ON THE DISTRIBUTION OF THE TIME TO FIRST EMPTINESS OF A STORE WITH STOCHASTIC INPUT

A. M. HASOFER

(received 15 April 1964)

1. Introduction

Kendall [4] has given for the distribution of the time to first emptiness in a store with an input process which is homogeneous and has non-negative independent increments and an output of one unit per unit time the formula

(1)
$$g(t,z) = \frac{z}{t} k(t,t-z).$$

In this formula, z is the initial content of the store, g(t, z) is the density function of the time to first emptiness $\tau(z)$, defined by

$$P\{\tau(z) \leq t\} = G(t, z) = \int_0^t g(u, z) du,$$

and k(t, x) is the density function of the input process $\xi(t)$, defined by

$$P\{\xi(t) \leq x\} = K(t, x) = \int_0^x k(t, y) dy.$$

Lloyd [5] has given the corresponding formula for the case of a discrete input in the form

$$q_n(z) = \frac{z}{z+n} p_n(z+n), \quad n = 0, 1, 2, \cdots$$

where

$$q_n(z) = P\{\tau(z) = z+n\},$$

$$p_n(z) = P\{\xi(t) = n\}.$$

However, as pointed out by Lloyd, Kendall did not establish formula (1) as giving the density function of $\tau(z)$. Kendall only showed that (1) satisfied the integral equation

(2)
$$g(t, z) = \int_0^{t-z} g(t-z, y)k(z, y)dy$$

In fact, it can be easily shown that the integral equation (2) has the general solution

506

[2] On the distribution of the time to first emptiness of a store with stochastic input 507

(3)
$$g(t, z) = \int_{0-}^{t-z} k(t, t-z-x) dP(x)$$

where P(x) is an arbitrary function of bounded variation. The particular solution (1) is obtained by taking $P(x) = U(x) - K_{10}(0, 2)$, where $K(t, x) = P\{\xi(t) \leq x\}, K_{10}(0, x) = \partial K(t, x)/\partial t|_{t=0}$, and

$$U(x) = \begin{cases} 1 & \text{for } x \ge 0, \\ 0 & \text{otherwise.} \end{cases}$$

The last result can be obtained as follows: we must solve the equations

$$\int_{0-}^{t-z} k(t, t-z-x) dP(x) = \frac{z}{t} k(t, t-z).$$

We know that the Laplace transform of k(t, x) can be written in the form

$$\int_0^\infty e^{-sx}k(t,x)dx = e^{-\alpha(s)t}$$

because of the additivity of the process $\xi(t)$.

Writing t-z = u, P(x) = U(x)-Q(x), we find that

$$\int_{0-}^{u} k(t, u-x) dQ(x) = \frac{u}{t} k(t, u).$$

Take Laplace transforms. This yields

$$e^{-\alpha(s)t}\int_0^\infty e^{-sx}dQ(x)=\alpha'(s)e^{-\alpha(s)t},$$

i.e. the Laplace-Stieltjes transform of Q(x) is $\alpha'(s)$. But

$$\alpha'(s) = \int_0^\infty e^{-sx} k_{10}(t, x) dx \mid_{t=0} = \int_0^\infty e^{-sx} dK_{10}(0, x),$$

so that we can take Q(x) to be $K_{10}(0, x)$. Our final answer is therefore

$$P(x) = U(x) - K_{10}(0, x).$$

In this paper we shall prove the following under very mild general restrictions:

(a) If the input process has a density function k(t, x), then $\tau(z)$ has a density function g(t, z), and

$$g(t, z) = \begin{cases} \frac{z}{t} k(t, t-z) & \text{if } t \geq z, \\ 0 & \text{otherwise.} \end{cases}$$

A. M. Hasofer

(b) If $\xi(t)$ is a Compound Poisson process, then the distribution function, G(t, z), of $\tau(z)$, is given by

(4)
$$G(t,z) = \begin{cases} \frac{z}{t} K(t,t-z) - \int_{z}^{t} \frac{z}{u^{2}} [u K_{10}(u,u-z) - K(u,u-z)] du \text{ if } t \ge z \\ 0 & \text{otherwise.} \end{cases}$$

In particular, formula (4) will hold for discrete inputs, and we shall show that it reduces to Lloyd's formula in that case.

2. Definition and measurability of the time of first emptiness

We shall consider a store with an infinite capacity, having an input $\xi(t)$ in the time interval (0, t], and a "planned output function" $\eta(t)$ during the same period. By this we mean that if the store did not become empty at any time during the period (0, t], the realised output would be $\eta(t)$. We shall assume that $\xi(t)$ and $\eta(t)$ are arbitrary non-decreasing functions which are continuous to the right and bounded in any finite interval, and such that $\xi(0) = \eta(0) = 0$.

We shall set $v(t) = \xi(t) - \eta(t)$. Then v(t) will be the "net planned input" to the store. We shall now further assume that v(t) has no downwards discontinuities, i.e. that $v(t) - v(t-) \ge 0$. Let $v^*(t) = -\inf_{0 \le u \le t} v(u)$. Then $v^*(t)$ is a non-decreasing function of t with no discontinuities. Let z be the initial content of the store. Kingman [3] has shown that the content, $\zeta(t)$, of the store at time t can be defined by the following formula

$$\zeta(t) = \nu(t) + \max \left[z; \nu^*(t)\right].$$

Let now $\tau(z)$ be the time elapsing until the store becomes empty for the first time, i.e. the smallest value of t for which $\zeta(t) = 0$. We shall first show that $\tau(z)$ is the smallest value of t for which $\nu^*(t) = z$. In fact if t_0 is this smallest value, we have $\nu^*(t_0) = -\nu(t_0)$ and therefore $\zeta(t) = 0$. Moreover, as $\nu^*(t)$ is non-decreasing, we have, for all $t < t_0$, $\nu^*(t) < z$. This implies $-\nu(t) \leq \nu^*(t) < z$, and consequently $\zeta(t) = \nu(t) + z > 0$.

Suppose now that the net planned input is a stochastic process $v(t, \omega)$. As v is a function of bounded variation in t, $v(t, \omega)$ is separable. We now show that $\tau(z)$ is a random variable, i.e. a measurable function of ω .

The event $\{\omega; \tau(z) \leq t\}$ is given by

$$\{\omega; \tau(z) \leq t\} = \{\omega; \nu^*(t) \geq z\}$$
$$= \{\omega; \inf_{\substack{0 \leq u \leq t \\ 0 \leq u \leq t}} \nu(u) \leq -z\}$$
$$= \bigcup_{\substack{0 \leq u \leq t \\ 0 \leq u \leq t}} \{\omega; \nu(u) \leq -z\}.$$

508

It follows that the event $\{\omega; \tau(z) \leq t\}$ is measurable, and therefore $\tau(z)$ is a (possibly defective) random variable. We now make the further assumption that $\nu(t)$ is a homogeneous stochastic process with independent increments, i.e. we shall assume that $\delta \nu = \nu(t+\delta t) - \nu(t)$ is a random variable which is independent of $\nu(t)$ and whose distribution depends on δt only. In this case it is well known that we can write the Laplace-Stieltjes transform of the distribution function of $\nu(t)$ as

$$E[e^{-s\nu(t)}] = e^{-\phi(s)t}.$$

THEOREM 1. Under the above assumptions, the Laplace-Stieltjes transform $\Gamma(p, z) = E[\exp\{-p\tau(z)\}]$ is given by $\Gamma(p, z) = \exp\{-\theta z\}$, where θ satisfies the equation

$$\phi = -\phi(\theta)$$

PROOF. Because of the assumptions on the nature of the process v(t), we obviously have

(5)
$$\tau(y+z) = \tau(y) + \tau(z)$$

where $\tau(y)$ and $\tau(z)$ are independent. It follows that the Laplace-Stieltjes transform of the distribution of $\tau(z)$, $\Gamma(\phi, z)$, where

$$\Gamma(p, z) = E[e^{-p\tau(z)}],$$

is of the form $\exp\{-\theta z\}$, where θ is some function of p. We also have the relation

(6)
$$\tau[\eta(z)] = z + \tau[\xi(z)]$$

for if the initial content of the store is $\eta(z)$, after a period of time of length z the initial content has been exhausted, and the new content is the input in the period [0, z], namely $\xi(z)$. We now extend the definition of $\tau(z)$ to negative values of the argument by setting $\tau(-z) = -\tau(z)$. Equation (5) then formally generalises to negative values of y and z. Thus we can rewrite (6) as $\tau[\xi(z) - \eta(z)] = -z$ or $\tau[\nu(z)] = -z$.

From this we deduce

$$e^{\nu z} = E[\exp\{-\rho\tau[\nu(z)]\}] = E\{E[\exp\{-\rho\tau[\nu(z)]\}|\nu(z)]\}$$
$$= E[\exp\{-\theta\nu(z)\}]$$
$$= \exp\{-\phi(\theta)z\},$$

so that finally $p = -\phi(\theta)$.

3. The Lagrange expansion of $\Gamma(p, z)$ in the case of an output of one unit per unit time

Let us now consider the special case where the input $\xi(t)$ is a homoge-

[5]

neous process with independent increments and the planned output is given by $\eta(t) = t$.

We shall write

$$E[e^{-s\xi(t)}] = e^{-\alpha(s)t}.$$

We shall assume that $\alpha(s)$ can be expressed in the form

$$\alpha(s) = \int_{0-}^{\infty} (e^{-sx} - 1) dM(x),$$

where M(x) is a non-decreasing function such that $M(\infty) = 0$. We shall further assume that $\lim_{x\to 0} xM(x) = 0$. That $\exp\{-\alpha(s)t\}$ then corresponds to some process $\xi(t)$ with independent increments follows from the general theory of infinitely divisible distributions. See, for instance, Gnedenko and Kolmogorov [2].

Integrating by parts, we find

$$\alpha(s) = s \int_0^\infty e^{-sx} M(x) dx = s\beta(s), \text{ say.}$$

We shall also assume that $\alpha'(0)$ is finite, and consequently, as

$$\alpha'(0) = \lim_{s\to 0} \alpha(s)|s = \lim_{s\to 0} \int_0^\infty e^{-sx} M(x) dx,$$

the last limit will exist.

Finally, we note that in this case, the function which we had previously denoted by $\phi(s)$ is now equal to $\alpha(s)-s$, so that equation (7) becomes

$$(8) \qquad \qquad p = \theta - \alpha(\theta).$$

We now introduce the following

THEOREM 2. There exist two real positive numbers p_0 , σ_0 such that equation (8) has exactly one root θ satisfying $\operatorname{Re}(\theta) > \sigma_0$, for all real values of p satisfying $p > p_0$. Moreover, if f(z) is a function analytic in $\operatorname{Re}(z) > \sigma_0$, $f(\theta)$ is given by

$$f(\theta) = f(p) + \sum_{n=1}^{\infty} \frac{1}{n!} \frac{d^{n-1}}{dp^{n-1}} [f'(p) \{\alpha(p)\}^n].$$

PROOF. Let $s = \sigma + i\omega$. Then $\lim_{\sigma \to \infty} \beta(\sigma + i\omega) = 0$. Moreover, $|\beta(\sigma + i\omega)| \leq \beta(\sigma_0)$ for all $\sigma \geq \sigma_0$ and all ω . It follows that we can choose σ_0 such that $|\beta(s)| \leq \mu < \frac{1}{2}$ for all s such that $\operatorname{Re}(s) > \sigma_0$. We then have, in the same region, $|\alpha(s)| \leq \mu |s|$. We now show that, if p is real and $|s-p| > \mu p/(1-\mu)$, we have $|s-p| > |\alpha(s)|$ for all s such that $\operatorname{Re}(s) > \sigma_0$. In fact, we then have

$$|\alpha(s)| \leq \mu|s| = \mu|s-p+p| \leq \mu|s-p|+\mu p < |s-p|.$$

Finally we note that if p satisfies the inequality $p > (1-\mu)\sigma_0/(1-2\mu)$, all points such that $|s-p| \leq \mu p/(1-\mu)$ will have an abscissa larger than σ_0 , so that every point in $\operatorname{Re}(s) > \sigma_0$ can be surrounded by a contour *C* in the same region containing the circle $|s-p| = \mu p/(1-\mu)$. On this contour, we shall have $|s-p| > |\alpha(s)|$, and by applying Rouché's theorem, we conclude that the equation $s-p = \alpha(s)$ has only one root in $\operatorname{Re}(s) > \sigma_0$. Moreover, any function f(z) which is analytic in a region containing the contour *C* can be expanded by using Lagrange's theorem, yielding the expansion given in the theorem.

COROLLARY.

(9)
$$\Gamma(p, z) = e^{-\theta z} = e^{-pz} - z \sum_{n=1}^{\infty} \frac{1}{n!} \frac{d^{n-1}}{dp^{n-1}} \left[e^{-pz} \{ \alpha(p) \}^n \right].$$

PROOF. The only point requiring checking is whether the root θ in the expression for $\Gamma(\phi, z)$ is the same as the one discussed in the theorem. This, however follows from the formula $\lim_{p\to\infty} \Gamma(\phi, z) = P\{\tau(z) = 0\} = 0$ for z > 0, which implies $\lim_{p\to\infty} \operatorname{Re}(\theta) = +\infty$.

4. The inversion of $\Gamma(p, z)$ when the input has a density function

THEOREM 3. Let the distribution of $\xi(t)$ have a density function k(t, x). Moreover, let the Laplace-Stieltjes transform of $\xi(t)$ be of the form $\exp[-\alpha(s)t]$ where $\alpha(s) = s \int_0^\infty e^{-sx} M(x) dx$ and $\alpha'(0)$ is finite. Then $\tau(z)$ has a density function g(t, x), which is given by

$$g(t, x) = \frac{z}{t} k(t, t-z)$$
 for almost all t,

provided that

$$\int_{y}^{\infty} e^{-pt} \frac{y}{t} k(t, t-y) dt$$

is of bounded variation in y in some neighbourhood of y = z.

PROOF. We have

$$\int_0^\infty e^{-sx}k(t,x)dx = e^{-\alpha(s)t}, \quad \operatorname{Re}(s) \ge 0,$$

where $\operatorname{Re}[\alpha(s)] \geq 0$. We deduce that

(10)
$$\int_0^{\infty} \int_0^{\infty} e^{-pt-sx} k(t, x) dx = \frac{1}{p+\alpha(s)}, \quad \text{Re}(p) > 0.$$

Let us for the moment restrict s and p to real positive values, and change variables in (10) by replacing x by t-z. We find that

A. M. Hasofer

$$\frac{1}{p+\alpha(s)} = \int_0^\infty \int_{-\infty}^t e^{-(p+s)t+sz} k(t, t-z) dz dt.$$

Write now p for p+s. We obtain

$$\frac{1}{p-s+\alpha(s)} = \int_0^\infty e^{-pt} \left\{ \int_{-\infty}^t e^{sz} k(t, t-z) dz \right\} dt.$$

Differentiate both sides with respect to s. We have

(11)
$$\frac{1-\alpha'(s)}{[p-s+\alpha(s)]^2} = \int_0^\infty e^{-pt} \left\{ \int_{-\infty}^t e^{sz} zk(t,t-z) dz \right\} dt,$$

where the double integral still converges absolutely.

Integrate both sides of (11) with respect to p from p to infinity. We obtain

(12)
$$-\frac{1-\alpha'(s)}{p-s+\alpha(s)}=\int_0^\infty e^{-pt}\left\{\int_{-\infty}^t e^{sz}\,\frac{z}{t}\,k(t,t-z)dz\right\}dt.$$

Let us put

512

$$g^{*}(t, z) = \begin{cases} \frac{z}{t} k(t, t-z) & \text{for } z \leq t, \\ 0 & \text{otherwise.} \end{cases}$$

Then we can write (12) as

(13)
$$-\frac{1-\alpha'(s)}{p-s+\alpha(s)}=\int_0^\infty e^{-pt}\int_{-\infty}^{+\infty}e^{sz}g^*(t,z)dzdt.$$

As the double integral converges absolutely, we can use Fubini's theorem to interchange the integrals, thus obtaining

$$-\frac{1-\alpha'(s)}{p-s+\alpha(s)}=\int_{-\infty}^{+\infty}e^{sz}\left\{\int_{0}^{\infty}e^{-pt}g^{*}(t,z)dt\right\}dz.$$

As the integral converges for all positive values of ϕ , and all values of s such that Re (s) > 0, the last equation holds for all s such that Re(s) > 0. Now

$$\lim_{R\to\infty}-\frac{1}{2\pi i}\int_{c-iR}^{c+iR}\frac{[1-\alpha'(s)]e^{-sz}}{p-s+\alpha(s)}\,ds=e^{-\theta z},\qquad z>0,$$

if $\sigma_0 < c < \mu p/(1-\mu)$, where σ_0 and μ are as defined in the theorem of section 3, $p > (1-\mu)\sigma_0/(1-2\mu)$, and θ is the unique root of $p-s+\alpha(s) = 0$ in Re (s) > σ_0 . This follows immediately from the fact that in Re (s) > σ_0 , $|1-\alpha'(s)| \leq 1+\alpha'(0)$ and is therefore bounded, and $|p-s+\alpha(s)| > |s|-p$ $-\mu|s| > \frac{1}{2}|s| - p$, so that the integral along the semi-circle of radius R with

centre at s = c which lies to the right of the line $\operatorname{Re}(s) = c$ tends to zero when $R \to \infty$. It now follows from a theorem of Widder [7], p. 241, on the bilateral Laplace transform, that

$$\int_0^\infty e^{-pt} g^*(t,z) dt = e^{-\theta z}, \qquad z > 0,$$

for all sufficiently large real positive p.

Finally, it follows from the uniqueness theorem for Laplace transform (see Widder [6], p. 63), that

$$g^*(t, z) = g(t, z)$$
 for almost all t.

This completes the proof of the theorem.

5. The inversion of $\Gamma(p, z)$ in the case of a compound Poisson input

The Lagrange expansion technique used in this section is similar to that which is used in the derivation of the Borel-Tanner distribution in queueing theory, which is a special case.

Let the points of increase of $\xi(t)$ follow a Poisson law with parameter λ , and let the distribution function of the jumps be B(x). Then

$$K(t, x) = \sum_{n=0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^n}{n!} B_n(x), \qquad t \ge 0,$$

where $B_n(x)$ is the *n*-th convolution of B(x) with itself. Expanding $e^{-\lambda t}$ in powers of *t* and multiplying out the two series, we find that K(t, x) admits the expansion

(14)
$$K(t, x) = U(x) \left[1 + tK_{10}(0, x) + \frac{t^2}{2!} K_{20}(0, x) + \cdots \right]$$

where $K_{n0}(0, x)$ represents the *n*-th derivative of K(t, x) with respect to the first argument, *t*, for t = 0, and U(x) is the Heaviside unit function, defined previously. The $K_{n0}(0, x)$ are given by

$$K_{n0}(0, x) = (-1)^n \lambda^n \sum_{k=0}^n (-1)^k \binom{n}{k} B_k(x)$$

It follows that

$$|K_{n0}(0,x)| \leq \lambda^n \sum_{k=0}^n \binom{n}{k} = (2\lambda)^n,$$

so that

(15)
$$\left|\sum_{n=0}^{N} \frac{t^n}{n!} K_{n0}(0, x)\right| \leq \sum_{n=0}^{N} \frac{(2\lambda t)^n}{n!} \leq e^{2\lambda t}, \quad t \geq 0.$$

Thus the partial sums of the expansion (14) are uniformly dominated by $e^{2\lambda t}$.

THEOREM 4. If $\xi(t)$ is a Compound Poisson Process, the distribution function, G(t, z), of $\tau(z)$ is given by the formula

$$G(t, z) = \begin{cases} \frac{z}{t} K(t, t-z) - \int_{z}^{t} \frac{z}{u^{2}} [uK_{10}(u, u-z) - K(u, u-z)] du & \text{if } t \ge z, \\ 0 & \text{otherwise.} \end{cases}$$

PROOF. Taking the Laplace-Stieltjes transform of (14) term by term, and equating the coefficients of the powers of t, we find that

$$p \int_0^\infty e^{-px} K_{n0}(0, x) U(x) dx = (-1)^n [\alpha(p)]^n, n = 0, 1, 2, \cdots$$

From this, we deduce, using the usual rules for change of variable in Laplace transforms,

$$e^{-px}[\alpha(p)]^n = (-1)^n p \int_0^\infty e^{-pt} K_{n0}(0, t-z) U(t-z) dt,$$

and, denoting the Laplace-Stieltjes transform of f(t), (which can be written in the two equivalent forms $\int_{0-}^{\infty} e^{-pt} df(t)$, $p \int_{0}^{\infty} e^{-pt} f(t) dt$,) by $\mathscr{L}[f(t)]$, we can write

$$\frac{1}{n!} \frac{d^{n-1}}{dp^{n-1}} \left[e^{-pz} \{ \alpha(p) \}^n \right] = -\frac{p}{n!} \int_0^\infty e^{-pt} t^{n-1} K_{n0}(0, t-z) U(t-z) dt + \frac{n-1}{n!} \int_0^\infty e^{-pt} t^{n-2} K_{n0}(0, t-z) U(t-z) dt,$$
(16)
$$= -\frac{p}{n!} \int_0^\infty e^{-pt} t^{n-1} K_{n0}(0, t-z) U(t-z) dt + \frac{n-1}{n!} p \int_0^\infty e^{-pt} dt \int_0^\infty u^{n-2} K_{n0}(0, u-z) U(u-u) du,$$

$$= \mathscr{L} \left[\frac{t^{n-1}}{n!} K_{n0}(0, t-z) U(t-z) + \frac{n-1}{n!} \int_0^t u^{n-2} K_{n0}(0, u-z) U(u-z) du \right].$$

We now use the inequalities

$$\left|\sum_{n=0}^{N} \frac{t^{n-1}}{n!} K_{n0}(0, t-z)\right| \leq \frac{1}{t} e^{2\lambda t} U(t-z),$$
$$\left|\sum_{n=0}^{N} \frac{n-1}{n!} \int_{0}^{t} u^{n-2} K_{n0}(0, u-z) du\right| \leq \frac{1}{t} e^{2\lambda t} U(t-z),$$

which follow easily from (15). It follows that the sums involved in the inequal-

[10] On the distribution of the time to first emptiness of a store with stochastic input 515

ities are uniformly dominated by $(1/t)e^{2\lambda t}U(t-z)$, and this function in turn has a convergent Laplace-Stieltjes transform for all $p > 2\lambda$, z > 0.

Using now Lebesgue's dominated convergence theorem, (see Loève [6], p. 125) we can sum equation (16) from n = 1 to $n = +\infty$, and we obtain

$$\begin{aligned} -z \sum_{n=1}^{\infty} \frac{1}{n!} \frac{d^{n-1}}{dp^{n-1}} \left[e^{-pz} \{ \alpha(p) \}^n \right] &= \mathscr{L} \left[\frac{z}{t} \left\{ K(t, t-z) - 1 \right\} U(t-z) \right. \\ &- \int_0^t \frac{z}{u} K_{10}(u, u-z) U(u-z) du \\ &+ \int_0^t \frac{z}{u^2} \left\{ K(u, u-z) - 1 \right\} U(u-z) du \right]. \end{aligned}$$

Replacing in (9), and using

$$e^{-pz} = \oint \int_0^\infty e^{-pt} U(t-z) dt,$$
$$\int_0^t \frac{z}{u^2} U(u-z) du = \left(1-\frac{z}{t}\right) U(t-z),$$

we finally find

$$\begin{split} \Gamma(p,z) &= \mathscr{L}\left[\frac{z}{t}\,K(t,t-z)U(t-z) - \int_0^t \frac{z}{u}\,K_{10}(u,u-z)U(u-z)du \right. \\ &+ \int_0^t \frac{z}{u^2}\,K(u,u-z)U(u-z)du \right]. \end{split}$$

But as the Lagrange expansion (9) holds for all ϕ such that Re (ϕ) > 0, it follows from the uniqueness property of the Laplace-Stieltjes transform (see Widder [7], p. 63) that if G(t, z) is the distribution function of $\tau(z)$, we have

$$G(t, z) = \frac{z}{t} K(t, t-z)U(t-z) - \int_0^t \frac{z}{u} K_{10}(u, u-z)U(u-z)du + \int_0^t \frac{z}{u^2} K(u, u-z)U(u-z)du.$$

This can be rewritten more simply

(17)
$$G(t, z) \begin{cases} \frac{z}{t} K(t, t-z) - \int_{z}^{t} \frac{z}{u^{2}} [uK_{10}(u, u-z) - K(u, u-z)] du & \text{if } t \geq z \\ 0 & \text{otherwise.} \end{cases}$$

COROLLARY. If, for fixed z, K(t, x) has continuous derivatives in both t and x at the point (t, t-z), and if we write

A. M. Hasofer

$$\frac{\partial}{\partial x}K(t,x)=k(t,x),$$

then at the point (t, z), G(t, z) has a continuous partial derivative in t, given by

$$\frac{\partial}{\partial t}G(t,z)=g(t,z)=\frac{z}{t}k(t,t-z).$$

PROOF. Differentiating both sides of (17), we obtain

$$g(t, z) = \frac{\partial}{\partial t} G(t, z) = -\frac{z}{t^2} K(t, t-z) + \frac{z}{t} K_{10}(t, t-z) + \frac{z}{t} k(t, t-z)$$
$$-\frac{z}{t} K_{10}(t, t-z) + \frac{z}{t^2} K(t, t-z),$$
$$= \frac{z}{t} k(t, t-z).$$

This is Kendall's formula.

6. The case of a discrete input

Let us now assume that the input $\xi(t)$ takes only integral values. It is then clear that emptiness can occur only at times z+n, where $n = 0, 1, 2, \cdots$. We shall write

$$P\{\xi(t) = n\} = p_n(t), P\{\tau(z) = z+n\} = q_n(z),$$

and we shall assume that the $p_n(t)$ have continuous derivatives. We then have

$$K(t, x) = \sum_{k=0}^{[x]} p_k(t),$$

$$G(t, z) = \sum_{k=0}^{[t-s]} q_k(z).$$

Equation (17) now takes the form

$$\sum_{k=0}^{n} q_{k}(z) = \frac{z}{z+n} \sum_{k=0}^{n} p_{k}(z+n) - \int_{z}^{z+n} \frac{z}{u^{2}} \left[u \sum_{k=0}^{[u-z]} p'_{k}(u) - \sum_{k=0}^{[u-z]} p_{k}(u) \right] du.$$

Write n-1 for n and subtract. We find

$$q_n(z) = \frac{z}{z+n} p_n(z+n) + \sum_{k=0}^{n-1} z \left[\frac{p_k(z+n)}{z+n} - \frac{p_k(z+n-1)}{z+n-1} \right] \\ - \int_{z+n-1}^{z+n} \frac{z}{u^2} \left[u \sum_{k=0}^{(u-z)} p'_k(u) - \sum_{k=0}^{(u-z)} p_k(u) \right] du.$$

 $\mathbf{516}$

It is easily checked that the last two terms of the right-hand side of this equation cancel out, and we are left with

$$q_n(z) = \frac{z}{z+n} \, p_n(z+n),$$

which is precisely Lloyd's formula.

References

- [1] Benës, V. E. (1957), On queues with Poisson arrivals, Ann. Math. Stat. 28, 670-677.
- [2] Gnedenko, B. V. and Kolmogorov, A. N. (1954), Limit Distributions for Sums of Independent Random Variables, Addison-Wesley, Cambridge, Mass.
- [3] Kingman, J. F. C. (1963), On continuous time models in the theory of dams, this Journal 3, 480-87.
- [4] Kendall, D. G. (1957), Some problems in the theory of dams, J. R. Statist. Soc. B, 19, 207-212.
- [5] Lloyd, E. H. (1963), The epochs of emptiness of a semi-infinite discrete reservoir, J. R. Statist. Soc. B, 25, 131-136.
- [6] Loève, M. (1960), Probability Theory, (2nd ed.) Van Nostrand, Princeton.
- [7] Widder, D. V. (1941), The Laplace Transform, Princeton University Press.

University of Tasmania, Australia.