INCREASE OF ¹⁴C ACTIVITY OF DISSOLVED INORGANIC CARBON ALONG A RIVER COURSE

DUŠAN SRDOČ, INES KRAJCAR-BRONIĆ, NADA HORVATINČIĆ, and BOGOMIL OBELIĆ

Rudjer Bošković Institute, P O B 1016, 41001 Zagreb, Yugoslavia

ABSTRACT. Results of measurements for 3 years (1981–1983) of ¹⁴C activity of dissolved inorganic carbon (DIC) in water samples from the Korana River, as well as that of recent tufa and aquatic plants, showed that ¹⁴C concentration increases from karst spring to the estuary. A model describing the increase of ¹⁴C activity was developed assuming that the increase is due to the exchange of the dissolved CO₂ in stream water with atmospheric CO₂ and to dissolution of CO₂ from the decay of organic material and root respiration. It is possible to distinguish these two contributions by measuring the δ^{13} C values of DIC in water. As expected, our data show that the exchange process between atmospheric CO₂ and DIC dominates at rapids and waterfalls, while biologic contribution is much higher in lakes and along the lowland flow of the Korana River. Agreement between the calculated and the measured activities supports the proposed mechanisms of chemical and isotopic exchanges in stream waters.

INTRODUCTION

A comprehensive study of the Korana River catchment area involved systematic measurements of aquatic chemistry and isotope hydrology of surface and ground waters, as well as precipitation water. These measurements enabled us to construct a scheme of spatial and temporal distribution of stable and radioactive isotopes in the whole hydrologic cycle. The atmospheric and soil CO_2 activity, the tritium activity and the stable isotope content in precipitation served as input functions which made possible calculations of the initial ¹⁴C groundwater activity, the mean residence time (MRT) of ground water and evaluation of the aquifer recharge periods (Krajcar-Bronić *et al*, 1986).

Measurements of ¹⁴C activity of dissolved inorganic carbon (DIC) in springs and in stream water showed a systematic increase of ¹⁴C activity along the water course which has been attributed to the influx of atmospheric CO₂ as well as to the contribution from terrestrial plants, through detrital decay and root respiration. A model based on the described processes was developed, which predicts fairly accurately the ¹⁴C activity along the river course, using the experimentally–obtained coefficients for stream flow characteristics. Those coefficients are quite different for cascades, steady flow, etc, which is in accordance with the model concept.

Owing to the difference in ¹³C content of terrestrial plants and of atmospheric CO₂ (δ^{13} C = -24 to -30% and -8%, respectively) it was possible to separate the contribution of each source of ¹⁴C to the DIC activity.

¹⁴C and δ^{13} C samples were taken along the Korana River in NW Yugoslavia, which is free from industrial pollution and has a long record of aquatic chemistry measurements. From its springs to its mouth, the Korana River changes flow characteristics, from torrential rapids to steady lowland flow. Also, along a 15km section close to the springs the Korana River is intersected by numerous tufa barriers which dam 16 small lakes connected with waterfalls and cascades. Thus, a variety of stream flow modes were used to verify the proposed model of increasing the ¹⁴C activity of DIC in surface waters.

515

The described measurements and calculations of DIC activity in the Korana River served a twofold purpose: 1) to explain and define quantitatively the increase of DIC activity along the river course, and 2) to calculate the initial activity a_0 of of lake sediments and tufa deposits in a string of lakes and tufa barriers in the Plitvice National Park.

EXPERIMENTAL

Several kinds of samples were used to measure ¹⁴C activity. The most reliable sample, although not always available, was BaCO₃ precipitated from ca 200L of water, using a routine procedure (IAEA, 1967). Less reliable were tufa, lake sediment, and aquatic plants, because of the inherent uncertainty in isotopic fractionation, bioturbation, microlocation, etc. Most of the recent samples consisted of precipitated DIC in the form of BaCO₃, whereas pre-bomb-test tufa and aquatic plants were obtained from Plitvice National Park and Pevalek collections (collected 1919–1937). Whenever possible, we compared the results on two or more kinds of materials, such as the DIC, recent aquatic plants, the surface layer of tufa, and the lake sediment collected in a trap. Very often, the ¹⁴C activity at a particular location was within the statistical error of measurement for all kinds of samples. The largest deviation amounted to $\pm 2 - 2.5\%$ of modern activity.

Processing of carbonates and counting procedures have been described (Srdoč, Breyer & Sliepčević, 1971; Srdoč *et al*, 1979, 1982). The mass spectrometric analyses were done at Jožef Štefan Institute, Ljubljana, and Institut für Radiohydrometric, Munich. The ¹⁴C data are expressed in percent modern, using 0.95 of NBS oxalic acid activity as the modern standard. δ^{13} C values are relative to the PDB standard.

RESULTS

The results of ¹⁴C activity, mass spectrometry, and aquatic chemistry measurements are shown in Figure 1 together with a schematic profile of the first 15km of the Korana River. A steady increase of ¹⁴C activity of DIC in the downstream direction is quite evident, as opposed to the δ^{13} C values which reach a maximum after 15km of turbulent flow, followed by a decrease in the lowland area.

The concentration of DIC decreases sharply along the first 15km due to intensive lake sediment precipitation and tufa formation, followed by a slightly decreasing value in the lowland area. CO_2 concentration (or partial pressure) in water drops even more rapidly, eg, by a factor of 5 from karst springs to the confluence, reaching a steady value (0.05 ± 0.015 mmole/l) ca 4km downstream from the confluence (see Fig 1, sections 4 and 5).

The DIC balance is rather complex since it includes a rapid loss of CO_2 along the first few km of water course, followed by a substantial loss of carbon due to calcite precipitation in the next following 15km of river flow. Several smaller springs and tributaries bring highly mineralized water causing minor fluctuations in an otherwise constantly decreasing DIC concentration, as shown in Figure 1.

Fig 1. 1. The sketch of the riverbed profile. 2. The increase of ¹⁴C activity along the water course; \bullet – recent tufa (1976–1983); \blacktriangle – DIC in water; \bullet – carbonate precipitated on polyamide mats; O – tufa, before 1945; x – moss (*Cratoneurum commutatum*); + – top layer of lake sediments; — – calculated activity (Eq 2), 1980–1983; ---- – calculated activity (Eq 2), before bomb tests (1945). 3. δ ¹³C content of DIC. 4. DIC, mmoles per liter. 5. CO₂ concentration, mmoles per liter.

The CO₂ balance is characterized by a *quasi* exponential drop caused by rapid degassing of excessive CO₂ in spring water. This is followed by a constant partial pressure of CO₂ over the longest section of the river and a slight increase of CO₂ pressure in the lowland area, caused by biogenic contribution, *ie*, decay of detritus and root respiration.

The DIC and CO_2 balances can be calculated by using data shown in Figure 1, or—more precisely—by using numerical data stored in our com-

517

puter memory,¹ since no analytical expression can describe the complexity of the system. On the contrary, ¹³C and ¹⁴C balances seem to be within the reach of analytical solutions, at least in the first approximation and with the help of numerical data shown in Figure 1. Since the aim of this work has been the calculation of ¹⁴C activity and δ^{13} C content of DIC along the river, we have modified the conventional mass balance procedure to obtain the numerical values of ¹⁴C activities and δ^{13} C content as functions of distance from the springs. Namely, the specific activity of DIC depends on the uptake of ¹⁴C along the river course mainly from the atmosphere, which—in turn-depends on the difference in activity and partial pressure of CO₂ in both systems. The partial pressure and activity of CO₂ in the air is quite constant during the river water turnover, and so is the partial pressure of CO₂ in water along 93% of the Korana River flow. Therefore, for this section a relatively simple model describing the ¹⁴C activity increase was developed assuming that the increase is due to the exchange of the dissolved CO₂ in stream water with atmospheric CO₉.

The differential increase of DIC activity $dA(aq)/d\ell$ should be proportional to the difference between the partial pressure of atmospheric CO₂, p(atm) multiplied by its ¹⁴C activity, and the partial pressure of CO₂ in water, p(aq) at a given point ℓ multiplied by its ¹⁴C activity:

$$\frac{d[p(aq) A(aq)]}{d\ell} = k [p(atm) A(atm) - p (aq) A (aq)]$$
(1)

The coefficient k in Eq 1 is proportional to the exchange rate between the dissolved and the atmospheric CO_2 at the point ℓ . The equilibrium activity between all ionic species containing ¹⁴C is attained rapidly in turbulent water, hence the sought DIC activity is equal to the ¹⁴C activity of CO_2 in water, denoted by A(aq) in Eq 1 and 2. The solution of Eq 1 has a simple exponential form:

$$A(aq) = \frac{1}{p(aq)} \left\{ A(atm)p(atm) - [A(atm)p(atm) - A_0(aq)p_0(aq)] e^{-k\Delta \ell} \right\}$$
(2)

for constant values of p(atm), p(aq), and the coefficient k over the river segment Δl . $A_0(aq)$ is the DIC ¹⁴C activity at the starting point of the river segment and Δl is the distance between the starting and the end point. Whereas the constant value of p(atm) is not questionable along the river course, the assumed constancy of p(aq) in water is valid only over a limited distance or under specific conditions. Only measurements of p(aq) in water can give an answer about its constant value in a given segment. The coefficient k is definitely a function of the stream flow mode and the value obtained by applying Eq 2 is the *average* value for that segment. The coefficient k reaches its highest value (0.635 km⁻¹) at the waterfalls where the intensive exchange between gaseous and dissolved CO₂ takes place. The lowest value of coefficient k (0.0016km⁻¹) was obtained for the lowland meandering flow of the Korana River. These results are in qualitative agreement with data obtained by Mook (1970).

¹ The data are available on request

Measurements of ¹³C content of DIC in water, shown in Figure 1, indicated that at least two contributions to the DIC ¹⁴C activity exist which cannot be resolved by analysis of ¹⁴C data. Terrestrial plants and atmospheric CO_2 have the same ¹⁴C activity; however, their ¹³C contents are different, offering the possibility of distinguishing their relative contribution. A more complex model taking into account both ¹⁴C and ¹³C data was developed in the following way. The increase of ¹⁴C activity is proportional to the difference between the partial pressure of atmospheric CO_2 , p(atm) and p(aq) multiplied by the corresponding ¹⁴C activities, as well as to the ¹⁴C contribution from terrestrial plants. The change of δ^{13} C is proportional in the same way to the difference between δ^{13} C of atmospheric CO_2 and δ^{13} C of DIC as well as to the contribution of plants:

$$\frac{d[A(aq) p(aq)]}{dl} = k_1 \left\{ [A(atm) - 2\epsilon] p(atm) - A(aq)p(aq) \right\}$$
(3)

$$\frac{d[\delta(aq) p(aq)]}{d\ell} = k_1 \left\{ [\delta(atm) - \epsilon] p(atm) - \delta(aq) p(aq) \right\}$$
(4)

where δ stands for the corresponding δ^{13} C value. ¹⁴C and ¹³C contributions from terrestrial plants are proportional to the plant activity A_{pl} and their ¹³C content, respectively:

$$\frac{\mathrm{d}A(\mathrm{pl})}{\mathrm{d}\ell} = k_2 A_{\mathrm{pl}} \tag{5}$$

$$\frac{\mathrm{d}\delta(\mathrm{pl})}{\mathrm{d}\ell} = k_2 \,\delta^{13} \mathrm{C}_{\mathrm{pl}} \tag{6}$$

Coefficients k_1 and k_2 are proportional to the exchange rate of atmospheric and dissolved carbon dioxide and to the plant contribution, respectively. The fractionation factor ϵ between the gaseous CO₂ and bicarbonates is equal to $-9.6\%_0$ at 10°C (Fontes, 1983). As in the previous case, Eq 3 and 4 can be solved for a constant difference in partial pressure of CO₂ between the liquid and the gaseous phase. The analytical solutions of Eq 3 and 4 are valid in the lowland area, whereas numerical methods have to be applied for regions of rapid changes of CO₂ partial pressure in water, using data from Figure 1.

Our measurements showed that δ^{13} C of plants in the area varies between $-26\%_0$ and $-30\%_0$ vs PDB (Krajcar-Bronić et al, 1986). These values are several per mil lower than the soil CO₂ values of Dörr and Münnich (1980). The mean value of $-28\%_0$ was used for calculation. The δ^{13} C value of atmospheric CO₂ is equal to $-8\%_0$ (Stuiver & Polach, 1977).

Coefficients k_1 and k_2 were calculated for segments along the water course having characteristic flow mode. As expected, the coefficients are different for each segment and the contribution of atmospheric *vs* biogenic CO_2 can be calculated for any particular river segment (Table 1).

It is reasonable to suppose that the coefficients are the same at least for the Holocene when climatic conditions and hydrology of the Plitvice lakes system did not change very much. Thus, by applying our model it is

River segment (Fig 1)	Length of segment (km)	¹⁴ C activity increase (% per km)	$\begin{array}{c} \text{Atmospheric} \\ \text{CO}_2 \\ (\%) \end{array}$	Biogenic CO ₂ (%)
A-C				
Rapids B–C	3.8	2.2	~ 98	< 2
Rapids C–D	2.7	6.2	>99	~ 0.5
Lake D–E	2.0	2.0	~ 98	~ 2
Rapids and waterfalls E–F	1.8	4.3	>99	< l
Lake F–G	1.7	0.7	95	~ 5
Waterfalls G–H	1.0	2.3	~ 99	< 1
Rapids H–I	4.7	1.5	>97	< 3
Lowland flow I–I	61	0.06	36	64
Lowland flow	55	0.05	23	77

TABLE 1
The increase of ¹⁴ C activity of DIC for various segments shown
in Figure 1 along the water course

possible to calculate the initial activity for any location along the water course (Fig 1), provided that ¹⁴C activity of DIC in spring water has not been influenced by nuclear weapon test ¹⁴C (Krajcar-Bronić et al, 1986). The obtained results are in quite good agreement with initial activities calculated independently from experimental results (Srdoč et al, 1986). Further, by knowing the ¹⁴C activity of the atmospheric CO₂ in the last 30 years and assuming that the yearly growth of tufa is constant, it was possible to calculate the ¹⁴C activity of tufa layers grown in this period. Several tufa samples grown during the last 30 years showed the 14 C activity in agreement with the calculated values.

ACKNOWLEDGMENT

We are grateful to J Pezdič, the Jožef Stefan Institute, Ljubljana, and H Moser and W Stichler, Gesellschaft für Strahlen und Umweltforschung, München, for stable isotope measurements. We also thank M J Head, Australian National University, Canberra, for stimulating discussions.

REFERENCES

Dörr, H and Münnich, K O, 1980, ¹⁴C and ¹³C in soil CO₂, *in* Stuiver, M and Kra, R S, eds, Internatl ¹⁴C conf, 10th, Proc: Radiocarbon, v 22, no. 3, p 909–918.

Fontes, J Ch, 1983, Dating of groundwater, IAEA guidebook on nuclear techniques in hydrology: IAEA Tech rept ser no. 91, p 285–317. IAEA, 1967, Instruction for sampling of water for C-14 analysis: IAEA, Hydrology sec, Lab

rept.

Krajcar-Bronić, I, Horvatinčić, N, Srdoč, D and Obelić, B, 1986, On the initial ¹⁴C activity in karst aquifers with short mean residence time, in Stuiver, M and Kra, R S, eds, Internatl ¹⁴C conf, 12th, Proc: Radiocarbon, this issue.

Mook, W G, 1970, Stable carbon and oxygen isotopes of natural waters in the Netherlands, IAEA, Isotope Hydrology, p 163–189.

520

- Srdoč, D, Breyer, B and Sliepčević, A, 1971, Rudjer Bošković Institute radiocarbon measure-
- Srdoč, D, Breyer, B and Sliepčević, A, 1971, Rudjer Bošković Institute radiocarbon measurements I: Radiocarbon, v 13, p 135–140.
 Srdoč, D, Horvatinčić, N, Obelić, B and Sliepčević, A, 1982, Rudjer Bošković Institute radiocarbon measurements VII: Radiocarbon, v 24, p 325–371.
 Srdoč, D, Obelić, B, Horvatinčić, N, Krajcar-Bronić, I, Marčenko, E, Merkt, J, Wong, H K and Sliepčević, A, 1986, ¹⁴C dating of lake sediment from two karst lakes in Yugoslavia, *in* Stuiver, M and Kra, R S, eds, Internatl ¹⁴C conf, 12th, Proc: Radiocarbon, this issue.
 Srdoč, D, Sliepčević, A, Obelić, B and Horvatinčić, N, 1979, Rudjer Bošković Institute radiocarbon measurements V: Radiocarbon, v 21, p 131–137.
 Stuiver, M and Polach, H A, 1977, Discussion: Reporting of ¹⁴C data: Radiocarbon, v 19, p 355–363
- p 355-363.