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1. Introduction

Kendall [4] has given for the distribution of the time to first emptiness
in a store with an input process which is homogeneous and has non-negative
independent increments and an output of one unit per unit time the formula

(1) g{t,z)=jk{t,t-x).

In this formula, z is the initial content of the store, g(t, z) is the density
function of the time to first emptiness r(z), defined by

P{r(z) ^ t} = G(t, z) = fo g(u, z)du,

and k(t, z) is the density function of the input process £(<), defined by

Lloyd [5] has given the corresponding formula for the case of a discrete
input in the form

, n = 0,1,2,

where

qn{z) = P{r{z) = z+n},
pn{z) = P{Z{t) = «}.

However, as pointed out by Lloyd, Kendall did not establish formula (1)
as giving the density function of T(Z). Kendall only showed that (1) satisfied
the integral equation

(2) g{t,z) = £"'g(t~z, y)k[z, y)dy.

In fact, it can be easily shown that the integral equation (2) has the general
solution
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(3) g[t.z)

where P(x) is an arbitrary function of bounded variation. The particular
solution (1) is obtained by taking P(x) = U(x)—K10(0, 2), where K(t, x) —

.»}, Kw(0,x) = BK{t, *)/a<|(_0, and

for x 2? 0,
otherwise.

The last result can be obtained as follows: we must solve the equations

k(t, t-z-x)dP{x) = — k(t, t-z).

We know that the Laplace transform of k(t, x) can be written in the
form

because of the additivity of the process £(t).
Writing t—z = u, P(x) = U{x)—Q(x), we find that

f"o_k(t,u-x)dQ(x) = j k(t.u).

Take Laplace transforms. Tliis yields

i.e. the Laplace-Stieltjes transform of Q(x) is a'(s).
But

«—*„(<, x)dx |(=0 =

so that we can take Q(x) to be K10(0, x). Our final answer is therefore

P(x) = U(x)~K10(0,x).

In this paper we shall prove the following under very mild general restric-
tions:

(a) If the input process has a density function k(t, x), then T(Z) has a
density function g(t, z), and

*(*,,)= [ T * ( U - 2 ) if ̂ z'
\ 0 otherwise.
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(b) If !i(t) is a Compound Poisson process, then the distribution
function, G(t,z), of r(z), is given by

\ K{t,t-z)- \ -[uK10(u,u-z)-K(u, u-z)]du if t^z
(4) G{t,z)= It J z « 2

\ 0 otherwise.

In particular, formula (4) will hold for discrete inputs, and we shall show that
it reduces to Lloyd's formula in that case.

2. Definition and measurability of the time of first emptiness

We shall consider a store with an infinite capacity, having an input £(t)
in the time interval (0, (], and a "planned output function" r](t) during
the same period. By this we mean that if the store did not become empty
at any time during the period (0, t], the realised output would be r)(t).
We shall assume that f (t) and rj(t) are arbitrary non-decreasing functions
which are continuous to the right and bounded in any finite interval, and
such that |(0) = tj(O) = 0.

We shall set v(t) = £(*) —t](t). Then v(t) will be the "net planned input"
to the store. We shall now further assume that v(t) has no downwards
discontinuities, i.e. that v(t) — v(t—) ^ 0. Let v*(t) = —inf0SuSt v(u). Then
v* (t) is a non-decreasing function of t with no discontinuities. Let z be the
initial content of the store. Kingman [3] has shown that the content, C(0>
of the store at time t can be defined by the following formula

Let now r(z) be the time elapsing until the store becomes empty for the
first time, i.e. the smallest value of t for which £(/) = 0. We shall first show
that T(Z) is the smallest value of t for which v*(t) = z. In fact if t0 is
this smallest value, we have v*(t0) = —v(t0) and therefore f (t) = 0. More-
over, as v*(t) is non-decreasing, we have, for all t < /„, v*(t) < z. This
implies — v(t) sS v*(t) < z, and consequently £(t) = v{t)+z > 0.

Suppose now that the net planned input is a stochastic process
v[t, a>). As v is a function of bounded variation in t, v(t, co) is separable. We
now show that T(Z) is a random variable, i.e. a measurable function of co.

The event {(o;r(z) :g t} is given by

{ca;r{z) ^t}= {a>;v*(t) ^ z}

= {co; inf V(M) <£ — z}
OS»S(

= U {w; v(u) < - z } .
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It follows that the event {a>; r(z) :£ t) is measurable, and therefore x(z) is a
(possibly defective) random variable. We now make the further assumption
that v(t) is a homogeneous stochastic process with independent increments,
i.e. we shall assume that dv = v(t-\-dt)— v{t) is a random variable which is
independent of v[t) and whose distribution depends on dt only. In this case
it is well known that we can write the Laplace-Stieltjes transform of the
distribution function of v(t) as

E[e-"{t)] = e~<t>wt.

THEOREM 1. Under the above assumptions, the Laplace-Stieltjes transform
F(p, z) = £[exp{—pr(z)}] is given by r<j>, z) = exp{—dz), where 6 satisfies
the equation

P = -
PROOF. Because of the assumptions on the nature of the process v(t),

we obviously have

(5) x(y+z) = r(jf)+r{z)

where r(y) and x(z) are independent. It follows that the Laplace-Stieltjes
transform of the distribution of r(z), F{p, z), where

r(p, z) = E[e~w>],

is of the form exp{— dz}, where 6 is some function of p. We also have the
relation

(6) Tfo(*)] = * + T[f (*)]

for if the initial content of the store is r](z), after a period of time of length z
the initial content has been exhausted, and the new content is the input
in the period [0, z], namely £(z). We now extend the definition of r(z) to
negative values of the argument by setting t(—z) = —T(Z). Equation (5)
then formally generalises to negative values of y and z. Thus we can rewrite
(6) as T[£(Z)-TI{Z)] = -z or x[v(z)] = -z.

From this we deduce

e»» = £[exp{-£T[v(*)]}] = E{E[exp{-px[v(z)]}\v(z)]}
= E[exp{-dT(z)}]

so that finally p= —<j>{0).

3. The Lagrange expansion of T(p, z) in the case of an output of one
unit per unit time

Let us now consider the special case where the input £(t) is a homoge-
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neous process with independent increments and the planned output is
given by ri(t) = t.

We shall write

We shall assume that «(s) can be expressed in the form

a.(s) = J~ (e-*-l)dM{x),

where M(x) is a non-decreasing function such that M(oo) = 0. We shall
further assume that ]imx^oxM(x) = 0. That exp{—a.(s)t} then corresponds to
some process |(<) with independent increments follows from the general
theory of infinitely divisible distributions. See, for instance, Gnedenko and
Kolmogorov [2].

Integrating by parts, we find

K(s) = s J°° e-"M(x)dx = s^{s), say.

We shall also assume that a'(0) is finite, and consequently, as

a'(0) = lim oc(s)|s = lim f e~'xM(x)dx,
<->o <->o J o

the last limit will exist.
Finally, we note that in this case, the function which we had previously

denoted by <f>(s) is now equal to a(s)—s, so that equation (7) becomes

(8) p = 0-«(0).

We now introduce the following

THEOREM 2. There exist two real positive numbers p0, a0 such that
equation (8) has exactly one root 0 satisfying Re(0) > a0, for all real values
of p satisfying p > p0. Moreover, if f(z) is a function analytic in Re (z) > a0,
f(6) is given by

PROOF. Let s = a+ica. Then Wm^^^a+im) = 0. Moreover, \p(o+ia>)\
sS /3(<r0) for all a ^ a0 and all cu. It follows that we can choose a0 such that
|/9(s)| g; /< < ^ for all s such that Re(s) > CT0. We then have, in the same
region, |a(s)| ^ n\s\. We now show that, if p is real and |s—p\ > /ipj(l—/i),
we have |s— p\ > |a(s)| for alls such that Re (s) > a0. In fact, we then have

< p\s-p\+/*p < \s-p\.
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Finally we note that if p satisfies the inequality p > (l—/ji)o0l(l — 2(i),
all points such that \s—p\ ^ npj{\—jx) will have an abscissa larger than a0,
so that every point in Re(s) > <r0 can be surrounded by a contour C in the
same region containing the circle \s—p\ — nPJ(\—n). On this contour, we
shall have \s—p\ > |oc(s)|, and by applying Rouche"s theorem, we conclude
that the equation s—p = <x(s) has only one root in Re(s) > a0. Moreover,
any function f(z) which is analytic in a region containing the contour C
can be expanded by using Lagrange's theorem, yielding the expansion given
in the theorem.

COROLLARY.

(9) F{p, z) = e-9* = e-"—z £ -7 -JTT~

n=inl dp
PROOF. The only point requiring checking is whether the root 6 in the

expression for F(p, z) is the same as the one discussed in the theorem. This,
however follows from the formula Um9_ ̂ Flj), z) = P{r(z) = 0} = 0 for
z > 0, which implies lim,,^^ Re(0) = +00.

4. The inversion of F(p, z) when the input has a density function

THEOREM 3. Let the distribution of g(t) have a density function k(t, x).
Moreover, let the Laplace-Stieltjes transform of ((t) be of the form exp[—x(s)t]
where a(s) = s ffie~'xM(x)dx and <x'(0) is finite. Then T(Z) has a density
function g(t, x), which is given by

g(t, x) = — k(t, t—z) for almost all t,
t

provided that

e~J,» *
is of bounded variation in y in some neighbourhood of y = z.

PROOF. We have

J " e-"k(t, x)dx = *-"<•>*, Re(s) ^ 0,

where Re[a(s)] Sr 0. We deduce that

(10) f f e-»«-«" k(t, x)dx = — , Re(£) > 0.
Jo Jo £+ a ( s )

Let us for the moment restrict s and p to real positive values, and change
variables in (10) by replacing x by t—z. We find that
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J oo L x
Write now p for p-\~s. We obtain

= e-»* e"k{t, t-z)dz\ dt.
P-S + OI(S) Jo U-oc I

Differentiate both sides with respect to s. We have

(11) l -a ' (s) = r°° ! r* t_z)4g\ dt,

where the double integral still converges absolutely.
Integrate both sides of (11) with respect to p from p to infinity. We

obtain

^>-s+a(s) Jo IJ.^ < )

Let us put

v (l-k(t,t-z) for z<.t,

[ 0 otherwise.
Then we can write (12) as

(13) _ - J L ^ = e-vt\ e"g*{t,z)dzdt.
p-s+«.{s) Jo J_M

As the double integral converges absolutely, we can use Fubini's theorem
to interchange the integrals, thus obtaining

!-«'(*)
. + « . , .00 >

= e" e-ptg*{t,z)dt dz.
J_oo Un '

As the integral converges for all positive values of p, and all values of s
such that Re (s) > 0, the last equation holds for all s such that Re(s) > 0.

Now

1 r'+'R r i -a ' (s )>-«
hm . v rfs = e-9z, 2 > 0,

B-.00 S T O J ^ . J J />—s+oc(s)

if <r0 < c < fipj(l~/Jt)l where a0 and // are as defined in the theorem of
section 3, p > (1—^)^/(1—2^), and 6 is the unique root of p—s+x[s) — 0
in Re (s) > a0. This follows immediately from the fact that in Re (s) > cr0,
|1—<x'(s)| sS l+a'(0) and is therefore bounded, and \p—s+a(s)| > |s|—p
—ft\s\ > ||-s|— />, so that the integral along the semi-circle of radius R with
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centre at s = c which lies to the right of the line Re(s) = c tends to zero
when R -*• oo. It now follows from a theorem of Widder [7], p. 241, on the
bilateral Laplace transform, that

/•CO

e-** g*(t, z)dt = e~9\ z > 0,
Jo

for all sufficiently large real positive p.
Finally, it follows from the uniqueness theorem for Laplace transform

(see Widder [6], p. 63), that

g*(t,z) =g(t,z) for almost all t.

This completes the proof of the theorem.

5. The inversion of F(p, x) in the case of a compound Poisson input

The Lagrange expansion technique used in this section is similar to
that which is used in the derivation of the Borel-Tanner distribution in
queueing theory, which is a special case.

Let the points of increase of f (t) follow a Poisson law with parameter A,
and let the distribution function of the jumps be B(x). Then

00 (It)"

K(t, x) = 2 e~M ~ Bn(x), t ^ 0,
n_o n\

where Bn(x) is the «-th convolution of B(x) with itself. Expanding e-Xi

in powers of t and multiplying out the two series, we find that K{t, x) admits
the expansion

(14) K(t, x) = U(x) [l+tK10(0, x) + -^ X20(0, * ) + • • • ]

where i^n0(0, a;) represents the n-th derivative of K(t, x) with respect to the
first argument, t, for t = 0, and U(x) is the Heaviside unit function, defined
previously. The Kn0(0, x) are given by

K^O.x) = ( - 1 ) " * " ^ (-1)* ( t ) Bk(x).

It follows that

l-K^O.x)
n—0 ** *

so that

(15) I - Kn0(0, x) g 2 ^ = T - ^ ^2AI. * ̂  0.

Thus the partial sums of the expansion (14) are uniformly dominated by
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THEOREM 4. If g(t) is a Compound Poisson Process, the distribution
function, G(t,z), of r(z) is given by the formula

l, Z) —
\LK{t,t-z)- f -. [uKw(u, u-z)-K{u,u-z)]du
! J Jz U
{ 0

if t ^ z,

otherwise.

PROOF. Taking the Laplace-Stieltjes transform of (14) term by term,
and equating the coefficients of the powers of t, we find that

p Jo°° e~>*Kn0(0, x)U{x)dz = (-l)B[a(£)]n, n = 0, 1, 2, • • -.

From this, we deduce, using the usual rules for change of variable in Laplace
transforms,

Jo
O, t-z)U{t-z)dt,

and, denoting the Laplace-Stieltjes transform of f(t), (which can be written
in the two equivalent forms &e-*tdf{t), pi^er^f^dt,) by JS?[/(OL we can
write

(16)

-\ f e-»Hn-2KnJ0, t—z)U(t-z)dt,
N! JO

•A r°°
= - — e-^r^K^O, t-z)U(t-z)dt

»Uo
m—i r°° r00

-I /> e-**dt j wn-2iC^,(0, «—z) t / («—j)^
•»' Jo Jo

We now use the inequalities

N tn-l

—KnO(0,t-z)

* »*—
o M! Jo

which follow easily from (15). It follows that the sums involved in the inequal-
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ities are uniformly dominated by {ljt)eiXtU(t—z), and this function in
turn has a convergent Laplace-Stieltjes transform for all p > 2A, z > 0.

Using now Lebesgue's dominated convergence theorem, (see Loeve [6],
p. 125) we can sum equation (16) from n — 1 to n = +oo, and we obtain

-* j | ^ | S i [«-p*M£)}n] = ^\_~t {K(t, t-z)-l}U(t-z)

f« z
— —Kw(u,u—z)U{u—z)du

Jo u

+ [ -, {K{u, u-z)-l}U{u-z)du\.
Jo u" J

Replacing in (9), and using

e~" = p J~ e-"U{t-z)dt,

j * ^ U(u-z)du = ( l - i-) U(t-z),

we finally find

r{p,z) = JS? r-X(<J-2)C7(<-2)- f - Kw{u,u-z)U(u-z)du
\_t Jo u

+ f -^K(«,M-2)f7(M-a)rf«l.
Jo u J

But as the Lagrange expansion (9) holds for all p such that Re (£) > 0,
it follows from the uniqueness property of the Laplace-Stieltjes transform
(see Widder [7], p. 63) that if G(t, z) is the distribution function of x{z),
we have

G(t, z) = -K(t, t-z)U{t-z)- f -Kl0(u, u-z)U{u-z)du
t Jo u

Cl z
+ —K(u,u—z)U{u—z)du.

Jo u%

This can be rewritten more simply

(u, U—2)—K(u, u—z)]du if t 2; z

\ 0 otherwise.

COROLLARY. / / , for fixed z, K(t, x) has continuous derivatives in both t and x
at the point (t, t—z), and if we write
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then at the point (t, z), G(t, z) has a continuous partial derivative in t, given by

jtG(t,z)=g(t,z) = jk(t,t-z).

PROOF. Differentiating both sides of (17), we obtain

g(t,z) =jtG{t,z) = -±K(t,t-z)+ lKw(t,t-z)+jk(t,t-z)

This is Kendall's formula.

6. The case of a discrete input

Let us now assume that the input £(t) takes only integral values. It is
then clear that emptiness can occur only at times z-\-n, where n = 0,1 2, • • •.
We shall write

P{£(t) = n] = pn(t),
P{r(z) = z+n} = qn(z),

and we shall assume that the pn (t) have continuous derivatives. We then have

Equation (17) now takes the form

[«-*] [«-«]

I !() 2
rz+n z r [«-*] [«-«] i

Write »—1 for n and subtract. We find

_o L
1

1 J

1 U I P'M- I #*(«) **•
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It is easily checked that the last two terms of the right-hand side of this
equation cancel out, and we are left with

which is precisely Lloyd's formula.
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