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Non-Discrete Complex Hyperbolic
Triangle Groups of Type (n, n,∞; k)

Shigeyasu Kamiya, John R. Parker, and James M. Thompson

Abstract. A complex hyperbolic triangle group is a group generated by three involutions fixing com-

plex lines in complex hyperbolic space. Our purpose in this paper is to improve a previous result and

to discuss discreteness of complex hyperbolic triangle groups of type (n, n,∞; k).

1 Introduction

A complex hyperbolic triangle is a triple (C1,C2,C3) of complex lines in complex

hyperbolic 2-space H2
C. We assume that Ck−1 and Ck either meet at the angle π/pk

for some integer pk ≥ 3 or else Ck−1 and Ck are asymptotic, in which case they make

an angle 0 and in this case we write pk = ∞, where the indices are taken mod 3. Let Γ

be a group of holomorphic isometries of H2
C generated by involutions i1, i2, i3 fixing

complex lines C1,C2,C3, respectively. We call Γ a complex hyperbolic triangle group

of type (p1, p2, p3). For each such triple (p1, p2, p3) there is a one real parameter

family of complex hyperbolic triangle groups. It is interesting to ask which values of

this parameter correspond to discrete groups.

The study of complex hyperbolic triangle groups was begun in [3]. Since then

there have been many developments (see [8–14]). In a previous paper [5] we con-

sidered a complex hyperbolic triangle group of type (n, n,∞) and gave intervals of

non-discreteness for different values of n.

Our purpose here is to improve the result in [5] and to give examples of non-

discrete complex hyperbolic triangle groups of type (n, n,∞). Throughout this pa-

per, Γ denotes a complex hyperbolic triangle group of type (n, n,∞).

2 Preliminaries

We recall some basic notions of complex hyperbolic geometry. The complex hy-

perbolic 2-space H2
C is defined as the complex projectivization of the set of negative

vectors in C
2,1 with the Hermitian form 〈Z,W 〉 = Z0W̄0 + Z1W̄1 − Z2W̄2, where

Z = (Z0,Z1,Z2) and W = (W0,W1,W2) in C
2,1. Let PU(2, 1) be the projectiviza-

tion of SU(2, 1). The group of holomorphic isometries of H2
C is exactly PU(2, 1).

Just as in real hyperbolic geometry, nontrivial elements of PU(2, 1) fall into three

conjugacy classes depending on the number and the location of fixed points. Using
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the discriminant function ρ(z) = |z|4 − 8 Re(z3) + 18|z|2 − 27, we can classify el-

ements of PU(2, 1) by traces of the corresponding matrices in SU(2, 1). Goldman

[2, Theorem 6.2.4] stated that an element in SU(2, 1) is regular elliptic if and only if

ρ(τ (A)) < 0, where τ (A) is the trace of A.

The boundary ∂ H2
C is homeomorphic to S3 and one representation we choose for

this is (C × R) ∪ {∞}, with points either ∞ or (z, r)H with z ∈ C and r ∈ R. We call

(z, r)H the H-coordinates. Let H denote this representation, that is, (C × R) ∪ {∞}.

We have the homeomorphism B taking S3 to H given by the standard stereographic

projection:

(z1, z2) 7→
( z1

1 + z2

,− Im
( 1 − z2

1 + z2

))

H
,

(0,−1) 7→ ∞.

The Cygan metric δ is defined by

δ((z, r)H , (w,R)H) =
∣

∣ |z − w|2 + ir − iR + 2i Im(zw)
∣

∣

1
2

for (z, r)H , (w,R)H in H − {∞}.

More details on this subject can be found in [2, 4, 6].

3 Complex Hyperbolic Triangle Groups of Type (n, n,∞)

In this section we show intervals of non-discreteness for different values of n.

By [14, Proposition 3.10.6], we can take three involutions i j in C j such that ∂C1 =

{(eiφ, 0)H | φ ∈ R}, ∂C2 = {(s, t)H | t ∈ R}, and ∂C3 = {(seiθ, t)H | t ∈ R}, where

s = cos(π/n). Thus we see that a family of complex hyperbolic triangle groups of

type (n, n,∞) is parametrized (up to conjugacy) by cos θ.

For convenience we shall shorten compositions of involutions, for example,

i1i2i3i1 will be written as i1231. We have the forms of i j as follows:

i1 =





−1 0 0

0 1 0

0 0 −1



 , i2 =





1 −2s −2s

−2s 2s2 − 1 2s2

2s −2s2 −2s2 − 1



 ,

i3 =





1 −2seiθ −2seiθ

−2se−iθ 2s2 − 1 2s2

2se−iθ −2s2 −2s2 − 1



 .

It follows that

i1i2i3 = i123 =





−1 2s(eiθ − 1) 2s(eiθ − 1)

2s(e−iθ − 1) 4s2(eiθ − 1) + 1 4s2(eiθ − 1)

2s(e−iθ − 1) 4s2(eiθ − 1) 4s2(eiθ − 1) − 1



 .

Schwartz [11] considered ideal triangle groups, that is, complex hyperbolic trian-

gle groups of type (∞,∞,∞) and proved that if the element i123 is regular elliptic,
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then it is not of finite order, hence the corresponding complex hyperbolic triangle

group is not discrete. Parker [8] explored groups of type (n, n, n) such that i123 is reg-

ular elliptic and showed that in this case there are some discrete groups. In the same

manner as in the proof of Schwartz [11, p. 545], Wyss-Gallifent [14, Lemma 3.4.0.19]

formulated Schwartz’s statement for groups of type (n, n,∞). Pratoussevitch made

a refinement of the proof of Wyss-Gallifent [10]. Here we quote the result due to

Wyss-Gallifent and Pratoussevitch.

Theorem 3.1 Let Γ = 〈i1, i2, i3〉 be a complex hyperbolic triangle group of type

(n, n,∞). If the product i123 of the three generators is regular elliptic, then Γ is non-

discrete.

Using this theorem, we work out some conditions on cos θ for Γ of type (n, n,∞)

to be non-discrete. A simple computation yields τ = trace(i123) = 8s2(eiθ − 1) − 1

and

ρ(τ ) = 256s2(1 − cos θ)
{

2 − 2s2 + 13s2(1 − cos θ)

− 16s4(1 − cos θ)(1 + 4 cos θ) + 64s6(1 − cos θ)
}

,

where s = cos(π/n). Set X = 1 − cos θ and

ρ(X) = 256s2X{64s4X2 + (64s6 − 80s4 + 13s2)X + 2 − 2s2}.

Solving the equation ρ(X) = 0 for X, we see that if s ≥
√

7/8, then there are two

solutions: an, bn, except 0, which lie between 0 and 1. But otherwise there are no

solutions except 0. Set αn = 1 − an and βn = 1 − bn. We observe that if s <
√

7/8,

then ρ(X) ≥ 0 for 0 ≤ X ≤ 2 and that if s ≥
√

7/8, then ρ(X) < 0 for bn < X < an

and otherwise ρ(X) ≥ 0. Since cos(π/9) >
√

7/8 > cos(π/8), we see that if n < 9,

then the product i123 is not regular elliptic and that if n ≥ 9, then it is regular elliptic

for cos θ ∈ (αn, βn). Note that αn and βn are increasing functions of n. Denote by

E123(n) the interval (αn, βn). It follows from Theorem 3.1 that if n ≥ 9, then Γ is not

discrete for cos θ ∈ E123(n).

Later we tabulate αn and βn together with another value γn, which is defined after

Theorem 3.3.

Remark 3.2 If s = 1, then ρ(τ ) < 0 for θ with 61/64(= 0.9531 · · · ) < cos θ <
1. This yields that |A| > tan−1

√

125/3, where A is the Cartan angular invariant.

Schwartz [11] showed that a group of type (∞,∞,∞) is discrete if and only if |A| ≤
tan−1

√

125/3, which was conjectured by Goldman and Parker [3].

Next we use a different way to find out some sufficient conditions on cos θ for Γ

to be non-discrete. Let g be an element of PU(2, 1). We define the translation length

tg(p) of g at p ∈ H by tg(p) = δ(g(p), p). In the case where a group contains a

parabolic element, we know several criteria for a group to be non-discrete (see [6]).

To state Theorem 3.3, we need the notion of isometric spheres. Let h = (amn)1≤m,n≤3
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be an element of PU(2, 1) not fixing ∞. The isometric sphere of h is the sphere in

the Cygan metric with center h−1(∞) and radius

Rh =

√

2

|a22 − a23 + a32 − a33|

(see [3, 4, 6]).

Here we recall the complex hyperbolic version of Shimizu’s lemma due to

Parker [7].

Theorem 3.3 Let G be a discrete subgroup of PU(2, 1) that contains the Heisenberg

translation g with the form

g =





1 τ τ
−τ 1 − (|τ |2 − it)/2 −(|τ |2 − it)/2

τ (|τ |2 − it)/2 1 + (|τ |2 − it)/2



 .

The transformation g fixes ∞ and maps the point with H-coordinates (ζ, v)H to the

point with H-coordinates (ζ +τ , v + t + 2Im(τ ζ̄))H . Let h be any element of G not fixing

∞ and with isometric sphere of radius Rh. Then R2
h ≤ tg(h−1(∞))tg(h(∞)) + 4|τ |2.

To improve the result in [5], we take g = i23 and h = i1231 in Theorem 3.3. We

have

i23 =





1 2s(1 − eiθ) 2s(1 − eiθ)

−2s(1 − e−iθ) 1 + 4s2(eiθ − 1) 4s2(eiθ − 1)

2s(1 − e−iθ) −4s2(eiθ − 1) 1 − 4s2(eiθ − 1)



 ,

i1231 =





1 −2s(1 − eiθ) 2s(1 − eiθ)

2s(1 − e−iθ) 1 + 4s2(eiθ − 1) −4s2(eiθ − 1)

2s(1 − e−iθ) 4s2(eiθ − 1) 1 − 4s2(eiθ − 1)



 .

It is seen that i23 is a Heisenberg translation with fixed point ∞ and that i1231 has

isometric sphere of radius

Ri1231
=

√

1

8s2{2(1 cos θ)}1/2
.

We have

ti23
(i−1

1231(∞))ti23
(i1231(∞)) = |8s2(1 − eiθ) + 2i sin θ|

= {128s4(1 − cos θ) − (32s2 − 4)(1 − cos2 θ)}1/2.

Theorem 3.3 implies that Γ is not discrete, if

(∗)
1

8s2{2(1 − cos θ)}1/2
> {128s4(1 − cos θ) − (32s2 − 4)(1 − cos2 θ)}1/2

+ 32s2(1 − cos θ).
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Set X = 1 − cos θ and

Y = Fs(X) = {128s4X − (32s2 − 4)X(2 − X)}1/2 + 32s2X − 1

8s2(2X)1/2
.

Considering the graph of the function Y = Fs(X), we observe that there is some

rn ∈ (0, 1) such that Fs(X) < 0 for 0 < X < rn and Fs(X) ≥ 0 for rn ≤ X ≤ 2. Also

we have rn+1 < rn. Put γn = 1 − rn. It follows that the above inequality (∗) is true

only for cos θ with γn < cos θ < 1, where γn is an increasing function of n. Thus Γ is

not discrete for cos θ ∈ (γn, 1). We denote the interval (γn, 1) by P(n).

We show the beginning of the list of approximations of αn, βn and γn. (See Ta-

ble 1.)

Remark 3.4 We observe that cos θ = 0.9922 satisfies the inequality

1

8{2(1 − cos θ)}1/2
> {128(1 − cos θ) − 28(1 − cos2 θ)}1/2 + 32(1 − cos θ),

which is obtained by substituting 1 for s in the inequality (∗). Therefore βn > γn for

n ≥ 29, that is, E123(n) ∩ P(n) 6= ∅.

Remark 3.5 Xie and Jiang discussed discreteness of groups containing a regular

elliptic element [15]. We can apply their result to our case, but we could not improve

our results here.

4 Complex Hyperbolic Triangle Groups of Type (n, n,∞; k)

Let Γ = 〈i1, i2, i3〉 be a complex hyperbolic triangle group of type (n, n,∞). If the

trace of the element i1213 is equal to 1 + 2 cos 2π
k

, where k is a positive integer ≥ 3,

then Γ is said to be of type (n, n,∞; k). If trace(i1213) = 3, then Γ is said to be of type

(n, n,∞;∞).

In this section we show examples of non-discrete complex hyperbolic triangle

groups of type (n, n,∞; k). We have

trace(i1213) = 3 − 16s2 cos θ + 16s4,

trace(i2123) = 20s2 − 16s2 cos θ − 1.

Denote the intervals consisting of the parameter cos θ for which i1213 and i2123 are

regular elliptic by E1213(n) and E2123(n), respectively. Then E1213(n) = (s2, 1) and

E2123(n) = ( 5
4
− 1

4s2 , 1). We see that s2 and 5
4
− 1

4s2 are increasing functions of n. The

following lemma shows the relations among αn, βn, γn, s2 and 5
4
− 1

4s2 .

Lemma 4.1 (i) s2 ≤ 5
4
− 1

4s2 for n ≥ 3.

(ii) s2 < αn < βn < 5
4
− 1

4s2 for 9 ≤ n ≤ 13.

(iii) αn < s2 < βn < 5
4
− 1

4s2 for 14 ≤ n ≤ 28.

(iv) αn < s2 < γn < βn for n ≥ 29.

https://doi.org/10.4153/CMB-2011-094-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-094-8


334 S. Kamiya, J. R. Parker, and J. M. Thompson

Table 1: Approximations of αn, βn and γn.

n αn βn γn

3 ——– ——— 0.8923

4 ——– ——— 0.9691

5 ——– ——— 0.9819

6 ——– ——— 0.9862

7 ——– ——— 0.9882

8 ——– ——— 0.9893

9 0.9312 0.9319 0.9900

10 0.9367 0.9423 0.9905

11 0.9403 0.9510 0.9908

12 0.9427 0.9580 0.9910

13 0.9445 0.9637 0.9913

14 0.9458 0.9684 0.9914

15 0.9469 0.9722 0.9915

16 0.9477 0.9754 0.9916

17 0.9484 0.9781 0.9917

18 0.9489 0.9804 0.9918

19 0.9494 0.9823 0.9918

20 0.9498 0.9840 0.9919

21 0.9501 0.9854 0.9919

22 0.9504 0.9867 0.9919

23 0.9506 0.9878 0.9920

24 0.9509 0.9887 0.9920

25 0.9510 0.9896 0.9920

26 0.9512 0.9904 0.9920

27 0.9814 0.9911 0.9920

28 0.9515 0.9917 0.9921

29 0.9516 0.9922 0.9921

30 0.9517 0.9927 0.9921

50 0.9527 0.9973 0.9922

200 0.9531 0.9998 0.9922

Proof (i) is immediate.

Putting cos θ = s2 into ρ(trace(i123)) gives

256s2(1 − s2)2(2 + 13s2 − 16s4).

This is negative when

s2 >
13 + 3

√
33

32
.

We find that

cos2 π

13
<

13 + 3
√

33

32
< cos2 π

14
.
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Thus s2 < αn < βn for 9 ≤ n ≤ 13. The inequality above together with Remark 3.2

yields that αn < s2 < βn for n ≥ 14.

Putting cos θ =
5
4
− 1

4s2 into ρ(trace(i123)), we have

16(1 − s2)2(64s4 − 96s2 + 37) > 0.

Therefore βn < 5
4
− 1

4s2 . Thus (ii) and (iii) are proved. By Remark 3.4, we have (iv).

Let Γ be of type (n, n,∞; k), where n > 3. Considering trace(i1213), we have

8s4 + 1 − cos 2π
k

8s2
= cos θ < 1,

which leads to

8s4 − 8s2 + 1 = 8 cos4 π

n
− 8 cos2 π

n
+ 1 = cos

4π

n
< cos

2π

k
.

Hence, k ≥ [ n
2

] + 1 for n > 3. Thus we have only to consider the cases where

k ≥ [ n
2

] + 1.

To find non-discrete groups of type (n, n,∞; k), we ask which groups have their

parameters cos θ in E123(n) or P(n). We only treat special cases, because we can do

the remainder in the same manner.

First we find groups whose parameters lie in P(n). For n ≤ 12 there is no group

of type (n, n,∞; k) for which parameter is located in P(n). For n ≥ 13, we find some

groups of type (n, n,∞; k), which are not discrete by Theorem 3.3. As an example,

we consider the case where n = 21. From Table 1, it is seen that

γ21 = 0.9919 < cos2 π

21
+

1 − cos 2π
k

8 cos2 π
21

< 1

for 11 ≤ k ≤ 13, that is, the groups of types (21, 21,∞; 11), (21, 21,∞; 12), and

(21, 21,∞; 13) have their parameters in P(21). Therefore, these three groups are not

discrete.

Next consider groups whose parameters lie in E123(n). For n ≤ 8, E123(n) = ∅.

There is no group of type (9, 9,∞; k) whose parameter is in E123(9). For 10 ≤ n ≤
13, there are a finite number of groups of type (n, n,∞; k) with parameters in E123(n).

As an example, we treat the case where n = 13. In this case E123(13) ⊂ E1213(13). It

follows from Table 1 that

α13 = 0.9445 < cos2 π

13
+

1 − cos 2π
k

8 cos2 π
13

< 0.9637 = β13

for 12 ≤ k ≤ 38. Therefore, groups of type (13, 13,∞; k) for 12 ≤ k ≤ 38 are not

discrete. By Lemma 4.1, E123(n) ∩ E1213(n) 6= ∅ and αn < cos2 π
n
< βn for n ≥ 14.

Hence there are infinitely many groups of type (n, n,∞; k) with their parameters in
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E123(n), which are not discrete. We deal with the case where n = 17 as an example.

From Table 1,

cos2 π

17
+

1 − cos 2π
k

8 cos2 π
17

< 0.9781 = β17

for k ≥ 15. Therefore the groups of type (17, 17,∞; k) for k ≥ 15 are not discrete.

Finally we consider the element i2123. Assume that i2123 is a regular elliptic ele-

ment. Then trace(i2123) is written as

trace(i2123) = 20s2 − 16s2 cos θ − 1 = 1 + 2 cosφπ,

which yields that cosφπ = 10s2−8s2 cos θ−1, where φ is a real number. Substituting

8s4 + 1 − cos 2π
k

8s2

for cos θ, we have

cosφπ = −8s4 + 10s2 − 2 + cos
2π

k
= − cos

4π

n
+ cos

2π

n
+ cos

2π

k
.

By Lemma 4.1 and Table 1, E1213(n) ⊃ E2123(n) ⊃ P(n) and E2123(n) ∩ E123(n) =

∅ for n = 5, 7, 9, 11, 12, and 14. In each group of type (5, 5,∞; 3), (7, 7,∞; 4),

(9, 9,∞; 5), (11, 11,∞; 6), (12, 12,∞; 7), or (14, 14,∞; 8), i2123 is regular elliptic. It

follows from [1, Theorem 7] that for (n, k) = (5, 3), (7, 4), (9, 5), (11, 6), (12, 7) and

(14, 8), there is no rational number φ satisfying

cosφπ = − cos
4π

n
+ cos

2π

n
+ cos

2π

k
,

that is,

cos
π

5
+ cos

2π

5
− cosφπ =

1

2
,

cos
2π

7
+ cos

3π

7
− cosφπ = 0,

cos
2π

9
− cos

4π

9
+ cos

2π

5
− cosφπ = 0,

− cos
2π

11
+ cos

4π

11
+ cosφπ =

1

2

cos
π

6
+ cos

2π

7
− cosφπ =

1

2
,

cos
3π

7
− cos

π

4
+ cosφπ =

1

2
.

Therefore, i2123 is of infinite order in these cases. Hence the groups above are not

discrete.

Thus we have the following theorem.
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Theorem 4.2 Let Γ = 〈i1, i2, i3〉 be a complex hyperbolic triangle group of type

(n, n,∞; k). Let k ≥ [n/2] + 1. The following groups are non-discrete.

(1) (5, 5,∞; 3).

(2) (7, 7,∞; 4).

(3) (9, 9,∞; 5).

(4) (10, 10,∞; 9).

(5) (11, 11,∞; 6), (11, 11,∞; 10), (11, 11,∞; 11).

(6) (12, 12,∞; 7), and (12, 12,∞; k), where 11 ≤ k ≤ 16.

(7) (13, 13,∞; 7), and (13, 13,∞; k), where 12 ≤ k ≤ 38.

(8) (14, 14,∞; 8), and (14, 14,∞; k), where k ≥ 12.

(9) (15, 15,∞; 8), and (15, 15,∞; k), where k ≥ 13.

(10) (16, 16,∞; 9), and (16, 16,∞; k), where k ≥ 14.

(11) (17, 17,∞; 9), and (17, 17,∞; k), where k ≥ 15.

(12) (18, 18,∞; 10), and (18, 18,∞; k), where k ≥ 16.

(13) (19, 19,∞; 10), (19, 19,∞; 11), and (19, 19,∞; k), where k ≥ 17.

(14) (20, 20,∞; 11), (20, 20,∞; 12), and (20, 20,∞; k), where k ≥ 18.

(15) (21, 21,∞; 11), (21, 21,∞; 12), (21, 21,∞; 13), and (21, 21,∞; k),

where k ≥ 19.

(16) (22, 22,∞; 12), (22, 22,∞; 13), (22, 22,∞; 14), and (22, 22,∞; k),

where k ≥ 19.

(17) (23, 23,∞; 12), (23, 23,∞; 13), (23, 23,∞; 14), (23, 23,∞; 15), and

(23, 23,∞; k), where k ≥ 20.

(18) (24, 24.∞; 13), (24, 24,∞; 14), (24, 24,∞; 15), (24, 24,∞; 16), and

(24, 24,∞; k), where k ≥ 21.

(19) (25, 25,∞; 13), . . . , (25, 25,∞; 17), and (25, 25,∞; k), where k ≥ 22.

(20) (26, 26,∞; 14), . . . , (26, 26,∞; 19), and (26, 26,∞; k), where k ≥ 23.

(21) (27, 27,∞; 14), . . . , (27, 27,∞; 21), and (27, 27,∞; k), where k ≥ 24.

(22) (28, 28,∞; 15), . . . , (28, 28,∞; 23), and (28, 28,∞; k), where k ≥ 25.

(23) (29, 29,∞; k) for any k(≥ 15).

(24) (n, n,∞; k) for any n(> 29) and k(≥ [n/2] + 1).

Remark 4.3 In our forthcoming paper we show that the following 10 groups are

discrete:

(3, 3,∞; 4), (3, 3,∞; 6), (3, 3,∞;∞);

(4, 4,∞; 3), (4, 4,∞; 4), (4, 4,∞; 6), (4, 4,∞;∞);

(6, 6,∞; 4), (6, 6,∞; 6), (6, 6,∞;∞).

But we do not know if groups of type (n, n,∞; k) without reference are discrete.
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