

′
r−1, i) = 0

for every integer i 6= r. 2

Corollary 4.8. Let a : Y → X be an affine morphism of finite type. There exists a cellular
stratification Y• on Y .

Proof. Let n be the dimension of Y . It suffices to apply Lemma 4.7 to the stratification Y• such
that Yi = ∅ for i < n and Yi = Y for i > n. 2

Corollary 4.9. The ordered subset CellY of StratY formed by the cellular stratifications is
filtered.

Proof. Since StratY is filtered, this follows immediately from Lemma 4.7. 2

4.3 The starting point of the main construction is to consider the following complexes associated
with stratifications of (affine) quasi-projective X-schemes.

Definition 4.10. Let Y be a quasi-projective X-scheme. Let Y• be a stratification of Y . We
denote by THM

X (Y, Y•) the complex in Ch(M (X)) given by

· · ·→ THM
X (Yi, Yi−1, i)→ THM

X (Yi−1, Yi−2, i− 1)→ · · ·→ THM
X (Y0, Y−1, 0)→ 0

where THM
X (Y0, Y−1, 0) is placed in degree 0 and all differentials are given by the corresponding

boundary morphisms ∂M
TH.
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These complexes are functorial. Indeed, let f : Y → Y ′ be a X-morphism of quasi-projective
k-varieties. Let Y• be a stratification of Y , and Y ′• be a stratification of Y ′ such that f(Yi) ⊆ Y ′i
for every integer i ∈ Z (i.e., Y ′• is finer than the image f](Y•) of Y• by f). Then by Lemma 3.5,
the morphisms

fM
TH : THM

X (Yi, Yi−1, i)→ THM
X (Y ′i , Y

′
i−1, i)

define a morphism of complexes

fM
TH : THM

X (Y, Y•)→ THM
X (Y ′, Y ′•).

In particular, we have a morphism of complexes

fM
TH : THM

X (Y, Y•)→ THM
X (Y ′, f](Y•))

and for every morphism f ′ : Y ′→ Y ′′ of quasi-projective k-schemes, the diagram

THM
X (Y, Y•)

fM
TH

//

(f ′f)M
TH

**
THM

X (Y ′, f](Y•))
(f ′)M

TH

// THM
X (Y ′′, (f ′f)](Y•))

is commutative.

Definition 4.11. We define rMX (Y, Y•) by

rMX (Y, Y•) := THM
X (Y, Y•)[−2d].

The next proposition shows that complexes associated with cellular stratifications do compute
the M -homology of quasi-projective k-schemes.

Proposition 4.12. Assume that Y• is a cellular stratification of Y . For every integer i ∈ Z, there
is an isomorphism

φ(Y, Y•, i) : HM
i (THM

X (Y, Y•))
∼−→ THM

X (Y, ∅, i)

such that for every cellular stratification Y ′• finer that Y• the diagram is commutative:

HM
i (THM

X (Y, Y•))
φ(Y,Y•,i)

((

��

THM
X (Y,∅, i)

HM
i (THM

X (Y, Y ′•))

φ(Y,Y ′• ,i)

66

where the vertical morphism is the functoriality morphism.

Proof. Let n be an integer such that Yn = Y . Let us construct the isomorphisms φ(Y, Y•, i) by
induction on n. If n = 0, then THM

X (Y, ∅, i) = 0 for every integer i 6= 0 and the lemma is obvious.
Assume n = 1. Using the long exact sequence from Lemma 3.4, Definition 4.2 and Remark 4.4,
we obtain the exact sequence

0→ THM
X (Y,∅, 1)→ THM

X (Y, Y0, 1)→ THM
X (Y0,∅, 0)→ THM

X (Y, ∅, 0)→ 0
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which proves the lemma in that case. Assume n > 2. Let Z = Yn−1 and

Z• : ∅ = Z−1 ⊆ Z0 = Y0 ⊆ Z1 = Y1 ⊆ · · · ⊆ Zn−1 = Yn−1 = Z

be the induced stratification. If i < 0 or i > n we set φ(Y, Y•, i) = 0, which is an isomorphism
since HM

i (RM
X (Y, Y•)) = THM

X (Y,∅, i) = 0 by Remark 4.4. Let 0 6 i 6 n−2. We have by induction
an isomorphism

HM
i (THM

X (Y, Y•)) = HM
i (THM

X (Z,Z•))
φ(Z,Z•,i)−−−−−→ THM

X (Z,∅, i) = THM
X (Yn−1,∅, i)

and we let φ(Y, Y•, i) be the composition of this isomorphism and the canonical morphism
THM

X (Yn−1,∅, i)→ THM
X (Y,∅, i), which is an isomorphism by Remark 4.3.

Now we have a commutative diagram

THM
X (Yn, Yn−1, n)

∂n //

++

(12)

88

THM
X (Yn−1, Yn−2, n− 1)

∂n−1 // THM
X (Yn−2, Yn−3, n− 2)

Ker(∂n−1) = HM
n−1(THM

X (Z,Z•))

OO

φ(Z,Z•,n−1)// THM
X (Yn−1,∅, n− 1)

where the morphism (12) is the morphism in the long exact sequence

THM
X (Yn−1,∅, n)

��
THM

X (Y, ∅, n) // THM
X (Yn, Yn−1, n)

(12) // THM
X (Yn−1,∅, n− 1)

��
THM

X (Y,∅, n− 1)

��
THM

X (Yn, Yn−1, n− 1)

obtained by Lemma 3.4. However, THM
X (Yn, Yn−1, n− 1) = 0 by Definition 4.2, and THM

X (Yn−1,
∅, n) = 0 by Remark 4.4. We obtain therefore an isomorphism

φ(Y, Y•, n) : Ker(∂n) = HM
n (THM

X (Y, Y•))→ THM
X (Y,∅, n)

and an isomorphism

φ(Y, Y•, n− 1) : HM
n−1(THM

X (Y, Y•))→ THM
X (Y,∅, n− 1).

Hence the statement. 2

Remark 4.13. By Definition 3.2, one may view the isomorphisms constructed in Lemma 4.12 as
isomorphisms

H2d−i
M (rMX (Y, Y•)) = H−iM (THM

X (Y, Y•))
φ(Y,Y•,i)−−−−−→ H2d−i

M (aM
! a!

M (QM
X )).
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Hence ψ(Y, Y•, i) := φ(Y, Y•, 2d− i) are isomorphisms

ψ(Y, Y•, i) : HiM (rMX (Y, Y•))
∼−→ HiM (aM

! a!
M (QM

X ))

such that for every cellular stratification Y ′• finer that Y• the diagram

HiM (rMX (Y, Y•))
ψ(Y,Y•,i)

))

��

HiM (aM
! a!

M (QM
X ))

HiM (rMX (Y, Y ′•))

ψ(Y,Y ′• ,i)

55

commutes, where the vertical morphism is the functoriality morphism.

Corollary 4.14. Let Y• and Y ′• be cellular stratifications. If Y ′• is finer that Y•, then the
canonical map

rMX (Y, Y•)→ rMX (Y, Y ′•)

is a quasi-isomorphism in Chb(M (X)).

In the Hodge or perverse case, the result can be strengthened.

Proposition 4.15. Assume M ∈ {H ,P}. Let a : Y → X be an affine morphism. Assume
that Y is smooth of pure dimension n. Then there exists a cellular stratification Y• of Y such that
rMX (Y, Y•) is isomorphic in Db(M (X)) to

aM
! a!

MQM
X .

Proof. Let r be an integer 0 6 r 6 n. Assume that Z ⊆ Y is a closed subset such that dim(Z) 6 r
and

HiM (z!
M a!

M (QM
X )) = 0

for every integer i 6= 2d− r. Let z : Z ↪→ Y be the closed immersion. Consider the object

A := H2d−r
M (z!

M a!
M (QM

X )) ' z!
M a!

M (QM
X )[2d− r]

in M (Z). By [Bĕı87, Lemma 3.3], there exists a dense affine open subscheme U in Z such that
the open immersion u : U ↪→ Z satisfies the following conditions.
• The canonical morphism A→ uM

∗ u
∗
MA is a monomorphism.

• For every i ∈ Z\{0}, one has

HiM (aM
! zM

! (uM
∗ u
∗
MA)) = 0.

Consider the distinguished triangle in Db(M (X)),

wM
! w!

M (A)→ A→ uM
∗ u
∗
M (A)

+1−→ (12)

where w : W ↪→ Z is the closed immersion of the complement of U in Z. Note that dim(W ) 6 r−1
and

wM
! w!

M (A) = wM
! w!

M z!
M a!

M (QM
X )[2d− r].

1256

https://doi.org/10.1112/S0010437X15007812 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007812


Perverse, Hodge and motivic realizations

Since A→ uM
∗ u
∗
MA is a monomorphism in the category M (Z), using the long exact sequence

obtained by applying the cohomological functor H0
M to the distinguished triangle (12), we get

wM
! HiM (w!

M (A)) = HiM (wM
! w!

M (A)) = 0

for i 6= 1. This implies that H1
M (w!

M (A)) = w!
M z!

M a!
M (QM

X )[2d+ 1− r] belongs to M (Z) and

Coker[A→ uM
∗ u
∗
MA] = H1

M (w!
M (A)) = w!

M z!
M a!

M (QM
X )[2d+ 1− r].

Since a is a smooth morphism, one has a!
M (QM

X ) = QM
Y (n− d)[2n− 2d]. Hence, in the case

z = IdY , the object
A := a!

M (QM
X )[2d− n]

belongs to M (X), since Y is smooth over k of dimension n. Using the above considerations, we
construct simultaneously by induction an acyclic resolution A• of A for the left exact functor
H0

M ◦ aM
! and a cellular stratification Y• of Y such that

HjM ((yi)
!
M a!

M (QM
X )) = 0

for every integer j ∈ Z\{2d− i}. The resolution is given in terms of the stratification by

Ai = (yn−i)
M
! (un−i)

M
∗ (un−i)

∗
M ((yn−i)

!
M a!

M (QM
X ))[2d+ i− n]

and
Coker[Ai→ Ai+1] = (yn−i−1)M

! ((yn−i−1)!
M a!

M (QM
X ))[2d+ i+ 1− n]

where ui : Yi\Yi−1 ↪→ Yi is the open immersion and yi : Yi ↪→ Y the closed immersion. Since the
resolution is acyclic for the left exact functor H0

M ◦ aM
! there is an isomorphism in Db(M (X))

between aM
! A = aM

! a!
M (QM

X )[2d− n] and the complex

· · ·→ 0→ H0
M (aM

! (A0))→ H0
M (aM

! (A1))→ · · ·→ H0
M (aM

! (An))→ 0→ · · · (13)

where H0
M (aM

! (A0)) is in degree zero. By construction

H0
M (aM

! (Ai)) = THM
X (Yn−i, Yn−i−1, n− i)

and the complex (13) is nothing more than THM
X (Y, Y•)[−n]. Hence aM

! a!
M (QM

X ) is isomorphic
to rMX (Y, Y•). This concludes the proof of the proposition. 2

5. The Gabriel–Quillen embedding theorem and homotopical lifting

LetX be a smooth quasi-projective k-scheme. To construct a realization functor from the category
of étale constructible motives, it is handy to have it first defined on the ‘big category’ DAét(X,Q)
(it may also be useful in some instances to have such a ‘big realization’). However, for this, the
bounded derived category Db(M (X)) of mixed Hodge modules is too small.

In this section we elaborate on the Gabriel–Quillen embedding theorem (see [TT90,
Appendix A] for a very detailed treatment), to explain how one can remedy this problem and
embed the bounded derived category into the homotopy category of some stable model category
that does the job.

We also prove the results from homotopical algebra needed to construct the realization
functors, in particular Proposition 5.7, which allows us to lift certain functors defined on Sm/X
to a Quillen adjunction on the category of presheaves PSh(Sm/X,Ch(Q)).

In this section A is an essentially small Q-linear Abelian category. We denote by 0A the zero
object in A .
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5.1 Let PSh(A ,Q) be the category of presheaves of Q-vector spaces on A . Since A is Q-linear,
we have the Yoneda functor

i : A → PSh(A ,Q)

A 7→ HomA (−, A).

Denote by PSha(A ,Q) the full subcategory of PSh(A ,Q) with objects the additive
presheaves of Q-vector spaces (or equivalently the Q-linear presheaves). The forgetful functor
admits a left adjoint

aad : PSh(A ,Q)→ PSha(A ,Q)

given, for some F ∈ PSh(A ,Q), by the colimit aad(F ) := colim(A,i(A)→F )∈i↓F i(A) where i ↓F
is the over category in the category of presheaves of sets (in other words, F is viewed as a presheaf
of sets and i as functor from A to presheaves of sets on A ).

Consider the Grothendieck pretopology on A (see [SGA4, Exposé II, Définition 1.3]) such
that covering families of an object A ∈ A are families with one element {a : B � A} where
a is an epimorphism, and let Sh(A ,Q) be the category of sheaves of Q-vector spaces for this
topology. A presheaf F ∈ PSh(A ,Q) is a sheaf if and only if for every epimorphism a : B � A
the sequence

0→ F (A)→ F (B)→ F (B ×A B)

is exact and the objects in

Sha(A ,Q) := PSha(A ,Q) ∩ Sh(A ,Q)

are precisely the left exact Q-linear contravariant functors from A to the category of Q-vector
spaces.

We have the sheafification functor

aepi : PSh(A ,Q)→ Sh(A ,Q).

Let us recall briefly its construction (see, for example, [TT90, §A.7.8]). For A ∈ A , let CA be the
following filtered category. The objects in CA are epimorphisms B � A. Between two objects
there is at most one map. There exists a map (b : B � A)→ (b′ : B′ � A) if and only if there is
a map b′′ : B′ → B such that b ◦ b′′ = b′. Given a presheaf F ∈ PSh(A ,Q), sending an object
B � A to Ker(F (B)→ F (B ×A B)) is a functor from the filtered category CA to the category
of Q-vector spaces. One then defines

LF (A) := colim
(B�A)∈CA

Ker(F (B)→ F (B ×A B))

and aepiF = LLF .

Remark 5.1. Given F ∈ PSh(A ,Q), recall that LF = 0 if and only if, for every A ∈ A and
every α ∈ F (A), there exists an epimorphism b : B � A in A such that b∗α = 0 in F (B)
(see [TT90, A.7.11. Lemma]).

In particular, given a sequence F ′
φ−→ F

ψ−→ F ′′ in PSh(A ,Q), the sequence

aepiF
′ aepiφ−−−→ aepiF

aepiψ−−−→ aepiF
′′

is exact in Sh(A ,Q) if and only if for every A ∈ A and every α ∈ F (A) such that ψ(α) = 0
in F ′′(A) there exist an epimorphism b : B → A in A and an element β ∈ F ′(B) such that
φ(β) = b∗α.
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If F is additive then aepiF is also additive (see [TT90, §A.7.8]), hence the functor aepi

induces a functor
aepi : PSha(A ,Q)→ Sha(A ,Q) (14)

which is left adjoint to the forgetful functor. Note that Sha(A ,Q) is a Grothendieck Abelian
category.

Lemma 5.2. The category Sha(A ,Q) is a Q-linear Abelian category. The Yoneda functor

i : A → Sha(A ,Q)

A 7→ HomA (−, A)

is a fully faithful exact functor and A is stable by extension in Sha(A ,Q). Moreover, the induced
functors

Db(A )→ Db
A (Sha(A ,Q)), D−(A )→ D−A (Sha(A ,Q))

are equivalences of categories.

Remark 5.3. Let Sha(A ,Z) be the category of additive sheaves of Abelian groups on A for the
topology of epimorphisms (i.e., the category of additive left exact functors from A to the category
of Abelian groups as considered in [Gab62, II § 2] and [Qui73]). Since A is Q-linear, the canonical
functor Sha(A ,Q) → Sha(A ,Z) is an exact equivalence of categories. In particular, the
statement of Lemma 5.2 is simply the embedding theorem proved by Gabriel in [Gab62] and
generalized to exact categories by Quillen in [Qui73].

5.2 We endow the category PSha(A ,Ch(Q)) with its τ -local projective model structure where τ
is the topology of epimorphisms (i.e., we consider the left Bousfield localization of the projective
model structure of Lemma B.2 with respect to the maps that induce quasi-isomorphims on the
associated complexes of sheaves). Let us consider the full subcategory Sha(A ,Ch(Q)) formed by
the additive sheaves of complexes of Q-vector spaces. The functor (14) induces a functor

aepi : PSha(A ,Ch(Q))→ Sha(A ,Ch(Q))

left adjoint to the forgetful functor.
Consider the classes W,Fib of maps in Sha(A ,Ch(Q)) defined as follows. A map F → G

belongs to W (respectively, Fib) if and only if it is a τ -local weak equivalence (respectively, a
τ -local fibration) in PSha(A ,Ch(Q)). Let Cof be the class of maps in Sha(A ,Ch(Q)) that have
the left lifting property with respect to maps in W ∩ Fib.

By [Ayo07b, Lemme 4.4.41], the triple (W,Fib,Cof) is a model structure (called the projective
model structure) on the category Sha(A ,Ch(Q)) = Ch(Sha(A ,Q)) and we have a Quillen
adjunction

aepi : PSha(A ,Ch(Q))� Sha(A ,Ch(Q))

for the projective model structures. Note that since (14) is an exact functor, the left adjoint
preserves equivalences (i.e., quasi-isomorphisms).

Remark 5.4. Note that Sha(A ,Q) is an Abelian category, and the weak equivalences for the
above model structure are the quasi-isomorphisms. In particular,

Ho(Sha(A ,Ch(Q))) = D(Sha(A ,Q)).
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5.3 Let ∆opSha(A ,Ch(Q)) be the category of simplicial objects in Sha(A ,Ch(Q)). It is tensored
and cotensored over the category of simplicial sets ∆opSets. For F ∈ ∆opSha(A ,Ch(Q)) and
S ∈ ∆opSets, the tensor product F � S is defined as the simplicial object

n 7→ Fn � Sn :=
∐
s∈Sn

Fn.

Since the model category Sha(A ,Ch(Q)) is proper, cofibrantly generated and stable (see [Ayo07b,
Lemme 4.4.35] and [CD09, Theorem 2.1] for the right properness), by [RSS01, Proposition 4.5]
the category ∆opSha(A ,Ch(Q)) has a simplicial model structure, that is, such that

−�− : ∆opSha(A ,Ch(Q))×∆opSets→ ∆opSha(A ,Ch(Q))

is a Quillen bifunctor. This model structure is called the canonical model structure and is obtained
from the Reedy model structure. Recall that the Reedy weak equivalences are the level weak
equivalences and that a map F → G is called a Reedy cofibration if for every integer n the map

Fn

∐
Ln(F )

Ln(Gn)→ Gn

is a cofibration in Sha(A ,Ch(Q)) where Ln(−) is the nth latching space functor. The left derived
functor of the colimit functor provides a functor

L colim
∆op

: HoReedy(∆opSha(A ,Ch(Q)))→ Ho(Sha(A ,Ch(Q))),

and a map F → G is a canonical equivalence if its image under this functor is an isomorphism.
The canonical cofibrations are the Reedy cofibrations, and fibrations are defined as maps
having the right lifting property with respect to the class of trivial cofibrations.

Let cc(F ) be the constant simplicial object and Ev(G ) = G0. Then the adjoint functors cc
and Ev provide a Quillen equivalence

cc : Sha(A ,Ch(Q))� ∆opSha(A ,Ch(Q)) : Ev (15)

(see [RSS01, Theorem 3.6]).

5.4 Given a complex of Q-vector spaces K, let Kcst be the constant presheaf of Q-vector spaces
on A . We denote by F ⊗ G the tensor product of two presheaves F ,G ∈ PSh(A ,Ch(Q). Note
that if F is an object in PSha(A ,Ch(Q)) (respectively, Sha(A ,Ch(Q))), then F ⊗Kcst belongs
also to PSha(A ,Ch(Q)) (respectively, Sha(A ,Ch(Q))). In particular, we have a functor

−⊗ (−)cst : Sha(A ,Ch(Q))× Ch(Q)→ Sha(A ,Ch(Q)).

In the following proposition, we consider its extension to simplicial objects (a proof is given in
Appendix B).

Proposition 5.5. The bifunctor

−⊗ (−)cst : ∆opSha(A ,Ch(Q))× Ch(Q)→ ∆opSha(A ,Ch(Q))

is a Quillen bifunctor where ∆opSha(A ,Ch(Q)) is endowed with the canonical model structure
and Ch(Q) with the projective model structure.

1260

https://doi.org/10.1112/S0010437X15007812 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007812


Perverse, Hodge and motivic realizations

Let F ∈ ∆opSha(A ,Ch(Q)). One then has an adjunction

F ⊗ (−)cst : Ch(Q) →← ∆opSha(A ,Ch(Q)) : Hom(F ,−) (16)

where, for every G in ∆opSha(A ,Ch(Q)), the complex Hom(F ,G ) is the equalizer of the maps∏
n∈∆op

Hom(Fn,Gn) →→
∏

n→m∈∆op

Hom(Fn,Gm),

and Hom(Fn,Gn) and Hom(Fn,Gm) are the usual complexes of graded morphisms. As a
consequence one immediately gets the following corollary.

Corollary 5.6. Let F be a cofibrant object in ∆opSha(A ,Ch(Q)). Then (16) is a Quillen
adjunction.

5.5 Let S be a category and
r : S→ ∆opSha(A ,Ch(Q))

be a functor. With this functor are associated two functors

r∗ : PSh(S,Ch(Q))� ∆opSha(A ,Ch(Q)) : r∗

defined as follows. Given an object F ∈ ∆opSha(A ,Ch(Q)), r∗(F ) is the presheaf on S with
values in Ch(Q) defined by

r∗(F )(X) := Hom(r(X),F )

for X ∈ S. Given a presheaf X ∈ PSh(S,Ch(Q)), the object r∗(X ) is defined as the coequalizer
in ∆opSha(A ,Ch(Q)),

r∗(X ) = Coeq

[ ⊕
X→Y ∈Fl(S)

r(X)⊗X (Y )cst ⇒
⊕
X∈S

r(X)⊗X (X)cst

]
. (17)

Recall that with an object X ∈ S and a presheaf X ∈ PSh(S,Ch(Q)) is associated an object
X ⊗X ∈ PSh(S,Ch(Q)) (see, for example, [Ayo07b, § 4.4]). Given an object K ∈ Ch(Q), we
denote by Kcst the constant presheaf on S with value K.

Proposition 5.7. The functors

r∗ : PSh(S,Ch(Q))� ∆opSha(A ,Ch(Q)) : r∗

are adjoint and the functors r and r∗(−⊗ Q), are canonically isomorphic. Moreover, if r(X) is
cofibrant in ∆opSha(A ,Ch(Q)) for every X ∈ S, then they form a Quillen adjunction for the
projective model structure on PSh(S,Ch(Q)).

Proof. We simply denote by Hom the set of morphisms in the category ∆opSha(A ,Ch(Q)). Then
HomPSha(r∗(X ),F ) is by definition the equalizer of∏

X∈S
HomPSha(r(X)⊗X (X)cst,F )⇒

∏
X→Y ∈Fl(S)

HomPSha(r(X)⊗X (Y )cst,F ).

But for objects U, V ∈ S,

Hom(r(U)⊗X (V )cst, A) = HomCh(Q)(X (V ), Hom(r(U),F ))

= HomCh(Q)(X (V ), r∗(F )(U)).
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This means that Hom(r∗(X ),F ) is equal to the set HomPSh(S,Ch(Q))(X , r∗(F )) of morphisms
in PSh(S,Ch(Q)).

Assume that r(X) is cofibrant for every X ∈ S. If a : F → G is fibration (respectively, a
trivial fibration), then by Corollary 5.6, for every object X ∈ S, the induced map

Hom(r(X),F )→ Hom(r(X),G )

is a fibration (respectively, a trivial fibration). Hence the map r∗(a) is a projective fibration
(respectively, projective trivial fibration). This implies that the pair (r∗, r∗) is a Quillen
adjunction.

It remains to construct an isomorphism r∗(X ⊗Q) ' r(X) in ∆opSha(A ,Ch(Q)) functorial
in X. Let F be an object in ∆opSha(A ,Ch(Q)). Then there are isomorphisms functorial in F
and X,

Hom(r∗(X ⊗Q),F ) ' HomPSh(S,Ch(Q))(X ⊗Q, r∗(F ))

' HomCh(Q)(Q, r∗(F )(X))

= HomCh(Q)(Q,Hom(r(X),F ))

' Hom(r(X),F )

(see, for example, [Ayo07b, Proposition § 4.4]). The result then follows by the Yoneda lemma. 2

5.6 Now let M ∈ {N ,H ,P} and consider the category M (X). The functor A 7→ A(1) is
a Q-linear autoequivalence of the category M (X). It induces a Q-linear exact equivalence of
categories

TM
X : ∆opSha(M (X),Ch(Q))→ ∆opSha(M (X),Ch(Q)).

For every simplicial sheaf F ∈∆opSha(M (X),Ch(Q)), the object TM
X (F ) is the simplicial sheaf

such that for every n ∈ N and A ∈M (X),

TM
X (F )n(A) = Fn(A(−1))[1].

Note that for every A ∈M (X) we have an isomorphism (functorial in A)

cc(i(A(1)[1])) = TM
X (cc(i(A))).

Remark 5.8. Since the functor TM
X commutes with colimits, for every F ∈ ∆opSha(M (X),

Ch(Q)) and every S ∈ ∆opSets there is a canonical isomorphism

TM
X (F )� S = TM

X (F � S).

Note that TM
X is a Quillen equivalence for the canonical model structure on ∆opSha(M (X),

Ch(Q)). Let
MM (X) := SpTM

X
(∆opSha(M (X),Ch(Q)))

be the category of TM
X -spectra in the category ∆opSha(M (X),Ch(Q)) as defined in [Hov01,

Definition 1.1]. Then, by [Hov01, Theorem 5.1], the canonical functors

Sus0TM
X

: ∆opSha(M (X),Ch(Q))�MM (X) : Ev0 (18)

are a Quillen equivalence where the right-hand side is endowed with its stable model structure.
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Lemma 5.9. Let C be an essentially small category and

F : C→ ∆opSha(M (X),Ch(Q))

be a functor. Then there is a natural isomorphism

TM
X (hocolim

C
F ) ' hocolim

C
(TM

X ◦ F ).

Proof. By [RSS01, Theorem 3.6, Proposition 4.5], the category ∆opSha(A ,Ch(Q)) with its
canonical model structure is a simplicial model category. The homotopy colimit functor is thus
given by the Bousfield–Kan formula (see [Hir03, Definition 19.1.2]). In other words, if G is
C-diagram, then hocolimCG is the coequalizer∐

σ:α→α′

G(α)� B(α′ ↓ C)op
→

∐
α∈Ob(C)

G(α)� B(α ↓ C)op.

The result follows therefore from Remark 5.8. 2

The Quillen equivalences (15) and (18) provide an equivalence of homotopy categories

D(Sha(M (X),Q)) = Ho(Sha(M (X),Ch(Q))) ' Ho(MM (X)), (19)

and by Lemma 5.2 the left-hand side contains Db(M (X)) as a full triangulated subcategory.

6. Perverse realization of motives

In this last section we give the construction of the realization functors. Let us briefly sketch it as
a guide.

Given an affine scheme Y ∈ SmAff/X, we have, associated with every stratification of Y , a
complex of objects in M (X) that computes, for cellular stratifications, its M -homology. The first
step is to get rid of choices by taking a homotopy colimit over all stratifications. For functoriality
it is necessary to consider all stratifications, but only the cellular ones yield the right answer
(fortunately Lemma 4.7 shows that there are enough of them).

The realization is so far only defined over SmAff/X. The next step is to extend it to all smooth
quasi-projective X-schemes by a homotopy left Kan extension inspired by the affine replacement
functor introduced by Morel in [Mor12, §A.2].

One then uses Proposition 5.7 to extend it further to a left Quillen functor on the category of
presheavesPSh(Sm/X,Ch(Q)) with its projective model structure. We check that it is compatible
with the (A1, ét)-Bousfield localization (see Proposition 6.6). The final step is to stabilize the
construction (see Proposition 6.21).

6.1 Recall that we have an exact fully faithful functor

i : Ch(M (X))→ Sha(M (X),Ch(Q))

and the constant simplicial functor

cc : Sha(M (X),Ch(Q))→ ∆opSha(M (X),Ch(Q)).

For Y ∈ SmAff/X and a stratification Y• of Y , we denote by irMX (Y, Y•) the image of rMX (Y, Y•)
in Sha(M (X),Ch(Q)).
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Definition 6.1. Let Y ∈ SmAff/X. We set

raM
X (Y ) := hocolim

Y•∈StratY
cc(irMX (Y, Y•)).

This provides a functor

raM
X : SmAff/X → ∆opSha(M (X),Ch(Q)).

Indeed, let f : Y → Y ′ be a morphism in SmAff/X. There is a functor f] : StratY → StratY ′ .
Hence, by [Hir03, Proposition 19.1.8], we have a canonical morphism

hocolim
Y•∈StratY

cc(irMX (Y ′, f](Y•)))→ hocolim
Y ′•∈StratY ′

cc(irMX (Y ′, Y ′•)) =: raM
X (Y ′).

On the other hand, we have a morphism rMX (Y,−)→ rMX (Y ′, f](−)) of functors on StratY , which
induces a map

raM
X (Y ) := hocolim

Y•∈StratY
cc(irMX (Y, Y•))→ hocolim

Y•∈StratY
cc(irMX (Y ′, f](Y•))).

The composition provides a map raM
X (Y )→ raM

X (Y ′), and functoriality is easy to check.

Remark 6.2. For every stratification Y• of Y , the object irMX (Y, Y•) is cofibrant in Sha(M (X),
Ch(Q)) by Remark B.4. Hence, since cc is a left Quillen functor, it follows from [Hir03, Theorem
18.5.2] that raM

X (Y ) is cofibrant in ∆opSha(M (X),Ch(Q)).

Let us mention the following important consequence of Lemma 4.7.

Lemma 6.3. Let Y ∈ SmAff/X. Then the canonical morphism

hocolim
Y•∈CellY

cc(irMX (Y, Y•))→ hocolim
Y•∈StratY

cc(irMX (Y, Y•))

is a quasi-isomorphism.

Proof. By [Hir03, Theorem 19.6.7], it is enough to check that the inclusion functor I : CellY →
StratY is homotopy right cofinal. We have to check that, for every Y• in StratY , the nerve B(Y• ↓ I)
is contractible. This follows from Lemma 4.7, which implies that the category Y• ↓ I is filtered. 2

The next step is to extend the functor raM
X to smooth quasi-projective X-schemes that may

not be affine. For this we use a homotopy left Kan extension inspired by the affine replacement
functor introduced by Morel in [Mor12, §A.2].

Definition 6.4. Let Y ∈ Sm/X. We set

rMX (Y ) := hocolim
(Z→Y )∈(SmAff/X)↓Y

raM
X (Z).

Let IY : (SmAff/X) ↓ Y → SmAff/X be the forgetful functor defined by IY (Z → Y ) = Z.
The above homotopy colimit may then be rewritten as

rMX (Y ) := hocolim
(SmAff/X)↓Y

raM
X ◦ IY .

Since raM
X (Z) is cofibrant in ∆opSha(M (X),Ch(Q)) for every Z ∈ SmAff/X, it follows from

[Hir03, Theorem 18.5.2] that rMX (Y ) is cofibrant in ∆opSha(M (X),Ch(Q)) as well.
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Let f : Y ′→ Y be a morphism of smooth quasi-projective X-schemes. There is a functor

f∗ : (SmAff/X) ↓ Y ′→ (SmAff/X) ↓ Y

which maps a morphism (Z → Y ′) to the morphism (Z → Y ) obtained by composition with f .
Note that by definition, IY ◦ f∗ = IY ′ . Hence, by [Hir03, Proposition 19.1.8], we have a canonical
morphism

rMX (Y ′) := hocolim
(SmAff/X)↓Y ′

raM
X ◦ IY ′ → hocolim

(SmAff/X)↓Y
raM
X ◦ IY =: rMX (Y ).

This provides a functor
rMX : Sm/X → Sha(M (X),Ch(Q)).

Remark 6.5. Denote again by rMX the restriction of rMX to the subcategory SmAff/X. There is a
canonical morphism of functors

rMX → raM
X .

For every Y ∈ SmAff/X, the induced morphism rMX (Y )→ raM
X (Y ) is a weak equivalence. Indeed,

this follows from [Hir03, Corollary 19.6.8] since (Id : Y → Y ) is a final object in the over category
(SmAff/X) ↓ Y .

6.2 We may apply the construction explained in § 5.5 to the functor rMX . Since rMX (Y ) is cofibrant
for every Y ∈ Sm/X, Proposition 5.7 yields a Quillen adjunction

RLQM ,eff
X := (rMX )∗ : PSh(Sm/X,Ch(Q))� ∆opSha(M (X),Ch(Q)) : (rMX )∗ =: RRQM ,eff

X

such that the functors rMX and RLQM ,eff
X (− ⊗ Q), are canonically isomorphic. Note that in

the previous adjunction, the category of presheaves PSh(Sm/X,Ch(Q)) is endowed with the
projective model structure. To go further, we need to see that the adjunction is also compatible
with the (A1, ét)-model structure obtained by Bousfield localization.

Theorem 6.6. The adjunction (RLQM ,eff
X ,RRQM ,eff

X ) induces a Quillen adjunction

RLQM ,eff
X : PSh(Sm/X,Ch(Q))� ∆opSha(M (X),Ch(Q)) : RRQM ,eff

X

where PSh(Sm/X,Ch(Q)) is endowed with the (A1, ét)-local projective model structure.

The proof of Theorem 6.6 relies on the universal property of Bousfield localization and
Proposition 2.1. Theorem 6.6 provides realization functors for effective étale motives. Let RLM ,eff

X

be the left derived functor of RLQM ,eff
X and RRM ,eff

X be the right derived functor of RRQM ,eff
X . By

Theorem 6.6 we have an adjunction

RLM ,eff
X : DAeff,ét(X,Q)� Ho(∆opSha(M (X),Ch(Q))) : RRM ,eff

X .

Recall that we have an equivalence of triangulated categories (provided by the Quillen
equivalence (15))

D(Sha(M (X),Q)) = Ho(Sha(M (X),Ch(Q)))� Ho(∆opSha(M (X),Ch(Q))).

Remark 6.7. For every Y ∈ Sm/X, the presheaf Y ⊗ Q is cofibrant for the projective model
structure on PSh(Sm/X,Ch(Q)). In particular,

RLM ,eff
X (Y ⊗Q) = RLQM

X (Y ⊗Q) ' rMX (Y ).
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6.3 In the remainder of this section we prove the properties of the functor RLM
X needed to prove

Theorem 6.6. For this it will be handy to consider the following objects.

Definition 6.8. Let Y ∈ SmAff/X. We set

THM
X (Y ) := colim

Y•∈CellY
iTHM

X (Y, Y•).

This defines a complex of objects of the category Sh(M (X),Q), that is, an object in
Sha(M (X),Ch(Q)).

Remark 6.9. By Lemma 4.7, the complex THM
X (Y ) is also given by the colimit over

all stratifications (in that case, however, the transition morphisms are not always quasi-
isomorphisms):

THM
X (Y ) := colim

Y•∈StratY
iTHM

X (Y, Y•).

In particular, the term of degree −i of the complex iTHM
X (Y ) is

colim
Y•∈StratY

iTHM
X (Yi, Yi−1, i) = colim

Y•∈CellY
iTHM

X (Yi, Yi−1, i).

Remark 6.10. Note that the canonical maps

raM
X (Y ) // colimY•∈StratY ccTHM

X (Y )[−2d]

hocolim
Y•∈CellY

cc(irMX (Y, Y•))

OO

// colim
Y•∈CellY

cc(irMX (Y, Y•)) = ccTHM
X (Y )[−2d]

OO

are weak equivalences (the vertical one on the right even being an isomorphism).

From this we obtain a functor

THM
X : SmAff/X → Sha(M (X),Ch(Q)).

We now prove some elementary properties of the functor THM
X . Recall that an affine vector

bundle torsor over a quasi-projective k-scheme Y is an affine scheme T and an affine morphism
T → Y which is a E-torsor for some vector bundle E over Y . Recall that every quasi-projective
k-scheme Y admits an affine vector bundle torsor T → Y (see [Jou73, Lemme 1.5] or [Wei89,
Proposition 4.3]). If Y is an affine scheme, then by [EGAIII, Théorème (1.3.1)] an affine vector
bundle torsor T → Y is simply a vector bundle.

Lemma 6.11. Let Y ∈ SmAff/X and T → Y be a vector bundle. Then the canonical morphism
THM

X (T )→ THM
X (Y ) is a quasi-isomorphism.

Proof. We may assume that Y is non-empty. Let Y• be a stratification of Y and n the smallest
integer such that Yn = Y . Consider the stratification T • of T given by

Ti :=

{
Yi if i 6 n,
T if i > n,

where Yi is embedded in T using the zero section Y ↪→ T . We have, by Lemma 3.9,

THM
X (T, Y, i) = 0
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for all i ∈ Z. Hence, if Y• is cellular, then T• is cellular and

THM
X (Y, Y•) = THM

X (Z,Z•).

This implies that projection induces a quasi-isomorphism THM
X (T ) → THM

X (Y ) and the result
follows. 2

Lemma 6.12. Let Y ∈ SmAff/X and let p : Y ′ → Y be a Galois covering with Galois group G.
Then the canonical morphism

THM
X (Y ′)G→ THM

X (Y )

is a quasi-isomorphism.

Proof. We may assume that Y is non-empty. Let Y• be a stratification of Y . Let Y ′i be the
inverse image of Yi under p. Since p is finite étale, we have dim(Y ′i ) = dim(Yi) 6 i and Y ′• is
a stratification of Y ′ invariant under the action of G. Lemma 3.8 implies that p induces an
isomorphism of complexes

THM
X (Y ′, Y ′•)

G
→ THM

X (Y, Y•).

The result follows from this. 2

Remark 6.13. If Y ′ → Y is an étale morphism and Y• is a stratification of Y , then dim(Y ′i ) =
dim(Yi) for every i ∈ Z where Y ′i := Yi ×Y Y ′. In particular, Y ′• is stratification of Y . We call it
the induced stratification.

Let a : Y → X be a smooth affine morphism of quasi-projective k-varieties. Consider an
elementary affine Nisnevich square

V
u′ //

e′

��
�

E

e

��
U

u // Y

Let V•, U•, E• and Y• be stratifications of the schemes V , U , E and Y , respectively. If U•, E•
and V• are induced by Y•, then for M ∈ {H ,P} the long exact sequence (8) yields the exact
sequence

THM
X (Yi, Yi−1, i+ 1) // THM

X (Vi, Vi−1, i) // THM
X (Ui, Ui−1, i)⊕ THM

X (Ei, Ei−1, i)

��
THM

X (Yi, Yi−1, i)

��
THM

X (Vi, Vi−1, i− 1).

For perverse Nori motives we just have an exact sequence (see Corollary 3.7)

THN
X (Vi, Vi−1, i)→ THN

X (Ui, Ui−1, i)⊕ THN
X (Ei, Ei−1, i)→ THN

X (Yi, Yi−1, i).

If the stratifications are just compatible, by which we mean that Y• is finer than u](U•) and
e](E•), U• is finer than e′](V•), and E• is finer than u

′
](V•), then we just have morphisms

THM
X (Vi, Vi−1, i)→ THM

X (Ui, Ui−1, i)⊕ THM
X (Ei, Ei−1, i)→ THM

X (Yi, Yi−1, i).

This is a complex which may not be exact.
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Proposition 6.14. Let Y ∈ SmAff/X and

V //

��
�

E

e

��
U

u // Y

be an elementary affine Nisnevich square. The short sequence in Sha(M (X),Ch(Q)),

0→ THM
X (V )→ THM

X (U)⊕ THM
X (E)→ THM

X (Y )→ 0,

is exact.

Proof. A sequence of complexes being exact if and only if it is degreewise exact, this amounts to
showing that, for every integer i ∈ Z, the sequence

0

��
colim

V•∈StratV
iTHM

X (Vi, Vi−1, i) // colim
U•∈StratU

iTHM
X (Ui, Ui−1, i)⊕ colim

E•∈StratE
iTHM

X (Ei, Ei−1, i)

��
colim

Y•∈StratY
iTHM

X (Yi, Yi−1, i)

��
0

(20)

is exact in Sh(M (X),Q) (see Remark 6.9). For W ∈ {V,U,E, Y }, let

FW := colim
W•∈StratW

iTHM
X (Wi,Wi−1, i)

where the colimit is taken in the category PSha(M (X),Q) and not in the category of sheaves
Sha(M (X),Q). For every A ∈M (X), one has

FW (A) = colim
W•∈StratW

Γ(A, iTHM
X (Wi,Wi−1, i))

= colim
W•∈StratW

HomM (X)(A,TH
M
X (Wi,Wi−1, i)).

Note that the sequence (20) is the induced sequence

0→ aepiFV → aepiFU ⊕ aepiFE → aepiFY → 0,

so we may use Remark 5.1 to show its exactness. Let us prove the exactness on the right and on
the left (the exactness at the center is proved similarly using Lemma 3.6 or Corollary 3.7).

Let A ∈M (X) and α ∈ FY (A). There exist a stratification Y• of Y and an element αY• ∈
HomM (X)(A,THM

X (Yi, Yi−1, i)) that lifts α. Let U•, E• and V• be the induced stratifications. Let
V ′• be a cellular stratification of V finer than V•, and let Y ′′• be a stratification of Y such that
h(V ′i ) ⊆ Y ′′i for every i ∈ Z. Let E′′• , U ′′• and V ′′• be the stratifications induced by Y ′′• . Let us show
that the morphism

THM
X (Yi, Yi−1, i)→ THM

X (Y ′′i , Y
′′
i−1, i)
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factors through the image of the morphism

THM
X (U ′′i , U

′′
i−1, i)⊕ THM

X (E′′i , E
′′
i−1, i)→ THM

X (Y ′′i , Y
′′
i−1, i).

Using the exact and faithful functor N (X)→ P(X), we may assume that M ∈ {H ,P}. In
that case, there is by Lemma 3.6 a commutative diagram in M (X) with exact rows:

THM
X (U ′′i , U

′′
i−1, i)⊕ THM

X (E′′i , E
′′
i−1, i)

// THM
X (Y ′′i , Y

′′
i−1, i)

// THMX (V ′′i , V
′′
i−1, i− 1)

THM
X (V ′i , V

′
i−1, i− 1)

OO

THM
X (Ui, Ui−1, i)⊕ THM

X (Ei, Ei−1, i) //

OO

THM
X (Yi, Yi−1, i) //

OO

THM
X (Vi, Vi−1, i− 1)

OO

The result then follows from the fact that THM
X (V ′i , V

′
i−1, i − 1) = 0 since V ′• is a cellular

stratification. This implies the existence of an epimorphism B � A in M (X) and elements

(βU ′′• , γE′′• ) ∈ HomM (X)(B,TH
M
X (U ′′i , U

′′
i−1, i))⊕HomM (X)(B,TH

M
X (E′′i , E

′′
i−1, i))

such that the image of (βU ′′• , γE′′• ) in

Γ(B, iTHM
X (Y ′′i , Y

′′
i−1, i)) = HomM (X)(B,TH

M
X (Y ′′i , Y

′′
i−1, i))

is equal to the image of αY• . Let (β, γ) the image of (βU ′′• , γE′′• ) in FU (B) ⊕FE(B). Then the
image of (β, γ) in FY (B) is equal to the image of α. This shows the exactness on the right.

Let A ∈ M (X) and α ∈ FV (A) such that α = 0 in FU (A) ⊕ FE(A). Let V• be a
stratification of V and αV• an element in HomM (X)(A,THM

X (Vi, Vi−1, i)) that lifts α. There
exist a stratification U• of U and a stratification E• of E, both compatible with V•, such that
αV• = 0 in

HomM (X)(A,TH
M
X (Ui, Ui−1, i))⊕HomM (X)(A,TH

M
X (Ei, Ei−1, i)).

Let Y• be a stratification of Y compatible with U• and V•. Let Y ′• be a cellular stratification finer
than Y•, and let V ′• , U ′• and E′• be the induced stratifications. The morphism

THM
X (V ′i , V

′
i−1, i)→ THM

X (U ′i , U
′
i−1, i)⊕ THM

X (E′i, E
′
i−1, i)

is a monomorphism. Indeed, using the faithful exact functor N (X)→ P(X), we may assume
that M ∈ {H ,P}. In that case, by Lemma 3.6, one has the commutative diagram in which the
top row is exact:

THM
X (Y ′i , Y

′
i−1, i+ 1) // THM

X (V ′i , V
′
i−1, i)

// THM
X (U ′i , U

′
i−1, i)⊕ THM

X (E′i, E
′
i−1, i)

THM
X (Vi, Vi−1, i) //

OO

THM
X (Ui, Ui−1, i)⊕ THM

X (Ei, Ei−1, i)

OO

Since Y ′• is cellular, THM
X (Y ′i , Y

′
i−1, i + 1) = 0 and the claim follows. Hence the image of αV• in

HomM (X)(A,THM
X (V ′i , V

′
i−1, i) vanishes and therefore α = 0 in FV (A). This shows the exactness

on the left. 2
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6.4 Let us state two consequences of the previous results.

Corollary 6.15. Let Y ∈ SmAff/X and T → Y be a vector bundle. Then the canonical
morphism

raM
X (T )→ raM

X (Y )

is a weak equivalence in ∆opSha(M (X),Ch(Q)).

Proof. This follows from Remark 6.10 and Lemma 6.11. 2

Corollary 6.16. Let
V //

��
�

E

e

��
U

u // Y

be an elementary affine Nisnevich square. Then the following square is homotopy cocartesian in
∆opSha(M (X),Ch(Q)):

raM
X (V ) //

��

raM
X (E)

��
raM
X (U) // raM

X (Y )

Proof. This follows immediately from Proposition 6.14 using a classical result of homological
algebra (see, for example, [KS94, Proposition 1.7.5]) and Remark 6.10. 2

Proposition 6.17. Let Y ∈ Sm/X and T → Y be an affine vector bundle torsor. Then the
morphism

rMX (T )→ rMX (Y )

is a weak equivalence in ∆opSha(M (X),Ch(Q)).

Proof. The proof of the proposition follows the proof of [Wen10, Proposition 3.11]. Let p : T → Y
be an affine vector bundle torsor. We have to show that the morphism

hocolim
(SmAff/X)↓T

raM
X ◦ IY ◦ p∗→ hocolim

(SmAff/X)↓Y
raM
X ◦ IY

induced by the functor p∗ is a weak equivalence (IY ◦ p∗ = IT ). Consider the functor obtained by
base change along p,

p∗ : (SmAff/X) ↓ Y → (SmAff/X) ↓ T
(Z → Y ) 7→ (T ×Y Z → T ).

Note that this functor is well defined. Indeed, T ×Y Z → Z is an affine vector bundle torsor over
an affine scheme Z and therefore T ×Y Z is also an affine scheme. As shown in [Wen10, Proof of
Proposition 3.11], the functor p∗ is homotopy right cofinal, and the canonical morphism

hocolim
(SmAff/X)↓Y

raM
X ◦ IT ◦ p∗→ hocolim

(SmAff/X)↓T
raM
X ◦ IT (21)

is therefore a weak equivalence by [Hir03, Theorem 19.6.7]. On the other hand, the morphisms
of affine schemes (IT ◦ p∗)(Z → Y ) = T ×Y Z → Z = IY (Z → Y ) define a morphism of functors
IT ◦ p∗→ IY and thus yield morphisms of functors

raM
X ◦ IT ◦ p∗→ raM

X ◦ IY , raM
X ◦ IT ◦ p∗ ◦ p∗→ raM

X ◦ IY ◦ p∗. (22)
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Since pZ : T ×Y Z → Z is an affine vector bundle torsor, by Lemma 6.15, the morphisms (22)
are weak equivalences of diagrams and therefore, by [Hir03, Theorem 19.4.2], the maps

hocolim
(SmAff/X)↓Y

raM
X ◦ IT ◦ p∗→ hocolim

(SmAff/X)↓Y
raM
X ◦ IY , (23)

hocolim
(SmAff/X)↓Y

raM
X ◦ IT ◦ p∗ ◦ p∗→ hocolim

(SmAff/X)↓Y
raM
X ◦ IY ◦ p∗ (24)

are weak equivalences. We have a commutative square

hocolim
(SmAff/X)↓T

raM
X ◦ IT ◦ p∗ ◦ p∗ //

(24)

��

hocolim
(SmAff/X)↓Y

raM
X ◦ IT ◦ p∗

(23)

��
hocolim

(SmAff/X)↓T
raM
X ◦ IY ◦ p∗ // hocolim

(SmAff/X)↓Y
raM
X ◦ IY

Since (23) and (24) are weak equivalences, it is enough to show that the top horizontal map is a
weak equivalence. The composition

hocolim
(SmAff/X)↓T

raM
X ◦ IT ◦ p∗ ◦ p∗→ hocolim

(SmAff/X)↓Y
raM
X ◦ IT ◦ p∗

(21)
−−→ hocolim

(SmAff/X)↓T
raM
X ◦ IT (25)

of this map with (21) is the canonical map induced by the functor

p∗ ◦ p∗ : (SmAff/X) ↓ T → (SmAff/X) ↓ T.
Since this functor is homotopy right cofinal (see [Wen10, proof of Proposition 3.11]), the
composition (25) is a weak equivalence by [Hir03, Theorem 19.6.7]. This concludes the proof
since (21) is a weak equivalence. 2

Proposition 6.18. Let Y ∈ Sm/X.

(i) Let U,E be an open cover of Y and V = U ×Y E. Then the square

rMX (V ) //

��

rMX (E)

��
rMX (U) // rMX (Y )

is homotopy cocartesian in ∆opSha(M (X),Ch(Q)).
(ii) The morphism

rMX (Y ×k A1
k)→ rMX (Y )

is a weak equivalence.

Proof. Proposition 6.17 allows the use of Jouanolou’s trick. The proof of the first statement
is then completely similar to the proof of the Mayer–Vietoris property for homotopy invariant
K-theory given in [Wei89, Theorem 5.1]. The details are left to the reader. Let us prove the second
statement. Let T → Y be an affine vector bundle torsor (since Y is quasi-projective over k, such
a torsor exists by [Jou73, Lemme 1.5]). We have commutative squares

raM
X (T ×k A1

k)

��

rMX (T ×k A1
k)

//oo

��

rMX (Y ×k A1
k)

��
raM
X (T ) rMX (T ) //oo rMX (Y )
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By Proposition 6.17 and Remark 6.5, the horizontal morphisms are weak equivalences. The
result then follows from Lemma 6.15 which ensures that the vertical arrow on the left is a weak
equivalence. 2

Remark 6.19. Let Y ∈ Sm/X and U := {Ui ↪→ Y }i∈I be a finite open cover of Y . Let U be the
disjoint union of the Ui. We have the usual Čech simplicial object Č(U ) : ∆op

→ SmAff/X such
that for every n ∈ ∆, Č(U )n is the fiber product over X of n copies of U :

Č(U )n = U ×X · · · ×X U.

One can show by induction on the number of open subsets in U (see [Wei89, Theorem 6.3]) that
the canonical morphism

rMX (Y,U ) := hocolim
∆

rMX (Č(U ))→ rMX (Y )

is a weak equivalence.

Lemma 6.20. Let Y ∈ SmAff/X and let p : Y ′ → Y be a Galois covering with Galois group G.
Then the canonical morphism

rMX (Y ′)G→ rMX (Y )

is a weak equivalence.

Proof. Let T → Y be an affine vector bundle torsor and p : T ′ → T the Galois cover obtained
by base change. We have commutative squares.

raM
X (T ′)G

��

rMX (T ′)G //oo

��

rMX (Y ′)G

��
raM
X (T ) rMX (T ) //oo rMX (Y )

By Proposition 6.17 and Remark 6.5 the horizontal morphisms are weak equivalences. The result
then follows from Remark 6.10 and Lemma 6.12 which ensure that the vertical arrow on the left
is a weak equivalence. 2

Proof of Theorem 6.6. Let us first remark that RLQM ,eff
X (∅⊗Q) = 0. Let Y ∈ Sm/X and

V //

��
�

E

e

��
U

u // Y

be either a Zariski square or an affine Nisnevich square. By Proposition 6.18 and Corollary 6.16,
the square

RLQM ,eff
X (V ⊗Q) //

��

RLQM ,eff
X (E ⊗Q)

��

RLQM ,eff
X (U ⊗Q) // RLQM ,eff

X (Y ⊗Q)

is cocartesian in ∆opSha(M (X),Ch(Q)) (here we have also used Remarks 6.5 and 6.7). One the
other hand, by Proposition 6.18 and Remark 6.7, the morphism

RLQM ,eff
X (A1

Y ⊗Q)→ RLQM ,eff
X (Y ⊗Q)

1272

https://doi.org/10.1112/S0010437X15007812 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007812


Perverse, Hodge and motivic realizations

is an isomorphism in Ho(∆opSha(M (X),Ch(Q))). If p : Y ′→ Y is a Galois covering with Galois
group G, then by Remark 6.7 and Lemma 6.20 the morphism

RLQM ,eff
X ((Y ′ ⊗Q)G)→ RLQM ,eff

X (Y ⊗Q)

is an isomorphism in Ho(∆opSha(M (X),Ch(Q))). It follows that RLQM ,eff
X sends the morphisms

in (2) to isomorphisms in the homotopy category and Theorem 6.6 follows from the universal
property of Bousfield localizations. 2

6.5 It remains to stabilize the above construction in order to obtain a realization functor also
for motives that may not be effective. The key result that we need is the following proposition.

Proposition 6.21. There exists a natural transformation

PSh(Sm/X,Ch(Q))
RLQM,eff

X //

TX⊗−
��

�� ρ

∆opSha(M (X),Ch(Q))

TM
X
��

PSh(Sm/X,Ch(Q))
RLQM,eff

X // ∆opSha(M (X),Ch(Q))

such that
ρX : (TM

X ◦ RLQ
M ,eff
X )(X )→ RLQM ,eff

X (TX ⊗X )

is a weak equivalence for every presheaf X ∈ PSh(Sm/X,Ch(Q)).

The pair (RLQM ,eff
X , ρ) is therefore a Quillen map of pairs in the sense of [Hov01, Definition

5.4], and [Hov01, Proposition 5.5] provides a Quillen adjunction

RLQM
X : SpTX (PSh(Sm/X),Ch(Q))�MM (X) : RRQM

X

with respect to the (A1, ét)-local stable projective model structure on the left-hand side and
the stable model structure on the right-hand side. Note that by construction (see [Hov01,
Proposition 5.5]), for every X ∈ PSh(Sm/X,Ch(Q)), the TM

X -spectra

Sus0TM
X

(RLQM ,eff
X (X )), RLQM

X (Sus0TX (X ))

are canonically equivalent. Using the above Quillen adjunction and the equivalences (19), one
gets an adjunction on the homotopy categories

RLM
X : DAét(X,Q)� D(Sha(M (X),Q)) : RRM

X .

Recall that the full triangulated category DAét
ct(X,Q) of constructible motives is defined as

the smallest triangulated subcategory of DAét(X,Q) stable by direct factors and containing the
homological motives of smooth quasi-projective X-schemes (or equivalently, smooth affine
X-schemes by Mayer and Vietoris). Since by construction, for every affine smooth X-scheme
Y , the image lands in the full triangulated category Db(M (X)) of D(Sha(M (X),Q)), the above
functor induces a triangulated functor

DAét
ct(X,Q)→ Db(M (X)).
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6.6 It remains to prove Proposition 6.21. The proof is slightly technical, as we have to unwind
the construction of the functor RLQM ,eff

X to construct the natural transformation ρ step by step.
It essentially boils down to properties of cellular complexes associated with specific stratifications.
That is to say, we have the following lemma.

Lemma 6.22. Let Y ∈ SmAff/X. There exists a morphism

TM
X (raM

X (Y ))→ raM
X (Gm,Y )

in ∆opSha(M (X),Ch(Q)) such that the induced morphism

raM
X (Y )⊕ TM

X (raM
X (Y ))→ raM

X (Gm,Y )

is a weak equivalence (here the morphism raM
X (Y ) → raM

X (Gm,Y ) is the morphism induced by
the unit section of Gm,Y ).

Proof. Let Y• be a stratification of Y . Consider the stratification G(Y•) of the quasi-projective
k-scheme Gm,Y defined by the closed subsets G(Y•)i := Yi−1 ×k Gm,k. By Lemma 3.10, the
complex THM

X (Y, Y•)(1)[1] is a direct summand of the complex THM
X (Gm,Y ,G(Y•)). The inclusion

as a direct factor induces a morphism of functors on StratY ,

THM
X (Y,−)(1)[1]→ THM

X (Gm,Y ,G(−)),

and thus a morphism of functors

TM
X (cc(iTHM

X (Y,−)))→ cc(iTHM
X (Gm,Y ,G(−))).

Taking homotopy colimits, we obtain a morphism in ∆opSha(M (X),Ch(Q)),

hocolim
Y•∈StratY

TM
X (cc(iTHM

X (Y,−)))→ hocolim
Y•∈StratY

cc(iTHM
X (Gm,Y ,G(−)))→ raM

X (Gm,Y ),

where the second morphism is the canonical morphism associated with the functor G : StratY →
StratGm,Y

(see [Hir03, Proposition 19.1.8]).
By Lemma 5.9, there is a canonical isomorphism

TM
X (raM

X (Y )) := TM
X (hocolim

Y•∈StratY
cc(iTHM

X (Y,−))) ' hocolim
Y•∈StratY

TM
X (cc(iTHM

X (Y,−))).

This provides the desired morphism. 2

Remark 6.23. The morphisms constructed in the proof of Lemma 6.22 are functorial in Y and
define a morphism of functors

TM
X ◦ raM

X → raM
X (Gm,−)

on SmAff/X.

To prove Proposition 6.21 we will also need the following lemma.

Lemma 6.24. Let cM
X be the cokernel of the natural transformation rMX → rMX (Gm,−) given by

the unit section. Then there is an isomorphism of functors

(cM
X )∗ ' (rMX )∗(TX ⊗−).
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Proof. By definition, cM
X is a functor Sm/X → ∆opSha(M (X),Ch(Q)), and for every smooth

quasi-projective X-scheme Y one has an exact sequence

0→ rMX (Y )→ rMX (Gm,Y )→ cM
X (Y )→ 0. (26)

The endofunctor (Gm,X⊗Q)⊗− of the category PSh(Sm/X,Ch(Q)) admits Hom(Gm,X⊗Q,−)
as right adjoint (here Hom denotes the internal Hom in the category of presheaves on Sm/X). For
X ∈ PSh(Sm/X,Ch(Q)), the presheaf Hom(Gm,X ⊗Q,X ) is nothing more than the presheaf
Y 7→X (Gm,Y ). It follows that the functor (rMX )∗((Gm,X ⊗Q)⊗−) is left adjoint to the functor
F 7→ Hom(rMX (Gm,−),F ) and is therefore isomorphic to the functor (rMX (Gm,−))∗. For every
X ∈ PSh(Sm/X,Ch(Q)), this isomorphism fits into the commutative diagram

0 // (rMX )∗((X ⊗Q)⊗X ) // (rMX )∗((Gm,X ⊗Q)⊗X ) // (rMX )∗(TX ⊗X ) // 0

(rMX )∗(X ) //

iso.

(rMX (Gm,−))∗(X ) //

iso.

// (cM
X )∗(X ) // 0

The rows in this diagram are exact. For the upper row this follows from the fact that (rM
X )∗ is

right exact (it is a left adjoint). For the lower row it follows from the exact sequences (26) and
the definition of (17) as a colimit. This provides an isomorphism of functors

(cM
X )∗ ' (rMX )∗(TX ⊗−)

as desired. 2

Proof of Proposition 6.21. By construction,

TM
X (RLQM ,eff

X (X )) = TM
X ((rMX )∗(X )) = (TM

X ◦ rMX )∗(X )

and
RLQM ,eff

X (TX ⊗X ) = (rMX )∗(TX ⊗X ),

hence it is enough to construct a natural transformation

ϑ : (TM
X ◦ rMX )∗→ (rMX )∗(TX ⊗−)

such that ϑX is a weak equivalence for every X ∈ PSh(Sm/X,Ch(Q)). By Lemma 6.24, it is
therefore enough to construct a natural transformation

% : TM
X ◦ rMX → cM

X

such that %Y is a weak equivalence for every Y ∈ Sm/X.
Let us first extend Lemma 6.22 to smooth quasi-projective X-schemes which may not be

affine. For Y ∈ Sm/X, we construct a morphism

TM
X (rMX (Y ))→ rMX (Gm,Y )

as follows. Consider the functor

Gm : (SmAff/X) ↓ Y → (SmAff/X) ↓ Gm,Y

(Z → Y ) 7→ (Gm,Z → Gm,Y )
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and the induced morphism (see [Hir03, Proposition 19.1.8])

hocolim
(SmAff/X)↓Y

raM
X ◦ IGm,Y

◦Gm→ hocolim
(SmAff/X)↓Gm,Y

raM
X ◦ IGm,Y

=: rMX (Gm,Y ).

Note that IGm,Y
◦Gm = Gm,− ◦ IY . By Remark 6.23, the morphisms of Lemma 6.22 thus induce

a morphism of functors
TM
X ◦ raM

X ◦ IY → raM
X ◦ IGm,Y

◦Gm.

This provides a morphism

hocolim
(SmAff/X)↓Y

TM
X ◦ raM

X ◦ IY → hocolim
(SmAff/X)↓Gm,Y

raM
X ◦ IGm,Y

=: rMX (Gm,Y ).

By Lemma 5.9, there is a canonical isomorphism

TM
X (rMX (Y )) := TM

X ( hocolim
(SmAff/X)↓Y

raM
X ◦ IY ) = hocolim

(SmAff/X)↓Y
TM
X ◦ raM

X ◦ IY .

Note that for every affine scheme Y ∈ SmAff/X the square

TM
X (rMX (Y )) //

��

rMX (Gm,Y)

��
TM
X (raM

X (Y )) // raM
X (Gm,Y)

is commutative, where the vertical morphisms are the weak equivalences of Remark 6.5 and the
lower horizontal morphism is the morphism constructed in Lemma 6.22.

It follows from Lemma 6.22 and Jouanolou’s trick that the induced morphism

rMX (Y )⊕ TM
X (rMX (Y ))→ rMX (Gm,Y )

(given by the unit section on the first summand) is a weak equivalence. Indeed, let T → Y be an
affine vector bundle torsor. We then have a commutative diagram

rMX (Y )⊕ TM
X (rMX (Y )) // rMX (Gm,Y )

rMX (T )⊕ TM
X (rMX (T )) //

��

OO

rMX (Gm,T )

��

OO

raM
X (T )⊕ TM

X (raM
X (T )) // raM

X (Gm,T )

The vertical morphisms are weak equivalences by Proposition 6.17 and Remark 6.5, and so the
result follows from Lemma 6.22 which ensures that the lower horizontal morphism is a weak
equivalence.

Let 1Y : Y →Gm,Y be the unit section and p : Gm,Y → Y be the projection. Since p ◦ 1Y =
IdY , the morphisms induced by the unit section

RQM
X (Y ⊗Q)→ RQM

X (Gm,Y ⊗Q), rMX (Y )→ rMX (Gm,Y )
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are monomorphisms. We then have a commutative diagram

0 // rMX (Y ) // rMX (Gm,Y ) // cM
X (Y ) // 0

0 // rMX (Y ) //

OO

rMX (Y )⊕ TM
X (rMX (Y )) //

OO

TM
X (rMX (Y )) //

OO

0

in which all the rows are exact sequences. This provides the desired weak equivalence. 2
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Appendix A. Brown–Gersten property in the Nisnevich topology

A.1 Recall that an elementary Nisnevich square is a cartesian square in Sm/X

V
v //

e′

��
�

E

e

��
U

u // Y

(A1)

such that u is an open immersion and e is an étale morphism that induces an isomorphism
p−1(Z)→ Z for the reduced scheme structures where Z = Y \U . If e is also an open immersion
then the square is called an elementary Zariski square (an elementary Zariski square is simply
the data of a covering of X by two open subschemes U and E). If all the schemes in (A1) are
affine then the square is called an elementary affine Nisnevich square.

If Y ∈ Sm/X is connected, a morphism of quasi-projective X-schemes r : Y ′ → Y is said to
be a Galois cover if r is finite étale and G := AutY (Y ′) operates transitively and faithfully on
the geometric fibers of f . If Y is not connected then r : Y ′→ Y is said to be a Galois cover if its
restrictions to the connected components consist of Galois covers.

A.2 Recall some definitions from [MV01, Mor12].
Definition A.1. Let X ∈ PSh(Sm/X,Ch(Q)) be a presheaf.

(i) One says that X satisfies the B.G. property in the Zariski topology if for every X ∈ Sm/k
and every covering ofX by two open subschemes U,E the following diagram is homotopy cartesian
in Ch(Q):

X (Y ) //

��

X (E)

��
X (U) //X (V )

One says that X satisfies the A1-B.G. property in the Zarisky topology if X satisfies the B.G.
property in the Zariski topology and for every X ∈ Sm/k the map

X (X)→X (X ×k A1
k),

induced by the projection, is a quasi-isomorphism.
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(ii) One says that X satisfies the B.G. property (respectively, affine B.G. property) in the
Nisnevich topology if, for every X ∈ Sm/k and every elementary Nisnevich square (respectively,
elementary affine Nisnevich square) (A1), the following diagram is homotopy cartesian in Ch(Q):

X (Y ) //

��

X (E)

��
X (U) //X (V )

By [Mor12, Theorem A.14], if an object X ∈ PSh(Sm/X,Ch(Q)) satisfies the A1-B.G.
property in the Zariski topology and the affine B.G. property in the Nisnevich topology, then it
satisfies the B.G. property in the Nisnevich topology.

A.3 Let A be a pseudo-Abelian Q-linear additive category. Given a finite group G and an object
A of A , an action of G on A is a morphism of groups

ΦA : G→ AutA (A)

where AutA (A) is the group of automorphisms of A. Since A is Q-linear, we may consider the
projector

ΠG :=
1

|G|
∑
g∈G

ΦA(g)

for any object of A with an action ofG by automorphisms. The category A being pseudo-Abelian,
ΠG splits, providing a decomposition of A. The subobject AG of G-invariants under G is the direct
summand of A equal to the image of ΠG.

Definition A.2. A presheaf X ∈ PSh(Sm/X,Ch(Q)) has elementary Galois descent if, for
every Galois cover Y ′→ Y , the morphism

X (Y )→X (Y ′)G (A2)

is a quasi-isomorphism of Q-vector spaces.

Appendix B. Tools from homotopical algebra

B.1 Recall that the category Ch(Q) of cochain complexes of Q-vector spaces has a model
structure (called the projective model structure) such that the weak equivalences are the quasi-
isomorphisms and the fibrations are the epimorphisms (see [Hov99, Theorem 2.3.11]).

Notation B.1. Let B be an Abelian category. Given B ∈ B and an integer n ∈ Z, we denote
by Sn(B) the complex concentrated in degree n with Sn(B)n = B and by Dn(B) the complex
concentrated in degrees n, n + 1 with Dn(B)n = Dn(B)n+1 = B and the identity as its only
non-zero differential. Note that the identity induces a map Sn+1(B)→ Dn(B).

Given an object A in A , we denote by Q[A] the free presheaf of Q-vector spaces associated
with A: its sections on B ∈ A are given by the free Q-vector space Q[HomA (B,A)] on the set
HomA (B,A).

Let I be the set of maps Sn+1(Q) → Dn(Q) and J be the set of maps 0 → Dn(Q). The
projective model structure on Ch(Q) is cofibrantly generated (and proper). The set I (respectively,
J) is a set of generating cofibrations (respectively, trivial cofibrations). In other words, Fib =
RLP(J) and Fib∩W = RLP(I). More generally, the projective model structure on PSh(A ,
Ch(Q)) is cofibrantly generated (see [Hir03, Theorem 11.6.1]): the maps Sn+1(Q[A])→Dn(Q[A]),
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with A ∈A , form a class of generating cofibrations IA , and the maps 0→Dn(Q[A]), with A ∈A ,
form a class of generating trivial cofibrations JA .

Lemma B.2. Let W,Fib be the classes of maps in PSha(A ,Ch(Q)) defined as follows: a map
belongs to W (respectively, Fib) if and only if it is a levelwise weak equivalence (respectively, a
projective fibration) in PSh(A ,Ch(Q)). Let Cof be the class of maps in PSha(A ,Ch(Q)) that
have the left lifting property with respect to maps in W∩Fib. Then the triple (W,Fib,Cof) defines
a model structure on PSha(A ,Ch(Q)).

Proof. Note that the class of maps in PSh(A ,Ch(Q)) which are monomorphisms and quasi-
isomorphisms is stable by pushouts, transfinite compositions and retracts. The class aad(JA )
consists of the morphisms 0→ Dn(i(A)) with A ∈ A and n ∈ Z which are all monomorphisms
and quasi-isomorphisms. Hence every relative aad(JA )-cell complex is a quasi-isomorphism
in PSh(A ,Ch(Q)). The lemma then follows from [Hir03, Theorem 11.3.2]. (See also [Cra95,
Theorem 3.3]. Note that the smallness assumption in [Hir03, Theorem 11.3.2] follows from the
fact that representable presheaves are compact.) 2

Remark B.3. The maps in the class aad(IA ) (respectively, aad(JA )) are generating cofibrations
(respectively, trivial cofibrations) for the projective model structure of Lemma B.2. In particular,
since all the maps in aad(IA ) are monomorphisms and monomorphisms are stable by pushouts,
retracts and transfinite compositions, it follows that all cofibrations are monomorphisms.

Remark B.4. The image of a bounded complex of objects in A under the Yoneda embedding i
is cofibrant for the projective model structure on PSha(A ,Ch(Q)).

B.2 Note that the Quillen adjunction for the projective model structures

(−)cst : Ch(Q)� PSh(A ,Ch(Q)) : Γ(0A ,−)

implies that the bifunctor

−⊗ (−)cst : PSh(A ,Ch(Q))× Ch(Q)→ PSh(A ,Ch(Q)) (B1)

is a Quillen bifunctor for the projective model structures. Here we use the fact that the category
of presheaves PSh(A ,Ch(Q)) with its projective model structure and the usual tensor product is
the symmetric monoidal model category (see, for example, [Bar10, Proposition 4.52] or [Ayo07b,
Proposition 4.4.63]).

Remark B.5. For every F ∈ PSh(A ,Ch(Q)) we have

aad(F ⊗Kcst) = aad(F )⊗Kcst.

Lemma B.6. The bifunctor

−⊗ (−)cst : PSha(A ,Ch(Q))× Ch(Q)→ PSha(A ,Ch(Q))

is a Quillen bifunctor for the projective model structures.

Proof. Let f : F → G be a morphism in PSha(A ,Ch(Q)) and u : K → L be a morphism in
Ch(Q). Let H be the pushout in the category PSha(A ,Ch(Q)) of the diagram

F ⊗Kcst
F⊗ucst//

f⊗Kcst

��

F ⊗ Lcst

G ⊗Kcst

(B2)
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We have to prove that if f and u are cofibrations in PSha(A ,Ch(Q)), then the map

H → G ⊗ Lcst (B3)

is a cofibration in PSha(A ,Ch(Q)) which is trivial if either f or u is a trivial cofibration.
Assume that f is the image under aad of a cofibration f ′ : F ′ → G ′ in the category PSh(A ,
Ch(Q)). Let H ′ be the pushout in PSh(A ,Ch(Q)) of the diagram similar to (B2) obtained by
replacing f by f ′. Since (B1) is a Quillen bifunctor for the projective model structures, the map
H ′
→ G ′ ⊗ Lcst is a cofibration in PSh(A ,Ch(Q) which is trivial if u is a trivial cofibration in

Ch(Q) or f ′ is a trivial cofibration in PSh(A ,Ch(Q)). This implies that its image (B3) under
aad is a cofibration in PSha(A ,Ch(Q) which is trivial if u is a trivial cofibration in Ch(Q) or f ′

is a trivial cofibration in PSh(A ,Ch(Q)).
Since PSha(A ,Ch(Q)) is cofibrantly generated, with aad(IA ) and aad(JA ) as generating

cofibrations and trivial cofibrations, the lemma follows from the above case and [Hov99,
Corollary 4.2.5]. 2

Lemma B.7. The bifunctor

−⊗ (−)cst : Sha(A ,Ch(Q))× Ch(Q)→ Sha(A ,Ch(Q))

is a Quillen bifunctor for the projective model structures.

Proof. Since every cofibration in Sha(A ,Ch(Q)) is the image under aepi of a τ -local projective
cofibration in PSha(A ,Ch(Q)) by [Ayo07b, Lemme 4.4.41], it is enough to prove that −⊗ (−)cst

is a Quillen bifunctor for the τ -local projective model structure on PSha(A ,Ch(Q)) and the
projective model structure on Ch(Q). Let f : F → G be a τ -local cofibration in PSha(A ,
Ch(Q)) and u : K → L be a cofibration in Ch(Q). Let H be the pushout in the category
PSha(A ,Ch(Q)) of the diagram

F ⊗Kcst
F⊗ucst//

f⊗Kcst

��

F ⊗ Lcst

G ⊗Kcst

(B4)

Since the τ -local model structure is obtained by a left Bousfield localization, the τ -local
cofibrations are the projective cofibrations and it follows from Lemma B.6 that

H → G ⊗ Lcst (B5)

is a τ -local cofibration in PSha(A ,Ch(Q)) which is trivial if u is a trivial cofibration. Assume
that f is also a τ -local weak equivalence. Since f is a cofibration it is also a monomorphism
(see Remark B.3), and therefore aepi(f) is a monomorphism and a quasi-isomorphism. The square

aepi(F )⊗Kcst
aepi(F )⊗ucst//

aepi(f)⊗Kcst

��

aepi(F )⊗ Lcst

��
aepi(G )⊗Kcst

// aepi(H )

being a pushout square, it follows that the map aepi(F )⊗Lcst→ aepi(H ) is a quasi-isomorphism.
The composition

aepi(F )⊗ Lcst→ aepi(H )
aepi(B5)
−−−−−→ aepi(G )⊗ Lcst

being equal to aepi(f) ⊗ Lcst which is a quasi-isomorphism, it follows that aepi(B5) is a quasi-
isomorphism and therefore (B5) is a trivial τ -local cofibration. 2
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Proof of Proposition 5.5. Let f : F → G be a morphism in ∆opSha(A ,Ch(Q)) and u : K → L
be a morphism in Ch(Q). Let H be the pushout in the category ∆opSha(A ,Ch(Q)) of the
diagram

F ⊗Kcst
F⊗ucst//

f⊗Kcst

��

F ⊗ Lcst

G ⊗Kcst

(B6)

We have to prove that if u is a projective cofibration in Ch(Q) and f is a cofibration in ∆opSha(A ,
Ch(Q)) for the canonical model structure, then the map

H → G ⊗ Lcst (B7)

is a canonical cofibration in ∆opSha(A ,Ch(Q)) which is trivial if either f or u is a trivial
cofibration. Since the latching space functor is a left adjoint, the square

Ln(F )⊗Kcst
Ln(F )⊗ucst //

f⊗Kcst

��

Ln(F )⊗ Lcst

��
Ln(G )⊗Kcst

// Ln(H )

is a pushout square.
We have to check that

Hn tLn(H ) (Ln(G )⊗ Lcst)→ Gn ⊗ Lcst (B8)

is a cofibration. For this remark that Hn tLn(H ) (Ln(G )⊗ Lcst) is the pushout of the diagram

(Fn tLn(F ) Ln(G ))⊗Kcst
Id⊗ucst//

f⊗Kcst

��

(Fn tLn(F ) Ln(G ))⊗ Lcst

Gn ⊗Kcst

Since f is a Reedy cofibration, the map Fn tLn(F ) Ln(G )→ Gn is a cofibration and therefore,
by Lemma B.7, the map (B8) is a cofibration.

Note that since f is a Reedy cofibration, for every n ∈ N, the induced map Fn → Gn is a
cofibration (i.e., Reedy cofibrations are also levelwise cofibrations [Hir03, Proposition 16.3.11]).
Hence, for every n ∈ N, Fn→ Gn is a monomorphism and therefore F → G is a monomorphism.
This implies that we have an exact sequence

0→ F ⊗Kcst→ (F ⊗ Lcst)⊕ (G ⊗Kcst)→H → 0

and thus a distinguished triangle in HoReedy(∆opSha(A ,Ch(Q))),

F ⊗Kcst→ (F ⊗ Lcst)⊕ (G ⊗Kcst)→H
+1−→ .

Now since the left derived functor of the colimit functor (see, for example, [Ayo07b, Lemme
4.1.51]) is triangulated, it yields a distinguished triangle in Ho(Sha(A ,Ch(Q))),

L colim
∆op

F ⊗Kcst→ L colim
∆op

(F ⊗ Lcst)⊕ L colim
∆op

(G ⊗Kcst)→ L colim
∆op

H
+1−→ .
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Assume that f is a canonical weak equivalence. Then the map L colim∆op F ⊗ Kcst

→ L colim∆op(G ⊗Kcst) is an isomorphism. This implies that the map L colim∆op(F ⊗ Lcst)→
L colim∆op H is also an isomorphism. Since f is a canonical weak equivalence, the composition

L colim
∆op

(F ⊗ Lcst)→ L colim
∆op

H
L colim∆op ((B7))
−−−−−−−−−−→ L colim

∆op
(G ⊗ Lcst)

is an isomorphism and therefore so is the second map. This shows that (B7) is a canonical weak
equivalence.

Assume that u is a trivial cofibration, then the map F ⊗ Kcst → G ⊗ Bcst is a level
weak equivalence and therefore a realization weak equivalence. The map L colim∆op F ⊗ Kcst

→ L colim∆op(G⊗Lcst) is thus an isomorphism. This implies that the map L colim∆op(G⊗Kcst)→
L colim∆op H is an isomorphism. Since G ⊗ u is a canonical weak equivalence, the composition

L colim
∆op

(G ⊗Kcst)→ L colim
∆op

H
L colim∆op ((B7))
−−−−−−−−−−→ L colim

∆op
(G ⊗ Lcst)

is an isomorphism, and therefore so is the second map. This shows that (B7) is a canonical weak
equivalence. 2
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