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ABSTRACT. A theory is proposed that glacier surges are the result of a time-independent but pos itio na lly
dependent temperature distribution in which the mean e ffec ti ve temperature increases down slope. The 
theory is modeled by a sla b analogy in which plane motion on a pl ane slope consists of uniform shear in a 
sub-region called the reservoir region . Assuming the usua l power fun ction rela tionship between s tress and 
stra in-rate, a thicke ning of the glacier in excess of its constant-sta te condition tends to induce instability; 
i. e . as the reservoir region thickens the oscillation of the region (up and down the slope) becomes unstable. 
Assuming an accumula tion ra te which increases linea rl y with elevation, this oscilla tion is represented by a 
non-linear ordinary differential equation . N umeri cal resu lts a re considered and reasonable assump tions, 
where da ta does no t exist , render surge cycle ti mes in close agreement with observation. The theory does not 
require basal sliding but this can be included. 

REsuME. Une thiorie des crues rapides des glaciers par l'illstabilite de masse due au gradient thermique. La theorie 
proposee est que les crues rapides des glaciers son t dues a une distribution d es tempera tures independan te 
du temps mais variable d a ns I' espace selon laquelle la tempe rature cons tatee croit d'amont en aval. La 
theorie prend I'exemple d 'une plaque dans laquelle un mouvement plan sur une pente plane consis te en un 
cisaillement uniforme dans une "sous region" appelee zone reservo ir. En adm ettant I'ha bituelle loi puissance 
ha nt Ies efforts e t la vitesse de deformation; un epaississement du glacier en exces par rapport a son etat de 
sta bilite tend a induire son instabilite, c'est-a-di re que plus la zone reservoir s'epaissit, plus I'oscilla tio n de la 
zone (vers I'amont e t vers I'aval ) devient instable. Dans I' h ypo these d 'une vitesse d'accumulatio n qui 
a ugmenterait lineairement avec I'altitude, ce tte osci llat ion es t representee par une equation differentielle 
o rdinaire non lineaire. On a examine les resulta ts numeriques et, lorsqu' il n 'existe pas de donnees, des 
hypotheses raisonnables conduisent a un cycle des crues d ans le temps qui est en bon accord avec I'observa
tion . La theorie ne requiert pas de glissement sur le lit , m a is peut le prendre en compte. 

ZUSAMMENFASSUNG. Eine Theorie de, Gletscherausbriiche alif de, Basis eiller uom T emperaturgradientm induziertell 
Masseninstabilitiit . Es wird eine Theorie entwickelt, nach d e r G le tscherausbruche die Folge e iner zeitlich 
unabhangigen, aber ortsabhangigen T empera turve rteilung sind, bei der die (wirksame) Temperatur 
hangabwarts zunimmt. Als theoretisches M odell dient e ine Plattenanalogie, worin eine ebenc Bcwegung 
a uf einer schiefen Ebene durch einheitlich e Scherung in einer a ls R eservoirregion bezeichneten Subregion 
a usgelos t wird. Unter Annahme der ublich cn Potenzbez iehung zwischen den Verformungs- und Spannungs
raten wird eine Verdickung des Gletsch ers uber seinen stationa ren Zustand hina us eine Instabilita t verur
sach en, d.h. , wenn die R eservoirregion d icker wird , wird die Oszillation d er R egion (hangauf- und 
h a nga bwarts) instabil. Bei Annahme einer Akkumula tionsra te, di e li near mit d e l' H ohe zunimmt, lasst sich 
die O szillation durch eine nichtlinea re, gewohnliche Differe ntia lglcichung darstelle n. Numerische Losungen 
werden betrachtet. Vernunftige Annah men von Pa rametern , fur die Messwerte fehlcn, ergeben fur die 
Ausbruche Zykluszeiten, die gut mit den Beobachtungen ubereinstimmen. Die Theorie benot igt kein Glei ten 
a m Untergrund, doch ka nn di es miteinbegriffen werden . 

INTRODU CTION 

There are a t leas t three phenomena which are commonly advanced as agents in triggering 
and /or propagating glacier surges, as reviewed by R obin ( 1969): stress instability, water-film 
instability, and temperature instability. Stress instability as treated by R obin (1967, 1969) 
is proposed primarily as an explanation for the initiation of surges . Water-film instability, 
proposed by Weertman (1969), and Robin and Weertman (1973), is essentially a phenomeno
logical theory explaining how a " fast-slid ing" mech a nism could appear periodically in 
glaciers with temperate bases . Temperature instability, treated by Robin (1955, 1969), 
predic ts a periodic surge-type phenomenon provided there exists a time-dependent tempera
ture oscillation which periodically produces tempera te conditions at the base of the glacier. 
The last two theories are compa tible and can be combined to produce a model in which the 
basal temperature oscillates and fast sliding occurs periodically. 

None of these theories is quantitative. T he reason for this lies in the prevailing belief that 
surging is essentially a fast-sliding phenomenon and sliding is an extremely complicated 
process which involves a description of water movem ent and heat transfer among other 
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complexities. On the other hand , efforts at obtaining temperature data on surge-type glaciers, 
while seemingly aimed at verifying the existence of temperate basal conditions, have not 
conclusively established that the triggering of surges in cold glaciers does not involve a 
m echanism other than sliding. Clarke and Goodman (1975) and Goodman and o thers (1975) 
in their studies of Rusty and Trapridge Glaciers note that temperate basal conditions exist 
in a central region but the glaciers are frozen to their bases at the upper and lower elevations. 
This appears to be a common situation in cold surge-type glaciers. It is not clear that one 
can assume in such a situation that the active region in a surge initiation involves only tem
perate basal ice. Even in the situation of the surge of glaciers considered as fully temperate 
there is some evidence of cooling between surges although a surge itself may involve only 
temperate ice. There is an obvious pressing n eed for additional temperature data , parti
cularly at the bases, on surge-type glaciers. 

The model to be developed h ere applies to cold glaciers. Conditions at the base, however, 
may be either cold , temperate, or a combination . It is necessary that the " mean " temperature 
through the ice thickness increase down-slope. The model may be viewed as presenting 
another surge phenomenon independent of previous theories or be used in conjunc tion with 
previous theories. ' Our treatment is quan titative in nature. The model may be applied to 
predict surge cycle times provided only that data exist on annual balance distribution and 
temperature. Such pred ict ions are attempted late r subject to limitations on data. 

THE SURGE MOD E L AND LINEA R ANA LYSIS 

The theory presented here is independent of previous theories, but certainly no t in conflict 
with them . The basic premise is that , as has been frequently noted , a surge consists of a 
process whereby in a large region of the glacier, termed the "reservoir region ", mass is 
periodically accumulated over a relatively long time and discharged over a short time, during 
which glacier speeds are typically ten to one hundred times the normal speed. T his sugges ts 
our first primary assumption that the mass of glaciers, at least those which surge, is not 
constant even though climate is constant. (W e sh a ll neglect seasonal weather changes. There 
is no evidence of periodic climatic conditions in phase with surge phenom ena.) It is an 
implicit part of the assumption that the net mass balance of glaciers oscillates between positive 
and negative values; obviously, the net mass balance cannot remain either positive or negative 
indefinitely. This oscillation in mass of glaciers is the physically observed situation although 
the cause may normally be attributed to climate change. 

The first assumption can be realized in our model on ly if we make a second assumption that 
the balance distribution increases up-slope. That is, there exists an equilibrium line at which 
the annual balance vanishes and above (below) this line the balance increases (d ecreases). 
This is the usual physically observed situation. I t will be shown that if the glacier temperature 
is uniform a model obeying these first two assumptions exhibits periodic growth and d ecay of 
the reservoir region . 

An additional assumption is required in ord er to ensure that this periodic behaviour 
becomes unstable. What seems to be required is an asymmetry of the flow process relative to 
the midpoint (or equilibrium line) on the slope. That is, friction should decrease as we move 
down the slope. Accordingly, we make' the assumption that the glacier temperature increases 
down-slope. H ere, there is not much evidence to go on. Near the surface of sub polar glaciers, 
melted water re freezes in the a ccumulation zone. This causes these glaciers to be colder in the 
a blation than in the accumulation zone- a t least near the surface. Our assumption, however, 
need not apply near the surface, but only in the d eeper regions where it appears more reason
able. There , water percolation is absent and the d own-slope m ean air-temperature gradient 
should contribute to the pos tulated effect. In addition, the greater pa rt of frictional dissipa
tion takes place at depth and has an accumulative effect which would tend to increase the 
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temperature d own-slope. Finally, geother'm a l input need not be uni fo rm a nd there is no 
reason why on some glaciers it should not increase down-slope. At this earl y stage it is clear 
tha t the model is not applicabl e to strictl y temperate glaciers. 

In addition to the three fundamenta l assumptions above, we make cert a in simplifica tions 
and note in so d oing tha t this is a fi rst-order theory intended primaril y to produce qualitat ive 
agreement with observation . W e consider pla ne fl ow on a plane slope (Fig. 1) . * The reservoir 
region, which is ass umed no t to be the entire g lacier, is modeled by a slab , a rec tangula r 
control volume of fixed leng th Lo and he ight h wh ich in general varies w ith time. T he 
mechanical behaviour of the sla b will be assum ed to be independent of the remainder of the 
glac ier and the d eformation fi eld will be ass u m ed to consist of a uniform shea r fl ow. To be 
consistent with the latter assumption, the weight is assumed to act uniforml y through the 
entire thickness, i.e. the weight is applied to the top of the slab. T he tempera ture distribution ' 
is assumed to be independen t of time at points fi xed with respec t to bedrock. T he temperature 
distribution a t a section x = consta nt can thus be replaced by a fixed mean effec tive tempera 
ture 8(x). Sliding of the g lacier on bedrock wil l be neglected merely as a sim plification in 
presenting resu lts; its inclusion would present no mathemat ical complica tion . Additiona l 
assumptions rela ting to motion and mass ba la nce will be mad e within th e context of the 
mathematica l form ul a tion . 

\ 
\ 

e~ 
\ 
\ 

Fig. I . The reservoir region is represe1lted b)' a recta1lgular c01l trol m llll1le which we tertiI a slab. 111 the cOllstall t-state cOlldition 
it is centered at x = 0 (e = 0 ) alld ulldergoes a uniform time-i1lde/Jelldell t shear flow. Material flows illto the control 
volume on the right alld exists all the lift with velocity vaT)'illg lillearly Jrom zero at the base to Vo at y = ho. Net Jorces 
exerted 0 11 the cOlltrol volume by the rest oJ the glacier vallish. I II the general case the control volullle moves with its position 
determined by the position oJits upper surface. T o the observer it appears as a wave moving " through" the glacier. Although 
Lo is ./ixed, h, e alld V vary with time. For V > Vo « Vo) it moves down (up ) the slope. 

We emphasize that the sla b is a control volume which receives mass input from the glacier 
at its upper boundary (norma l to the base) a nd discharges m ass a t its lower boundary ; the 
ma terial pa rticl es comprising the control volume change with time. t T his mass input and 
output are assu med to ba la nce since we wish to consider the a ction of the reservoir region 
independently of the rest of the glacier. T he sla b is intended to represent the acti ve region of 
an actual g la cier and this is ass umed here to be synonymous with the reservoir region . The 
remainder of the glacier is assumed to be nearly d ormant so tha t any imbalance of m ass input 
or output to the active reservoir region from the remainder of the glacier is likely to be 
negligible compared to the ne t balance, accum ula tion or abla tion , on the sla b itself. 

* Henceforth , a ll quantities will be expressed per unit d istance norma l to the x,y plane, Figure I. 

t As one of several alternatives, the enti re glacier cou ld be represented by a slid ing sla b fi xed a t its upper 
extremity which undergoes extending Aow with shea r Aow neglec ted; the loca tion of the term in us as well as the 
thickness would vary with time. In this model there is no ex ternal mass input or out put to the sla b. The qualita
ti ve behaviour of the two models is simila r. 
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The mass balance of the slab, in accordance with the second fundamental assumption, will 
depend entirely on the location of the slab relative to the equilibrium line. On the other hand, 
if the slab thickness is increasing (decreasing) the slab will, as a consequence of equilibrium 
and flow-law considerations, tend to move down (up ) the slope after which motion the net 
mass balance will tend to decrease (increase). There is thus an analogy to a spring where 
the slab is "attracted" towards a central position which might be, but is not necessarily, the 
equilibrium line. If the slab is in a constant-state situation so that its mass and position remain 
constant , it will appear to the observer to be stationary; that is, the control volume is stationary. 
Actually the slab is undergoing uniform, time independent , shear flow with material particles 
flowing into and out of the slab (Fig. I ) . 

The remainder of this section is devoted to representing mathematically the features of 
this slab oscillation. In particular, we are interested in investigating whether and under what 
conditions the oscillation might become unstable. 

Neglecting inertia forces, equilibrium of the slab implies 

T = pLoh sin IX ( 1 ) 

with p the weight density. The speed V of the upper surface of the slab is related to the shear 
strain rate E by . 

E = V/2h. 

Assuming the usual power-function relationship between shear stress and strain-rate we can 
write 

T = k(X) (V/2h)' /n 

where the temperature 8(x) and hence the friction coefficient k(x) are functions of x. For lack 
of data we assume a linear relationship: 

where k, > 0 corresponds to temperature increasing down-slope . 
The origin x = 0 is chosen to coincide with the centre-line of the slab when it is in the 

constant-state position ( to be defined). If e measures displacement of the slab relative to 
the constant-state position (Fig. I), integration of Equation (4) on - Lo/2 + e to Lo/2 + e 
gives for the average or effective friction coefficient K (e) : 

K(e) = ko + k,e sin IX/Lo. 

Integration of Equation (3) then gives for the shear force T 

T = (V/2h) ,/n(ko + k,e sin IX /Lo). 

(5) 

(6) 

In general, as will be demonstrated later, transitory behaviour is possible whereby the slab 
position moves and hand e vary. On the other hand, a constant-state condition, defined as a 
state where all quantities are independent of time, is also possible. It is helpful to investigate 
this special case first. Assume that a constant state exists and let h = ho, V = Vo. Since 
the net balance must vanish it is also necessary that e = 0 in Equation (5) is we assume that 
the balance gradient is antisymmetric with respect to x = o. Equilibrium considerations 
through Equations (6) and (I) then give 

Another relationship between ho and Vo is obtained by considering the actual constant
state profile of a glacier. For this purpose we resort to a more conventional model of Nye 
(1959) and assume that plane sections normal to the slope remain plane and normal; i.e. 
shear deformation vanishes except at the base where there is a velocity discontinuity. If we 
furthermore assume that the particle velocity is uniform and equal to Vo 
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I J ' ke . ho(x) = - - Sw dx = -- [(L r/2)' - X'] Sin Cl 
pVo 2p Vo 

(8) 

L,/o 

where for lack of data we have assumed a linear relation for the balance gradient Sw (weight 
per unit time and length ) 

Sw = kex sin Cl , ke > o. (9) 

Therefore, the average thickness of the glacier in the constant state condition is 

ho = keL I'sinCl / I2pVo. ( 10) 

We take ho to be the average thickness of the reservoir region. * 
From Equations (7) and (10) we obtain 

ho = [keLI' sin Cl] 1 /ln+'I(~)n/(n + 'I, 
24P P Sin Cl 

Vo = [keLIZ sin Cl] [ 2;p. ] 1/ (n +,1 [p sin Cl] n / I 11 + 21 ( 12) 
12p keLI Sin Cl ko 

A unique constant-state condition for the slab has thus been defined. 
When the slab is displaced , e # a , its mass rate of change is d e termined by integration 

of Equation (9) . Thus, 
W = keLoe sin Cl. ( 13) 

The final relationship necessary in studying the transitory behaviour is the kinematic relation
ship (Fig. I ). 

( 14) 

Substitution of Equations ( 13 ), (7) , (6) and (I) into Equation ( 14) gives the basic governing 
equation for the slab thickness 

dzh = [2 (P sin Cl)nhon+' 2(p sin Cl)nhn+' ] ke sin Cl ( IS) 
dt 2 kon (ko + kle sin Cl /Lo)n P . 

To achieve a convenient dimensionless form of Equa'tion ( 15) we d efin e variable u by 

h = ho + hl ' hi = uhO' ( 16) 

In addition, the dimensionless time s is defined by 

s = [2honke (s in Cl)n+lpn - ' /kon]!t 

so that Equation ( 15) becomes 

~:~ = [I -( I + u) n + I I ( I + y ~: r] 
where the single dimensionless parameter 

y = sin IX Llkl /2Y3 Loko ( 19) 

is obtained after substituting for ho from Equation ( I I ) and for e from Equation ( 13) where 
W = pLoh. Other quantities of interest , such as slab position e/LI and the ralio of particle 
velocities V/ Vo are easily expressed in terms of u. Thus, 

e/LI = ( 1/2"/3) du/ds , 

VIVo = ( I + u)n+I/( I + ydu/ds )n. 

Furthermore , substitution from Equation (11 ) into Equation ( 17) enables us 10 compute 
real time in terms of the physical parameters and s; thus 

.. For Lo ~ L, the approximation to Equation ( 10) is accurate; for Lo ~ L" ho ~ keLt' sin a/8pVo· 
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In general , Equation (18) d oes not possess closed-form solutions. Qual itative behaviour 
fo r lul ~ I is easily discussed in terms of a linearized approximat ion. Expansion of 
( I + u)n+' /( I + y du /ds)n in a Taylor seri es resu lts in the linea rization 

d 2u/ds2 - ny du /ds+ (n+ I )U = o. 

I n case n2y2 < 4 (n + I ) all solutions may be expressed in terms of 

Solutions corresponding to y = 0 are periodic wh ereas for y > 0 there is an exponential 
g rowth superimposed upon the pe riodic behaviour ; * subsequent discussion applies to y > o. 
No te that any solution must sat isfy the inequality h :;? 0; from (16) this implies that u :;? - I. 

The mathematical result is that the condition U = - I, corresponding to complete m elting, 
w ill occur within a finit e time. Physicall y, the slab has moved suffi cientl y far down the slope 
that it " melts" before returning. The solution should be interpreted as ceasing to exist from 
this moment. Once the reservoir region ceases to exist , another active reservoir region comes 
into existence and the same procedure is repeated. This discussion of course applies only to 
the linear solution which has limited applica tion ; later numerical studies of the non-linear 
equation demonstra te a different qualitative behaviour whereby in a finit e time the sp eed of 
the slab may become unbounded (the slab moves off the slope before m elting takes place). 

If the initial conditions u(o) = - U, U > 0 , duJds(o) = 0 are applied , Equation (24) 
gives 

(Initial conditions of this type, which correspond to the reservoir region initially in the 
constant-state position but thinner than ho, will be applied in the numerical study of Equation 
( 18).) Quantities e and r behave in much the same manner as Equation (25). Nega tive 
speeds V can result , but are not possible in the non-linear model since T :;? 0 and Equations 
( I ) and (3) imply that V :;? o. 

The point u = 0, e = 0 (or u = 0, du Jds = 0 ), which represents the constant-state 
condition , is an isolated critical point in the terminology used in the study of non-linear 
differential equations. The functions u = 0 , du Jds = 0 clearly are a solution of Equation 
( I8 )- the constant-state solution . What we have shown in the linearized analysis is that the 
criti cal point is unstable. That is, any small change from the constant-sta te condition results 
in unstable behaviour- an exponential growth of the solution. 

NON-LINEAR BEHAVIOUR-NUMERICAL STUDIES 

In the following examples applied to the numerica l solution of Equation (18) n = 3 is 
used throughout as a generally accepted value.t Figure 2 illustrates a type of behaviour which 
culminates in slab m elting. The initial conditions u(o ) = - 0. 15 , e(o ) = 0 correspond to the 
reservoir region initially in the con stant state position but 15% thinner than the cons tant-state 
thickness ho ; consequently, the slab initially moves up the slope . As it does so, the particle 
speed V (down the slope) increases slowly. Eventually, V increases to the extent that e 
reaches a maximum; by Equation ( 14) this occurs when VI VO = I . As the slab moves down 
the slope V increases more rapidly but does not reach a relative maximum until after e 
returns to zero . The period from e = 0 through emax and back to e = 0 will be called the 
accumulation half-cycle . 

* The exponential growth a lso applies to cases where n'y' ;;:, .J. (II I ) . La te r we show that ac tua l glac iers 
seem to correspond to n'y' < 4(n + t ) . 

t Melior a nd T es ta ( 1969 [aJ ) regard 11 = 1.8 as a be tter value at low stress levels such as exist on a glacier. 
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F ig . 2 . Typical slrtb his/I)!)' mrrt'JjHJlldill,!!. to (/ Imilll II \ () I z • u. ' :') . Y "" n,] ill f!t t !lid! rt',l!,iflf/ I!/ F i,!!.IIrt, .J. which results 
ill complete melting , after beillg displaced dowlI -slope (/ distallce olle-qllarter q/ lhe glacier lellgth. The maximllm slJeed 
VI VO is only 3.33 ; the maxilllulII increase in thickness is 25° (/ . The actioll has a resemblance 10 a kinematic walle but is 
1I0t similar to a surge. 

The ensuing half-cycle, ifit is completed (whi ch d oes not occur in this exam p le) is roughly 
t h e reverse of the accumulation half-cycle as fa r as e and u are con cerned and w ill be called 
the ab la ti on half-cycle. The speed V does not obse rve this rough ant i-symmetry prop erty and 
continues to increase rapidly, reaching the maximum value r; Vo = 3.33 when elL I = - 0.225 ; 
after this the speed drops rapidly to zero at which time complete m e l t ing takes place . R eversal 
of the direction of slab motion occurs when VI [ 'n = I. The g rea t majority of m elting takes 
p lace when th e slab is positioned in the range - 0.375 < elL I < - 0.25 corresponding to 
an elapsed time 6.s ~ [ .0 compal-ed to the tota l elapsed time 6.s = 3 .0 . Hence, during th is 
last third of the elapsed time, the slab has been signifi cantly displaced from the con sta nt-state 
position ; provided LolLI < ! it is entirely removed from the or ig ina l reservoir regio n. There
fore , we might consider that for s > 2.0 ano the r slab begins life in the origin a l reservoir 
region and the process is repeated. 

This first example is qualitative ly similar to the linear res ults in terms of express ion (24). 
The period t.s = 3.0 (Fig. 2) compares with t.s = 3.22 of express ion (24). The most notice
able changes are that the elapsed time for the accumulation half-cycl e has becom e twice that 
of the ablation half-cycle, and that there is eviden ce of a furth er inc rease of slab sp eed during 
downward motion. 

H enceforth , we shall arbitrarily d es igna te r 'I r'o = 2.0 as the boundary between low and 
high speed. The corresponding time dura ti on of low (high ) sp eed will be d eno ted by 
:-'sL( t.SH). The parameter t.sH l t.SL will , in lat er examples, be a m eaningful parameter for 
comparison with a ctual surges. 

Figure 3 employs the same initial conditions a s Figure 2 with a different parame ter value, 
'}' = 0-4 instead of 0.3· The behaviour of the two examples is v irtua lly identi cal fo r s < [.5. 
For s > [.5 the second example exhibits a rapidly increasing speed culminating in instability . 
The slab can be regarded as moving off the slope before comple te melting can take place. 
Many of the qualitative fea tures o f a surge are m e t by such behavio ur. First and most obvious 
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is the high speed. (We shall later address the problem of rationalizing infinite speeds. At the 
present time this should be considered as a product of the degree of simplification incorporated 
in the model, but something which can be remedied by a slightly more sophisticated m odel. ) 
The second attribute ofa real surge is the gradual thickening of the reservoir region during the 
accumulation half-cycle until it reaches a maximum thickness UM, 30 % greater than that of 
constant state, before the ablation half-cycle begins. Values of UM on this order agree with 
data of Robin and Weertman ( [ 973 ) for Muldrow Glacier and Finsterwalderbreen . The 
third comparison is that the material of the reservoir region is discharged to the lower region 
of the g lacier over a relatively short time interval. For this example /1sH / /1sL = 0.33. This 
value should be closer to 0.05 for a surge, illustrating that the model , or at least this example, 
d evelops high speeds relatively slowly. 

122 

22 n= 3 0.50 
y=0.4 ...J 

........ 
'" 

12 

~ 2 .0 0.25 0 .25 
........ 
:> e I L, 

1.5 o 

1.0 u o - 0.25 

0.5 - 0.50 

o L----'-- ---'--- -'---....I..---...J- 0.25 - 0 .75 
0 .5 1.0 1.5 2.0 5 

Fig. 3. Typical slab hislory corresponding 10 a poinl 1/ ( 0 ) = - 0. 15. Y = 0.4 in lhe inslability region oJ Figure 4. Here, 
lhe speed oJ lhe slab becomes unbounded bifore complele melling lakes place. The slab moves down beyond lhe original glacier 
region. The maximum increase ill thickness is 30% . 

With these two prototype responses in mind, we will now consider the question of whether 
the type of response can be determined if the initial conditions and parameters y and n are 
known- without having to resort to a numerical solution for each particular case. Also 
important is whether the unstable response corresponds to parameter values associated with 
actual surge-type glaciers. Extensive numerical studies enable us to answer these questions 
in the following paragraphs. 

For fixed y > o. 145 the slab will behave as follows when subject to the initial conditions 
u( 0) = - V, e( 0) = 0 where 0 < U < [ : if V is sufficiently small the slab will undergo at 
least one cycle without melting or becoming unstable; at the end of the first cycle, s = s, 
and the new initial conditions are u(s, ) = - V, < - U, e(s, ) = 0. At the end of the second 
cycle either complete melting has occurred or else we arrive at a state U (sz) = - Uz < - V" 
and so on. Eventually, either complete melting takes place during a cycle or else the slab 
enters a cycle in which instability occurs. 
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T he transitIOn between the behaviour illustrated by Figures 2 and 3 is abrupt. C urve 
ABC in Figure 4 represents the boundary between the two types. of behaviour as refl ected in the 
fi rs t cycle of response. Although analytically there is a continuous dependence of solutions 
upon the pa rameters u(o) and y , the dependence shows up as an abrupt change when d ealing 
with numerical solutions. The transition appears a s a discontin uity to within better tha n two
figure accuracy in m oving across ABC. We shall term this curve the "surge boundary" a nd the 
regions which it sepa rates the " m el t region" a nd the " instability region". Note tha t for 
y < 0.145 a ll slabs melt eventually a fter sufficien t oscilla tion . W e sha ll return la te r to th is 
diagram in re lat ing the model to a surge theory. 

- 1. 0 
A MELT LINE 

n=3 

- 0.8 e(o) =0 

- 0 .6 INSTABILITY REGION 

~ 
::t 

- 0 .4 

- 0.2 

D 

0 
C 

0 .2 0.4 0 .6 0 .8 1.0 

Y 

Fig . 4. Corresponding to tllf ill iti"I wlldilioll ' ( tJ l 11.1111' '/IIIt/il(/ li," bl'iul/'iol/r oj a Jillgle cycle of slab 1Il0tioll is convell iently 
represented in the u(o). y plane. Below A BC. the "surge boundary". speeds are bounded and melting may occur. Above 
the surge boundary speeds becolI/e unbounded. COllditiolls interior to CBED result in a maximum slab thickening less than 40"" 
ill excess if ho. 

Table I lists values of various para meters for a variety of solutions in the instability reg ion. 
V a lues of !lsH/ !lsL are generall y high compared to actua l surges but approach reasonable 
levels for y on the ord er unity. T he ela psed time !ls is fa irly consta n t; hereaft er we shall adopt 
the value !ls = 2 .0 as a uniform measure fo r a ll y < 1.0. (No te tha t the linear solution ill 
Eq ua tion (25 ) fo r fI = 3 indicates a dependence of !ls upon y where !ls --* ex) as y --* 1. ) 

TABLE I. CRITICAL PARAMETERS FOR SOLUTIONS IN THE INSTAB ILITY REGION OF FIGURE 4 

..\.s IS tota l elapsed d imensionless time; LlSH , (6.S I. ) IS the elapsed ti me d uring which V/ Vo > 2, ( <.. 2) ; 
(e/L , )M, (e/L ,)m a re the maximum a nd m inim um slab dis p lacements ra tios, respec ti vely; 100l/ M is the maXinI lIlI 1 
percentage increase in glacier thickness compa red with ho. 

u(o) = - 0. 025 1/ (0 ) = - 0.05 
y 0.6 0.8 1.0 1.1 0·5 0.6 0· 7 0.8 u ·9 

..\.sHI AS!. 0. 18 0. 12 0. 11 0.097 0. 25 0.20 0. 16 0. 14 0. 13 
As 2·3 7 2. 13 2.20 2.27 2.2 7 2.07 2.0 1 2.0 1 2.05 

(e/L, )M 0.036 0.057 0.096 0. 123 0.056 0.067 0.0 79 0.096 0. 120 
(e/L , )," - 0 ·45 - 0·33 - 0 .27 - 0.23 - 0 ·54 - 0.4 1 '- 0.38 - 0·34 - 0.29 

llM 0 .1 I 0.20 0·37 0.50 0. 15 0.20 0 .25 0·33 0.42 

u(o) ~ - 0 .1 0 1/ (0 ) = - 0. 15 1/ (0) = - 0 .30 
y 0 ·4 0 ·5 0.6 0·7 0·4 0·5 0.6 0 ·7 0.25 0·3 0·4 0·5 

..\.SH / Lls l. 0.38 0.26 0.2 1 0. 18 0·34 0.29 0.23 0· 17 0·5 7 0.4 1 0.36 0 .29 
6..< 2. 19 1.98 1. 92 1.92 2.00 1.94 1.92 1. 89 2.2 1 2.00 1.92 1. 9 1 

(e/L, )M 0.088 0. 10 0. 1 I 0. 13 0.12 0. 14 0. 16 0· 17 0. 18 0. 19 0 .2 1 0.23 
(e/L, )m - 0.68 - 0.5 1 - 0·44 - 0.40 - 0.67 - 0.56 - 0.46 - 0·37 - 1. 1 - 0.90 - 0.60 -' 0 ·39 

UM 0.22 0.2 7 0·34 0 .42 0.30 0.32 0·45 0·54 0.38 0.42 0.50 0 ·59 
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For y > O. I 45 we have noted qualitative agreement between model behaviour during the 
final unstable cycle and surge behaviour. I t seems reasonable that we should insist that if the 
model is to represent a surge, it must undergo instability during the initial cycle . This is 
because we have assumed tha t the slab motion is independent of constraints imposed by the 
remainder of the glacier. This assumption is ce rtainly ques tionable for a multi-cycled situation 
where the quantitative accuracy in rendering initial conditions for ensuing cycles is important ; 
on the other hand , quantitative accuracy should not b e so important during a single instability 
cycle. Thus, the model might adequately describe the thickening of the reservoir during an 
initial slow up-ward m ovemen t of the slab followed by the unstable downward motion . A 
continued quasi-cycl ic behaviour on the other hand , would seem to require a refined analysis 
outside the scope of the model. W e therefore res trict the label ling of instability in the response 
of the model to the instability region of Figure 4, where it occurs during the initial cycle. 

In order to conform to a surge there must be limits imposed on the maximum thickn ess 
UM of the reservoir. * If we a rbitrarily impose an upper limit OfUM = 1.4 the unstable response 
region is furth er res tricted to li e in EBCDE (Fig. 4 ) which we term the surge region. Curve 
EO is obtained from data such as shovvn in Table I. Figure 4 indicates that, for large values 
of y close to unity , the initial conditions u(o), e(o) must tend to a small perturbation from the 
constant-sta te condition. The surge region is bounded at the left point E by y = 0.25. 

Q UANTITATl\ 'E MODEL PREDICTIO NS 

We shall attempt here to evaluat e the a bility of the model to represent actual surges. 
At this time any such study is subj ec t to a defi ciency of data. There is insufficient temperature 
data 011 wrging glaciers with which to test the third fundam ental assumption. Most data is 
at the ten-meter d epth and the model requires the distribution of temperature through the 
thi ckness. Balance data is available for determining ke but the author knows of none for 
surging glaciers. t Moreover, balance data must be coll ected over many years to b e useful. 
Reliable data on bedrock profil es is al so scarce. 

Quantitative information on model behaviour is almost entirely d esc ribed by the values of 
y from Equation ( 19) and t:.t from Equation (22 ) , where t:.t is real time corresponding to /'I"s. 
In order for the model to exhibit instability, it is n ecessary that values of y greater than 0.25 

be exhibited , in accordance with Figure 4. Values of /'I"t corresponding to surge glaciers have 
b een tabulated by Meier and POS t ( 1969) and are typicall y on the order of 20 to 40 years with 
the active phase, corresponding roughly to our /'I"sH , b eing on the order of two to three years . 

Tables II and III evaluate y and t:.t for ranges of the parameters which include all types 
of surging glaciers: first, large glaciers of very small slope such as Bering Glacier, Chugach 
Range where L, ;::: 200 km , ex ~ 1° ; second , large glaciers of moderate slope such as Muldrow 
Glacier, Alaska Range where L, ;::: 63 km, ex ;::: 3.5° ; third, moderately large glaciers of 
inc reased slope su ch as Middle Fork Glacier, Wrangell Range where L, ~ 14 km , ex ~ 5°; 
fourth , a glacier such as Tyeen Glacier, Fairweather Range where L, ~ 7 km , ex ;::: 18°; 
and finall y, ex tremely small glaciers of steep slope such as the outlet glacier on the south side 
of T enas Tikke Glacier, Alsek Range where L, ;::: 2 km, ex ;::: 25°.t Various ranges of 
ko, k, ' = k, lLo and kf' have been chosen which w ill , h opefully, bracke t the correct values. 

* Values of UM increase rapidly with y. For example, the case 1I (0) = - 0 .025, e(o) = 0, y = 3 results in a 
maximum value llM = 43 before sudden instabi lity se ts in. Lacking accurate data it is difficult to es timate the 
value ho for a given glacier. It could be , fo r example, that large va lues ll M could occur, i. e. perhaps surging 
glaciers sat isfy the condition h ~ ho except during an ac ti ve surge phase. We are tac itly assuming the opposite 
and that values o f llM should be below 1.4. 

t T emperature and balance data for Rusty and Trapridge G lac iers is curren tl y insufficient for our purposes. 
M ore data for these glaciers are expec ted. 

t In this model the length L, of outle t glaciers should be increased beyond the actual length in order to correc t 
for the influence of ano ther glacier. 
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TA B LE 11 . VALUES OF Y FO R FIVE DIFFE R ENT G LACIER T Y P ES 

ko values 0[[14, 19, 24, 29] Mgf aI /m correspo nd. respec ti vely, to m ea n tempera tures BM of!. - I, - 3, - 6, - 9 1 
cC. k, ' (kgf a l /m2) values correspond to mod era te' tempera ture g ra dients as exemplifi ed in the tex t a nd a re 
consistent with BM such tha t glac ier tempera ture does not exceed o°C. Where va lues o f y a re not supp lied the 
tempera ture would exceed o°C. Values of y > 0 .25 have corresponding sta tes in surge region (Fig. 4)' 

L, = 2 km, ex = 25 ' L, = 7 km , ex = 18 L, = 14km, ex = 5° 

~ ko 
17·5 24 30.5 37 17·5 24 30.5 37 17·5 24 30.5 37 

14 0.31 0.42 0.78 0 ·44 
19 0.23 0.3 1 0·39 0.58 0·79 0.3 2 0· 45 
24 0. 18 0.24 0.3 1 0.38 0.46 0.63 0 .80 0 .26 0·35 0·45 
29 0. 15 0.20 0 .26 0.31 0.38 0.52 0.66 0.80 0 . 2 1 0.29 0·37 o A 5 

L, = 63 km . 'X 3·5 . L, ~ 200 km , 'X = I 
k ,' 

ko 
11 17·5 2+ 10.5 11 17·5 24 

14 0.87 
19 0.64 1.0 0.58 
24 0.5 1 0.8 1 1.1 0.46 0·74 
29 0.42 0.67 0.92 1. 2 0.38 0.6 1 0.84 

TAB LE Ill. S URGE CYCLE T IM E IN YEARS FOR F IVE DI F FERENT G LAC IE R TY P ES 

Range of ke (kgf/a m 2) corresponds to hig h accumula tion-ra tc g radients. As rep orted by Meier a nd POS I 
( 1969) times for prototyp e g laciers a re: Ten as T ikkc Glacier c. 20 ± I. Tyeen G lac ier c. 20 I. Middle Fork 
Glacier ?, Muldrow G la'c ie r c. 50 ± 10, Beri ng G lac ier c. 30 -'- 15. Slope", of bedrock in accumula tion region is 
given by Pos t (1960 ) for Muldrow Glacier and is es timated for o thc r g laciers. 

T enas Tikke G lacier T yren G lac ier M id d le Fork G lac ier 

L, = 2 km. ex = 25° L, - 7 km. '" ~ 18 L , 14 km. 'X 5 

~ ko 
5 10 20 30 40 ~ ID 20 :10 +" 5 10 20 30 4" 

14 4 1 23 13 10 8 :lO 17 10 7 6 11 6 66 38 28 22 

19 49 28 16 12 9 :lG 11 12 9 7 139 80 46 33 26 
24 56 32 19 13 11 + 1. 2 4 14 10 8 160 92 53 38 30 

29 63 36 2 1 15 12 +6 2(; 15 11 9 179 103 59 43 :14 

Muldrow G lac i\'l' Bl'l' ing Glac ic'l' 

L, = 63 km . ex 'j·5 L, ~ 200 km . ex 

~ ko 
5 IO 20 30 40 5 10 20 30 40 

14 77 44 25 18 15 
19 93 53 3 1 22 18 26 7 154 88 64 5 1 
24 107 6 1 35 25 20 30 7 177 102 73 5B 
29 11 9 6g 39 211 21 145 Ig8 1'4 82 65 

T he manner of definiti on of ke in Equa tion (9) implies that it is independent of 0( and sho uld 
depend only upon climate. Accumula tio n d a ta computed for four glac ie rs in widely different 
locations give: 

ke 9 kgf/m2 a = 88 N/m2 a for Blue G lacier , W ashington, U .S .A. (LaChapell e, 1965 ) ; 
ke = 9 kgf/m2 a = 88 N/m2a for Nigardsbrcen, N orway (Pa terson , 1969, p. 36) ; 
ke = 2 0 kgf/m2 a = 196 ~ /m 2 a fo r South Cascade Gl acier , Was hing ton , U .S. A. IM eic r 

and Tangborn , 1965) ; 
ke = 4 kgf/m2 a = 39 ':'. /m 2 a for Hintereisferner , O tz ta l Alps IH o inkes and Rudo lph , 

1962 ) . 

The five prototype g laciers cit ed eadie r a ppear to be situated in a reas o f high preCl plla tion 
(Post, 1969). This should be indica ti ve of high accumula tion gradients. In terms of yearl y 
water equivalent the data a re: Chugach R ange (Bering), 2- 4 m/a; Alas ka R a nge (Muldrow), 
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1- 4 m/a ; Wrangell Range (Middle Fork), 0.5- 1 m /a; Fairweather Range (Tyeen), 2- 4 m/a; 
and the Alsek Range (T enas Tikke), 1- 2 m /a. These figures would support values in the 
range 10 < k e < 40 kgf/m2 a (= 3g2 N/m2 a). 

The coefficient ko in Equation (4) is determined by the effective or mean temperature 
0(0) at the section x = 0, the equilibrium line of the model. Using data of M elior and Testa 
( lg6g[b] ) * we have obtained: 

ko = [14000, Ig 000,24000, 2g 000] kgfa l /m 
= [0. 14, O. lg, 0.24,0.28 M N a!/m] 

corresponding to [ - I, -3, - 6 , - gtC, respectively. 
The coefficient k,' = k, /Lo in Equation (4) is independent of slope and d ep endent only 

upon climate, i.e . the temperature gradient. We present various examples in Table IV where 
tl z represents the change in e levation of the glacier, OT, (OB ) the effective temperature at 
the top (and bottom). 

TABLE I V . VALUES OF THE COEFFICIENT k, ' = kIlLo IN EQU ATIO N (4) 
FOR VARIOUS ELEVATION CHANGES AND TEMPE RATURES 

.l .:: OT OB k,' 

km °C QC kgfa l /m 2 Na l /m2 
- 5 - , ,6 '57 

0·5 - 2 0 ' 3 ' 27 
0·5 - 5 - I 32 314 
1.5 - 18 - 2 37. 2 365 

- 6 0 28 275 

Table I I presents values of y calculated for a range of ko corresponding to the mid-slope 
temperature range - 1°C > BM > - gOC and for the range 

I I kgfa l /m2 = 108 N a l /m2 < k,' < 37 kgfa "/m> = 363 N aA /m > 

where the values are compatible with temperature constraints, i.e . such that OB is not greater 
than o°C, t a nd with temperature gradients similar to the above examples. The restriction 
that y > 0.25 is satisfied for reasonable temperature gradients, and we conclude that the 
surge region of Figure 4 is attainable. 

Table III presents the period in years be tween surges as predicted by the model. With 
the possible exception of the ca se L = 200 km , QC = I ° the cycle times are very much in the 
range of the observed times. 

CONCLUSIONS 

I t has been commonly assumed that a surge is possible only if most of the base is temperate. 
This is because, in a glacier where sliding does occur, the contribution to velocity due to 
sliding overwhelms the contribution due to shear flow. This d evelopment shows that even if 
sliding is not present the model exhibits the characteristics of a surge , albeit the model goes too 
far and exhibits instabikry . This is an exaggeration which a second-order model would 
hopefully correct. In our opinion a more refined model would exhibit bounded velocities while 
retaining the surge characte ristics of the present model. 

There are several factors which would tend to limit slab speeds to bounded va lues wi thout 
unduly increasing the complexity of the mode l. First, as speeds increase the down-slope 
temperature gradient will be reduced as coldel' ma terial is carried downward. Second, the 

* We have allempted to convert their compression data to pure shear. 
t T emperatures greater than ooe will occur in the model if the slab moves below the origin a l glacier region. 
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effec ti ve tempera tu re 8(x) cannot increase above o°C (see foo tnote on p . 444); the ass umed 
linear variation in k(x) g iven by Equation (4) cannot con ti nue indefini te ly d own-slope and 
must have a lower bound . Third, it is usua l for IX to d ec rease down-slope. (An ana lysis based 
upon a circula r profil e base would be a ppropria te a nd possible.) 

T here a re additiona l factors tending to limi t slab speed s which wo uld add to the complex i
ties of the model. The inclusion of inerti a forces is a n obvious example. T he inclusion of 
constraints exerted upon the slab by the rem ainder of th e g lacier is anotheL 

Equation (2 2) indicates the dependence of cycle period 6.t upon the parameters ko, ke, L , 
and IX . However, these parameters are no t independent. For a given climate a nd geothermal 
conditions ko, ke and L, should be d etermined by IX. It is curious that a ll the values of the 
cycle period tabula ted by M eier and Post ( J 969) fall in the range 20 to 60 years, indicating a 
very weak d ependence upon IX. This seem s unlikely. There must exist g laciers with very long 
cycle p eriods which have not been no ted . T hese could , for example, be co ld glaciers with 
large ko'* 

As no ted previously, the model does n o t apply to str ic tl y tem perate g laciers. T he basic 
idea of the m odel, however , could be a pplied to wha t we sha ll term a cold- hot-cold, c. h .c., 
glacier such as T rapridge G lacier , which is tempera te in a centra l region and cold a t its 
upper and lower eleva tions. In a c.h .c. glacier the upper cold region could act as a reservoir 
region during the accumulation half-cycle. During the ab la tion ha lf-cycle the mass of the 
reservoir region would be dumped onto the temperate m iddle region a nd instabili ty could 
result. In this connection we repeat that sliding is no t excluded by the m od e l. Equa tion (3 ) 
could be replaced or modified by a basal sliding law which is, mathematically, very simila L 
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• Normally, in cold regions kc is small and thus 6 t tends to increase. 
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