SIGN-VARIATIONS OF SOLUTIONS OF NONLINEAR DISCRETE BOUNDARY VALUE PROBLEMS

Ruyun Ma

In this paper, we study two-point boundary value problems for the nonlinear second order difference equation

$$
\begin{aligned}
\Delta^{2} u(i-1)+g(u(i)) & =f(i), \quad i \in\{1, \ldots, T+1\} \\
u(0) & =u(T+2)=0
\end{aligned}
$$

We establish the relationship between the number of sign-variation of f on $\{0, \ldots, T+2\}$ and the one of the solution u of the above problem.

1. Introduction

In [2], Bellman considered the following two-point boundary value problem for linear second order ordinary differential equation in the form

$$
\begin{align*}
u^{\prime \prime}(t)+q(t) u(t) & =f(t), \quad 0 \leqslant t \leqslant 1, \\
u(0) & =u(1)=0 . \tag{1.1}
\end{align*}
$$

Assuming $q(t) \leqslant \pi^{2}$ and $q(t) \not \equiv \pi^{2}$, he proved, by the method of calculus of variation, that if $f(\cdot)$ has n simple zeros in (0,1), the solution $u(\cdot)$ of (1.1) has at most n simple zeros in (0,1). A version of this result was proved by Lazer and McKenna [4] and some important applications of it were also given in [4]. Bellman's idea was generalised by Boucherif and Slimini [3] to boundary value problems of nonlinear second order ordinary differential equations of the form

$$
\begin{align*}
u^{\prime \prime}(t)+g(u(t)) & =f(t), \quad 0 \leqslant t \leqslant 1 \\
u(0) & =u(1)=0 . \tag{1.2}
\end{align*}
$$

[^0]A key condition they used is the following:

$$
0<\alpha \leqslant g^{\prime}(s) \leqslant \beta<\pi^{2}, \quad \text { for some constants } \alpha, \beta \in(0, \infty)
$$

Motivated by $[2,3,4]$, we study boundary value problems for the second order difference equation of the form

$$
\begin{align*}
\Delta^{2} u(i-1)+c(i) u(i) & =f(i), \quad i \in\{1, \ldots, T+1\} \\
u(0) & =u(T+2)=0 \tag{1.3}
\end{align*}
$$

and

$$
\begin{align*}
\Delta^{2} u(i-1)+g(u(i)) & =f(i), \quad i \in\{1, \ldots, T+1\} \\
u(0) & =u(T+2)=0 \tag{1.4}
\end{align*}
$$

We conclude with some results similar to those of $[2,3,4]$. The methods we apply are rather similar to those in $[\mathbf{3}, 4]$. However a great deal of additional effort has to be made due to the existence of nodes in the discrete cases.

2. The Preliminaries

Let T be an integer with $T \geqslant 3$. Let $\mathbb{T}:=\{0,1, \ldots, T+2\}$. We denote the closure of an interval $I \subset \mathbb{R}$ by \bar{I}.

Lemma 2.1. ([5, Theorem 7.6]) The Sturm-Liouville problem

$$
\begin{aligned}
\Delta^{2} u(i-1)+\lambda u(i) & =0, \quad i \in\{1, \ldots, T+1\} \\
u(0) & =u(T+2)=0
\end{aligned}
$$

has a sequence of eigenvalues: $\lambda_{1}<\lambda_{2}<\cdots<\lambda_{T+1}$.
Let

$$
D^{*}=\{u \mid u=(u(0), u(1), \ldots, u(T+2)), u(j) \in \mathbb{R} \text { for } i \in\{0, \ldots, T+2\}\}
$$

and

$$
\begin{equation*}
D=\left\{u \in D^{*} \mid u(0)=u(T+2)=0\right\} \tag{2.1}
\end{equation*}
$$

Assume that
(H1) $c:\{1, \ldots, T+1\} \rightarrow \mathbb{R}$ is a function satisfying

$$
c(j)<\lambda_{1}, \quad \forall j \in\{1, \ldots, T+1\}
$$

Lemma 2.2. Let $u \in D$. Then

$$
\sum_{k=0}^{T+1}|\Delta u(k)|^{2} \geqslant \lambda_{1} \sum_{k=0}^{T+1}|u(k)|^{2}
$$

Proof: From Kelley and Perterson [5, Theorem 7.7], we have that for $u \in D$,

$$
\lambda_{1} \leqslant \frac{\sum_{t=1}^{T+2}[\Delta u(t-1)]^{2}}{\sum_{t=1}^{T+1} u^{2}(t)} \leqslant \frac{\sum_{\tau=0}^{T+1}[\Delta u(\tau)]^{2}}{\sum_{t=1}^{T+1} u^{2}(t)}=\frac{\sum_{k=0}^{T+1}[\Delta u(k)]^{2}}{\sum_{k=0}^{T+1} u^{2}(k)}
$$

REMARK 2.1. It is worth remarking that by taking $n=T+2, p=q=1, u_{k}=v_{k}=u(k)$, in Pachpatte [6, Theorem 2] we obtain

$$
\sum_{k=0}^{T+1}|\Delta u(k)|^{2} \geqslant\left(\frac{2}{T+2}\right)^{2} \sum_{k=0}^{T+1}|u(k)|^{2}, \quad u \in D
$$

However the constant $(2 /(T+2))^{2}$ may be smaller than λ_{1}. This can be seen from the linear eigenvalue problem

$$
\begin{aligned}
\Delta^{2} u(i-1)+\lambda u(i) & =0, \quad i \in\{1,2,3\} \\
u(0) & =u(4)=0
\end{aligned}
$$

From [5, Example 7.1], $\lambda_{1}=2-\sqrt{2}$. Obviously $\lambda_{1}>\left(\frac{2}{T+2}\right)^{2}$.
Lemma 2.3. Let $u, w \in D$. Then

$$
\sum_{k=0}^{T+1} w(k) \Delta^{2} u(k-1)=-\sum_{k=0}^{T+1} \Delta u(k) \Delta w(k)
$$

Proof: Since $w(0)=w(T+2)=0$, we have

$$
\begin{aligned}
& \sum_{k=0}^{T+1} w(k) \Delta^{2} u(k-1) \\
& \\
& =\sum_{k=1}^{T+1} w(k) \Delta^{2} u(k-1) \quad \quad(\text { by } w(0)=0) \\
& \left.=\sum_{j=0}^{T} w(j+1) \Delta^{2} u(j) \quad \quad \text { (by setting } j=k-1\right) \\
& =\sum_{j=0}^{T} w(j+1)(\Delta u(j+1)-\Delta u(j)) \\
& =\sum_{j=0}^{T} \Delta u(j+1) w(j+1)-\sum_{j=0}^{T} \Delta u(j) w(j+1)
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\sum_{l=1}^{T+1} \Delta u(l) w(l)-\sum_{j=0}^{T} \Delta u(j) w(j+1) \quad \quad \quad \text { by setting } l=j+1\right) \\
& =\Delta u(T+1) w(T+1)+\sum_{l=1}^{T} \Delta u(l) w(l)-\left[\Delta u(0) w(1)+\sum_{j=1}^{T} \Delta u(j) w(j+1)\right] \\
& =\Delta u(T+1)[w(T+1)-w(T+2)]-\sum_{l=1}^{T} \Delta u(l) \Delta w(l)-\Delta u(0)[w(1)-w(0)] \\
& =-\sum_{l=0}^{T+1} \Delta u(l) \Delta w(l)
\end{aligned}
$$

Lemma 2.4. Let $f:\{1, \ldots, T+1\} \rightarrow \mathbb{R}$ be a function. Let $(\mathrm{H} 1)$ be satisfied, and let u satisfy

$$
\begin{align*}
\Delta^{2} u(i-1)+c(i) u(i) & =f(i), \quad i \in\{1, \ldots, T+1\} \\
u(0) & =u(T+2)=0 \tag{2.2}
\end{align*}
$$

Assume that there exist $i_{0} \in\{0, \ldots, T\}$ and an integer $p>1$ with $i_{0}+p \leqslant T+2$, such that
(i) either

$$
u\left(i_{0}\right) \leqslant 0, u\left(i_{0}+p\right) \leqslant 0, u\left(i_{0}+j\right)>0, \quad j \in\{1, \ldots, p-1\}
$$

or

$$
u\left(i_{0}\right) \geqslant 0, u\left(i_{0}+p\right) \geqslant 0, u\left(i_{0}+j\right)<0, \quad j \in\{1, \ldots, p-1\}
$$

(ii) either $f\left(i_{0}+j\right)>0$ for all $j \in\{1, \ldots, p-1\}$ or $f\left(i_{0}+j\right)<0$ for all $j \in\{1, \ldots, p-1\}$.
Then $u\left(i_{0}+j\right) f\left(i_{0}+j\right)<0$ for all $j \in\{1, \ldots, p-1\}$.
Proof: Notice that the set D is a Hilbert space under the inner product

$$
\langle u, v\rangle:=\sum_{k=0}^{T+2} u(k) v(k)
$$

Clearly

$$
\langle u, v\rangle=\sum_{k=1}^{T+1} u(k) v(k)
$$

since $u(0)=u(T+2)=0$. For $v \in D$, let

$$
J(v):=\frac{1}{2} \sum_{k=0}^{T+1}(\Delta v(k))^{2}-\frac{1}{2} \sum_{k=1}^{T+1} c(k) v^{2}(k)+\sum_{k=1}^{T+1} f(k) v(k) .
$$

If $v(k)=u(k)+w(k)$, then by (2.2), Lemma 2.2, Lemma 2.3, the fact $u, v, w \in D$, it follows that

$$
\begin{align*}
J(v)- & J(u) \\
= & \frac{1}{2} \sum_{k=0}^{T+1}(\Delta u(k)+\Delta w(k))^{2}-\frac{1}{2} \sum_{k=1}^{T+1} c(k)(u(k)+w(k))^{2} \\
& +\sum_{k=1}^{T+1} f(k)(u(k)+w(k))-\frac{1}{2} \sum_{k=0}^{T+1}(\Delta u(k))^{2}+\frac{1}{2} \sum_{k=1}^{T+1} c(k) u^{2}(k)-\sum_{k=1}^{T+1} f(k) u(k) \\
= & \sum_{k=0}^{T+1}(\Delta u(k) \Delta w(k))+\frac{1}{2} \sum_{k=0}^{T+1}(\Delta w(k))^{2} \\
& -\sum_{k=1}^{T+1} c(k) u(k) w(k)-\frac{1}{2} \sum_{k=1}^{T+1} c(k)(w(k))^{2}+\sum_{k=1}^{T+1} f(k) w(k) \\
= & \sum_{k=0}^{T+1}\left[-\Delta^{2} u(k-1)-c(k) u(k)+f(k)\right] w(k) \tag{2.3}\\
& +\frac{1}{2} \sum_{k=0}^{T+1}(\Delta w(k))^{2}-\frac{1}{2} \sum_{k=1}^{T+1} c(k)(w(k))^{2} \\
= & \frac{1}{2} \sum_{k=0}^{T+1}(\Delta w(k))^{2}-\frac{1}{2} \sum_{k=1}^{T+1} c(k)(w(k))^{2} \\
\geqslant & \frac{1}{2} \sum_{k=0}^{T+1}\left[\lambda_{1}-c(k)\right](w(k))^{2} \\
\geqslant & 0
\end{align*}
$$

If, contrary to the assertion of the lemma,

$$
\begin{equation*}
u\left(i_{0}+j\right) f\left(i_{0}+j\right)>0, \quad j \in\{1, \ldots, p-1\} \tag{2.4}
\end{equation*}
$$

and we set

$$
v^{*}(i)= \begin{cases}u(i), & i \in\{0, \ldots, T+2\} \backslash\left\{i_{0}+1, \ldots, i_{0}+p-1\right\} \\ -u(i), & i \in\left\{i_{0}+1, \ldots, i_{0}+p-1\right\}\end{cases}
$$

then $v^{*} \in D$. It is easy to check that

$$
\left|\Delta u\left(i_{0}\right)\right| \geqslant\left|\Delta v^{*}\left(i_{0}\right)\right|, \quad\left|\Delta u\left(i_{0}+p-1\right)\right| \geqslant\left|\Delta v^{*}\left(i_{0}+p-1\right)\right|,
$$

and

$$
\left|\Delta u\left(i_{0}+j\right)\right|=\left|\Delta v^{*}\left(i_{0}+j\right)\right|, \quad j \in\{1, \ldots, p-2\}
$$

which together with (2.4) implies $J\left(v^{*}\right)<J(u)$, contrary to (2.3). This contradiction shows that $u\left(i_{0}+j\right) f\left(i_{0}+j\right)<0$ for all $j \in\{1, \ldots, p-1\}$.

Lemma 2.5. Let m, n be integers with $n<m$. Let $0=t_{0}<t_{1}<\cdots<t_{n}$ $<t_{n+1}=1$ and $0=\tau_{0}<\tau_{1}<\cdots<\tau_{m}<\tau_{m+1}=1$ be given. Denote

$$
I_{i}:=\left(t_{i-1}, t_{i}\right), \quad i=1, \ldots, n+1 ; \quad J_{j}:=\left(\tau_{j-1}, \tau_{j}\right), \quad j=1, \ldots, m+1
$$

Let's dye each of these open intervals in blue or red, such that
(a) any two adjacent open intervals in $\left\{I_{i} \mid i=1, \ldots, n+1\right\}$ have different colours;
(b) any two adjacent open intervals in $\left\{J_{j} \mid j=1, \ldots, m+1\right\}$ have different colours.
Then there exist $I_{i_{0}}$ and $J_{j_{0}}$ such that
(i) $J_{j_{0}} \subseteq I_{i_{0}} ;$
(ii) $I_{i_{0}}$ and $J_{j_{0}}$ are in same colour.

Proof: Without loss of the generality, we assume that I_{1} is blue.
It is easy to see that in the case $n=1$, the lemma holds.
Assume that in the case $n=k$, the result is true. We make a couple of fundamental observations.
Observation 1. If there exist $I_{i^{*}}, J_{j^{*}}$ and $J_{j^{*}+1}$ such that $\left(J_{j^{*}} \cup J_{j^{*}+1}\right) \subseteq I_{i^{*}}$, then we have done.

ObSERVATION 2. The results of Lemma 2.5 with $n \leqslant k$ are still true if we replace the interval $[0,1]$ with a general interval $[\alpha, \beta]$.

Let's consider the case that $n=k+1$.
So we may assume that for each $i \in\{1, \ldots, k+2\}$ and $j \in\{1, \ldots, m\}(m>k+2)$,

$$
\begin{equation*}
\left(J_{j} \cup J_{j+1}\right) \nsubseteq I_{i} \tag{2.5}
\end{equation*}
$$

By Observation 1 and (2.5), we only need to consider the following three cases:
CASE 1. J_{1} is blue and $I_{1} \subset J_{1}$;
CASE 2. J_{1} is red and $J_{1} \subset I_{1} \subset\left(J_{1} \cup J_{2}\right)$;
CASE 3. J_{1} is red and $I_{1} \subseteq J_{1}$.
In Case 1, there exists $r \in\{2, \ldots, k+2\}$ such that $\tau_{1} \in\left[t_{r}, t_{r+1}\right)$ and

$$
\left(\bar{J}_{2} \cup \bar{J}_{3} \cup \cdots \cup \bar{J}_{m}\right) \subseteq\left(\bar{I}_{r} \cup \bar{I}_{r+1} \cup \cdots \cup \bar{I}_{k+2}\right)
$$

If

$$
\left(\bar{J}_{2} \cup \bar{J}_{3} \cup \cdots \cup \bar{J}_{m}\right) \subset\left(\bar{I}_{r} \cup \bar{I}_{r+1} \cup \cdots \cup \bar{I}_{k+2}\right)
$$

we take $I_{\tau}^{\prime}:=I_{\Gamma} \cap\left(J_{2} \cup \bar{J}_{3} \cup \cdots \cup \bar{J}_{m}\right)$ so that

$$
\begin{equation*}
\left(\bar{J}_{2} \cup \bar{J}_{3} \cup \cdots \cup \bar{J}_{m}\right)=\left(\bar{I}_{r}^{\prime} \cup \bar{I}_{r+1} \cup \cdots \cup \bar{I}_{k+2}\right) \tag{2.6}
\end{equation*}
$$

Thus we can reduce the problem with $n=k+1$ to a new problem with $n=k+2-r(\leqslant k)$. So by reduction and Observation 2, there exists $j_{0} \in\{2, \ldots, m\}$, such that either

$$
\begin{equation*}
J_{j_{0}} \subseteq I_{r}^{\prime}\left(\subset I_{r}\right) \text { and they have same colour, } \tag{2.7}
\end{equation*}
$$

or for some $i_{0} \in\{r+1, \ldots, k+2\}$,

$$
\begin{equation*}
J_{j_{0}} \subseteq I_{i_{0}} \text { and they have same colour. } \tag{2.8}
\end{equation*}
$$

In Case 2 , set $J_{2}^{\prime}:=\left(J_{1} \cup \bar{J}_{2}\right) \backslash \bar{I}_{1}$. Then $J_{2}^{\prime} \neq \emptyset$ and

$$
\begin{equation*}
\bar{I}_{2} \cup \bar{I}_{3} \cup \cdots \cup \bar{I}_{k+2}=\bar{J}_{2} \cup \bar{J}_{3} \cup \cdots \cup \bar{J}_{m} \tag{2.9}
\end{equation*}
$$

and again we reduce the problem to a new problem with $n=k$. So by reduction and Observation 2, either there exists $j_{0} \in\{3, \ldots, m\}$, such that for some $i_{0} \in\{2, \ldots, k+2\}$,

$$
\begin{equation*}
J_{j_{0}} \subseteq I_{i_{0}} \text { and they have same colour } \tag{2.10}
\end{equation*}
$$

or

$$
\begin{equation*}
J_{2}^{\prime} \subset I_{2}, \text { and they have same colour. } \tag{2.11}
\end{equation*}
$$

However (2.11) can not occur in Case 2 since J_{2}^{\prime} and I_{2} have two different colours. Therefore, (2.10) holds.

In Case 3 , there exists $l \in\{2, \ldots, k+2\}$ such that $\tau_{1} \in\left[t_{l}, t_{l+1}\right)$ and

$$
\begin{equation*}
\left(\bar{J}_{2} \cup \bar{J}_{3} \cup \cdots \cup \bar{J}_{m}\right) \subseteq\left(\bar{I}_{l} \cup \bar{I}_{l+1} \cup \cdots \cup \bar{I}_{k+2}\right) \tag{2.12}
\end{equation*}
$$

If

$$
\left(\bar{J}_{2} \cup \bar{J}_{3} \cup \cdots \cup \bar{J}_{m}\right) \subset\left(\bar{I}_{l} \cup \bar{I}_{l+1} \cup \cdots \cup \bar{I}_{k+2}\right)
$$

holds, we take $I_{l}^{\prime}:=I_{l} \cap\left(J_{2} \cup \bar{J}_{3} \cup \cdots \cup \bar{J}_{m}\right)$. Then $I_{l}^{\prime} \neq \emptyset$ and

$$
\begin{equation*}
\left(\bar{J}_{2} \cup \bar{J}_{3} \cup \cdots \cup \bar{J}_{m}\right)=\left(\bar{I}_{l} \cup \bar{I}_{l+1} \cup \cdots \cup I_{k+2}\right) \tag{2.13}
\end{equation*}
$$

Thus we can reduce the problem with $n=k+1$ to the new problem with $n=k+2-l$. So by the reduction and Observation 2, there exists $j_{0} \in\{2, \ldots, m\}$, such that either

$$
\begin{equation*}
J_{j_{0}} \subset I_{l}^{\prime}\left(\subset I_{l}\right) \text { and they have same colour } \tag{2.14}
\end{equation*}
$$

or for some $i_{0} \in\{l+1, \ldots, k+2\}$,

$$
\begin{equation*}
J_{j_{0}} \subseteq I_{i_{0}} \text { and they have same colour. } \tag{2.15}
\end{equation*}
$$

3. The Main Results

Definition 3.1: A function $u \in D^{*}$ has a zero $j \in\{0, \ldots, T+2\}$ if $u(j)=0$. If

$$
u(j)=0, \text { and } u(j-1) u(j+1)<0
$$

for some $j \in\{1, \ldots, T+1\}$, then we say that j is a simple zero of u. If $u(k) u(k+1)<0$ for some $k \in\{1, \ldots, T+1\}$, then we say that u has a node at $k+1 / 2$.

We say j is a point of sign-variation if it is a simple zero and or if it is a node. We shall denote by $\operatorname{NSV} u(\mathbb{T})$ the number of the points of sign-variations of a function u on T.

Remark 3.2. The point s given by the definition of node of u does not belong to the set $\{0,1, \ldots, T+2\}$. This idea of nodes can be found from Agarwal, Bohner and Wong [1].

Theorem 3.3. Assume that (H1) is satisfied. If all zeros of f in $\{1, \ldots, T+1\}$ are simple zeros, and if u is the unique solution of (2.2) and all zeros of u in $\{0,1, \ldots, T+2\}$ are simple zeros. Then $N S V u(\mathbb{T}) \leqslant \operatorname{NSVf}(\mathbb{T})$.

Proof: The case $\operatorname{NSV} f(\mathbb{T})=0$ is trivial.
We now deal with the case $\operatorname{NSVf}(\mathbb{T}) \geqslant 1$.
Let all of the points of sign-variation of u and f on \mathbb{T} be given by

$$
a_{1}<a_{2}<\cdots<a_{r}, \text { and } b_{1}<b_{2}<\cdots<b_{l}
$$

respectively. Then

$$
0=a_{0}<a_{1}<a_{2}<\cdots<a_{r}<a_{r+1}=T+2
$$

and

$$
0=b_{0}<b_{1}<b_{2}<\cdots<b_{l}<b_{l+1}=T+2
$$

and

$$
\operatorname{NSV} f(\mathbb{T})=r, \quad \operatorname{NSV} u(\mathbb{T})=l .
$$

If $f(j)>0$ for all $j \in\left(a_{s}, a_{s+1}\right) \cap \mathbb{T}$, then we dye the interval $\left(a_{s}, a_{s+1}\right)$ in blue; if $f(j)<0$ for all $j \in\left(a_{s}, a_{s+1}\right) \cap \mathbb{T}$, then we dye the interval $\left(a_{s}, a_{s+1}\right)$ in red; If $u(j)>0$ for all $j \in\left(b_{\tau}, b_{\tau+1}\right) \cap \mathbb{T}$, then we dye the interval $\left(b_{\tau}, b_{\tau+1}\right)$ in blue; if $f(i)<0$ for all $j \in\left(b_{\tau}, b_{\tau+1}\right) \cap \mathbb{T}$, then we dye the interval $\left(b_{\tau}, b_{\tau+1}\right)$ in red.

Suppose on the contrary that $r>l$. Since all zeros of f and u in $\{1, \ldots, T+1\}$ are simple zeros, we are in the position of applying Lemma 2.5 now. Hence there exist $j_{0} \in\{1, \ldots, r+1\}$ and $i_{0} \in\{1, \ldots, l+1\}$, such that
(i) $\quad\left(a_{j 0-1}, a_{j 0}\right) \subseteq\left(b_{i_{0}-1}, b_{i_{0}}\right)$;
(ii) $f(k) u(k)>0$ for $k \in\left\{a_{j_{0}-1}+1, \ldots, a_{j_{0}-1}-1\right\}$.

However this contradicts Lemma 2.4. Therefore $r \leqslant l$.

4. The Nonlinear Problem

Assume the following
(H2) $g \in C^{1}(\mathbb{R}, \mathbb{R})$;
(H3) There exists two constants α_{0} and β_{0}, such that

$$
0<\alpha \leqslant g^{\prime}(s) \leqslant \beta<\lambda_{1}
$$

For $\psi \in D=\left\{u \in D^{*} \mid u(0)=u(T+2)=0\right\}$, let

$$
\|\psi\|_{D}:=\sum_{j=0}^{T+2}|\psi(j)|^{2}
$$

Let

$$
Y=\{\varphi \mid \varphi:\{1, \ldots, T+1\} \rightarrow \mathbb{R}\}
$$

and for $\varphi \in Y$, let $\|\varphi\|_{Y}:=\sum_{j=1}^{T+1}|\varphi(j)|^{2}$. It is clear that the above are norms on D and Y, respectively, and that the finite dimensionality of these spaces makes them Banach spaces.

Theorem 4.1. Assume that (H2) and (H3). Then

$$
\begin{align*}
\Delta^{2} u(j-1)+g(u(j)) & =f(j), \quad j \in\{1, \ldots, T+1\} \\
u(0) & =u(T+2)=0 \tag{4.1}
\end{align*}
$$

has a unique solution.
Proof: Define an operator $L: D \rightarrow Y$ by

$$
\begin{equation*}
(L u)(j)=\Delta^{2} u(j-1)+\frac{\beta+\alpha}{2}(u(j)), \quad j \in\{1, \ldots, T+1\} \tag{4.2}
\end{equation*}
$$

Then it is easy to check that L is an bijection from Y onto D, and

$$
\begin{equation*}
\left\|L^{-1}\right\|_{Y \rightarrow D}=\frac{1}{\lambda_{1}-(\beta+\alpha) / 2} \tag{4.3}
\end{equation*}
$$

Now (4.1) is equivalent to the fixed point problem

$$
\begin{equation*}
u(j)=L^{-1}\left[\frac{\beta+\alpha}{2}(u(j))-g(u(j))+f(j)\right]:=(T u)(j), \quad j \in\{0,1, \ldots, T+2\} \tag{4.4}
\end{equation*}
$$

For every $u, v \in D$,

$$
\begin{align*}
\mid T u(j)- & T v(j) \mid \tag{4.5}\\
& =\left\|L^{-1}\right\|_{Y \rightarrow D}\left|\frac{\beta+\alpha}{2}-g^{\prime}(\theta(j) u(j)+(1-\theta(j)) v(j))\right||u(j)-v(j)|
\end{align*}
$$

for some $\theta(j) \in(0,1)$. This together with (H3) and (4.3) implies that $T: D \rightarrow D$ is a contraction mapping. So by the Contraction Mapping Principle, T has unique fixed point in D, and accordingly (4.1) has unique solution.

Theorem 4.2. Assume that (H2) and (H3). Assume that all zeros of f in $\{1, \ldots, T+1\}$ are simple zeros. Let u be the unique solution of (4.1) and assume that all zeros of u in $\{0,1, \ldots, T+2\}$ are simple zeros. Then $N S V u(\mathbb{T}) \leqslant \operatorname{NSVf}(\mathbb{T})$.

REmark 4.1. Theorem 4.2 is a similar result to [3, Theorem 9]. However the main conditions are much weaker than those imposed on [3, Theorem 9] where the following restrictions are needed
(h.2) $\quad g(0)=0 ;$
(h.5) $G(u)=G(-u)$ where $G(u)=\int_{0}^{u} g(s) d s$.

Moreover the proof of Theorem 4.2 is much simple than the proof of [3 , Theorem 9].
Proof of Theorem 4.2: Set

$$
c^{*}(k)= \begin{cases}\frac{g(u(k))}{u(k)}, & \text { if } u(k) \neq 0 \\ \frac{1}{2} \lambda_{1}, & \text { if } u(k)=0\end{cases}
$$

Then (4.1) can be rewritten as

$$
\begin{align*}
\Delta^{2} u(j-1)+c^{*}(j) u(j) & =f(j), \quad j \in\{1, \ldots, T+1\} \\
u(0) & =u(T+2)=0 . \tag{4.6}
\end{align*}
$$

Now the desired result is an immediate consequence of Theorem 3.3.

References

[1] R.P. Agarwal, M. Bohner and P.J.Y. Wong, 'Sturm-Liouville eigenvalue problems on time scales', Appl. Math. Comput. 99 (1999), 153-166.
[2] R. Bellman, 'On variation-diminishing properties of Green's functions', Boll. Un. Mat. Ital. (3) 16 (1961), 164-166.
[3] A. Boucherif and B.A. Slimani, 'On the sign-variations of solutions of nonlinear two-point boundary value problems', Nonlinear Anal. 22 (1994), 1567-1577.
[4] A.C. Lazer and P.J. McKenna, 'Global bifurcation and a theorem of Tarantello', J. Math. Anal. Appl. 181 (1994), 648-655.
[5] W.G. Kelley and A.C. Peterson, Difference equations (Academic Press, New York, 1991).
[6] B.G. Pachpatte, 'A note on Opial and Wirtinger type discrete inequalities', J. Math. Anal. Appl. 127 (1987), 470-474.

[^1]
[^0]: Received 24th July, 2006
 The author was supported by the NSFC(No.10671158), the NSF of Gansu Province (No. 3ZS051-A25-016), NWNU-KJCXGC-03-17, the Spring-sun program (No. Z2004-1-62033), SRFDP(No. 20060736001), and the SRF for ROCS, SEM(2006[311]).

[^1]: Department of Mathematics
 Northwest Normal University
 Lanzhou 730070
 Peoples Republic ov China
 e-mail: mary@nwnu.edu.cn

