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SIGN-VARIATIONS OF SOLUTIONS OF
NONLINEAR DISCRETE BOUNDARY VALUE PROBLEMS

RUYUN M A

In this paper, we study two-point boundary value problems for the nonlinear second
order difference equation

A2n(z - 1) + g(u(i)) = /(i), i € { 1 , . . . , T + 1},

u(0) = u ( r + 2) = 0.

We establish the relationship between the number of sign-variation of / on
{0,. . . , T + 2} and the one of the solution u of the above problem.

1. INTRODUCTION

In [2], Bellman considered the following two-point boundary value problem for linear
second order ordinary differential equation in the form

u"(t) + q(t)u(t) =

(1.1) u(0) = u(l) = 0.

Assuming q(t) < -K2 and q(t) £ n2, he proved, by the method of calculus of variation,
that if /(•) has n simple zeros in (0,1), the solution u(-) of (1.1) has at most n simple
zeros in (0,1). A version of this result was proved by Lazer and McKenna [4] and some
important applications of it were also given in [4]. Bellman's idea was generalised by
Boucherif and Slimini [3] to boundary value problems of nonlinear second order ordinary
differential equations of the form

u"(t)+g(u(t)) = f(t), O ^ t ^ l ,

(1.2) u(0) = u(l) = 0.
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A key condition they used is the following:

0 < a ^ g'(s) ^ 0 < IT2, for some constants a, /3 e (0, oo).

Motivated by [2, 3 , 4], we study boundary value problems for the second order
difference equation of the form

A2u(i - 1) + c(i)u(i) = / ( t ) , i 6 {1, • • •, T + 1},

(1.3) u(0) = u(T + 2) = 0.

and

A2u(i - 1) + »(«(*)) = /(*), i 6 { 1 , . . . , T + 1},
(1.4) u(0) = u{T + 2) = 0.

We conclude with some results similar to those of [2, 3, 4]. The methods we apply are
rather similar to those in [3, 4]. However a great deal of additional effort has to be made
due to the existence of nodes in the discrete cases.

2. T H E PRELIMINARIES

Let T be an integer with T > 3. Let T := { 0 , 1 , . . . , T + 2}. We denote the closure
of an interval / C R by 7.

LEMMA 2 . 1 . ([5, Theorem 7.6]) The Sturm-Liouville problem

A2u(i - 1) + Ati(t) = 0, i € { l , . . . , T + l } ,

u(0) = u{T + 2) = 0

has a sequence of eigenvalues: Ai < A2 < • • • < Ar+i.

Let

r r = { u | u = ( u ( 0 ) l u ( l ) , . . . > u ( T + 2)), u ( j ) e R f o r t e { 0 , . . . , T +

and

(2.1) D= {u€D* \u(Q) = u(T + 2) = 0}.

Assume that

(HI) c : {1 , . . . , T + 1} ->• R is a function satisfying

c(j)<Xu Vj € { ! , . . . ,T + 1}.
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LEMMA 2 . 2 . Let u e D. Then

T+l T+l

fc=0 *=0

PROOF: From Kelley and Perterson [5, Theorem 7.7], we have tha t for u € D,

ESMt) ESMo EgM*) D
REMARK 2.1. It is worth remarking that by taking n = T+2, p = 9 = 1, Uk = Vk = u(k),
in Pachpatte [6, Theorem 2] we obtain

r+i „ r+ir + i

However the constant (2/(T + 2)) may be smaller than A^ This can be seen from the
linear eigenvalue problem

A2u(i - 1) + Au(t) = 0, i G {1, 2, 3},

u(0) = u(4) = 0.

From [5, Example 7.1], A! = 2 - %/2. Obviously Ai > (^) .

LEMMA 2 . 3 . Let u, w e D. Then

T+i r+i

Y^ w(k)A2u(k - 1) = - X) Au(k)Aw(k).
fc=0 t=0

PROOF: Since w{0) = w(T + 2) = 0, we have

T+l

fc=O
T+l

;{k - 1) (by w(0) = 0)

(J) (by setting j = fc - 1)
i=o
r

j=0
T

j=0 j=0
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r+i T

~ ]C &u(l)w(l) - $3 &uti)wU + !) (by setting I = j + 1)
<=i j=o

r r T

= Au(T + i)«;(T + 1) + J ^ Au(Qt»(l) - Au(0)io(l) + ] T Au{j)w(j +

T

= Au(T + 1) [w{T + 1) - iu(T + 2)] - 5 3 Au(OAw(O - A«(0) [w(l) -

T+l

1=0 Q

LEMMA 2 . 4 . Let / : { 1 , . . . , T + 1} -> R be a function. Let (HI) be satisfied, and
iet u satisfy

A2u{i - 1) + c(t)tt(») = /(i), i e {1 , . . . , T + 1},
(2.2) «(0) = u(T + 2) = 0.

Assume tnat there exist i0 € {0,. . . , T} and an integer p > 1 with i0 + p ^ T + 2, such
that

(i) either

u ( » o ) < 0 , u { i o + p ) ^ 0 , u ( i o + j ) > 0 , j 6 { l p-l},

or

u{i0) > 0, u(io + p) ^ 0, u(io + j) < 0, je{l,...,p- 1};

(ii) either / ( i 0 + j) > 0 for aJJ j 6 { 1 , . . . ,p - 1} or / ( i 0 + j) < 0 for aJi
j e { l , . . . , p - l } .

Then u(i0 + j)f(io + j) < 0 for all j € { 1 , . . . ,p - 1}.

P R O O F : Notice that the set D is a Hilbert space under the inner product

T+2

(u,v):= £ u(*)t;(fc).

Clearly
T+l

since u(0) = u(T + 2) = 0. For v e D, let

T+l 1 T+l T+l

fc=0 k = l k = l
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If v(k) = u{k) + w{k), then by (2.2), Lemma 2.2, Lemma 2.3, the fact u, v, w € D, it
follows that

J(v) - J(u)
1 T+l 1 T+l

£(Au(A) + A™(*)) £>
*=o *=i
T+l . T+l - T+l T+l

fc=l t=0
T+l 1 T+l

. T+l - T+l T+l

w(k)) - - £(Au(fc))2 + i £ c(fc)u2(fc) - £/(fc)u(fc)

k=0 t=0

T+i .. T+i r+i

- £ c(k)u(k)w(k) - i
i=l fc=l

T+l

(2.3) = Y[~AMk - 1) - c(*)u(fc) + f(k)]w(k)
k=0

, T+l 1 T+l
1 \
1 k=o z /t=i
T+l n T+l

T + l

If, contrary to the assertion of the lemma,

(2-4)

and we set

f«(0,
, i e {io + l , . . . , i o + p - 1 } ,

then v* £ D. It is easy to check that

|Au(io)| > |A«'(io)|, |Au(io + p - l ) | ^ |A«*(to+p-l)|,

and

which together with (2.4) implies J(v') < J(u), contrary to (2.3). This contradiction
shows that u(i0 + j)f(io + j)<0 for all j e { 1 , . . . ,p - 1}. D
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LEMMA 2 . 5 . Let m, n be integers with n < m. Let 0 = t0 < ti < • • • < tn

< tn+i = 1 and 0 = r0 < n < • • • < rm < rm+i = 1 be given. Denote

h := (tj-i.tj), i = 1, . . . , n + l ; Jj •= {fj-i,Tj), j = 1,... , m + 1 .

Let's dye each of these open intervaJs in blue or red, such that

(a) any two adjacent open intervals in {Ii \ i = 1, . . . , n + 1} have different
colours;

(b) any two adjacent open intervals in {Jj \ j = 1, . . . , m + 1} have different
colours.

Then there exist J;o and Jj0 such that

(0 JJ0Qlio;
(ii) Iio and Jj0 are in same colour.

PROOF: Without loss of the generality, we assume that / t is blue.
It is easy to see that in the case n = 1, the lemma holds.
Assume that in the case n = fc, the result is true. We make a couple of fundamental

observations.

OBSERVATION 1. If there exist Jj., J,. and Jj*+i such that (J,. U Jj-+\) C I{., then we
have done.

OBSERVATION 2. The results of Lemma 2.5 with n ^ k are still true if we replace the
interval [0,1] with a general interval [a, /3].

Let's consider the case that n = k + 1.
So we may assume that for each i 6 {1, . . . , k + 2} and j e {1 , . . . , m} (m > k + 2),

(2.5) (Jj U J;+1) 2 I{.

By Observation 1 and (2.5), we only need to consider the following three cases:

CASE 1. Ji is blue and h c J\\

CASE 2. Jx is red and Jx c h C (Ji U J2);

CASE 3. Ji is red and I\Q J\.

In Case 1, there exists r e { 2 , . . . , H 2 } such that TX G [tr, tr+i) and

(72 U J3 U • • • U Jm) C (7, U Jr+1 U • • • U Jfc+2).

If
(7, u J3 u • • • u Jm) c (7r u 7r+1 u • • • u Jjt+2),

we take j ; := IT n (J2 U 73 U • • • U 7m) so that

(2.6) (72 u 73 u • • • u 7m) = (fr u J r + 1 u • • • u 7*+,).
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Thus we can reduce the problem with n = A;+l to a new problem with n = k+2—r(^fc).
So by reduction and Observation 2, there exists j0 € { 2 , . . . , m } , such that either

(2.7) Jj0 C I'T ( c Ir) and they have same colour,

or for some i0 € {r + 1 , . . . , k + 2},

(2.8) Jj0 C Iio and they have same colour.

In Case 2, set J'2 := (Jx U 72) \ 7i. Then J ^ 0 and

(2.9) 72 u 73 u • • • u 7fc+2 = 72 u 73 u • • • u 7m,

and again we reduce the problem to a new problem with n = k. So by reduction and
Observation 2, either there exists jo S { 3 , . . . , m}, such that for some i0 € { 2 , . . . , k + 2},

(2.10) Jj0 C Iio and they have same colour,

or

(2.11) J'2 C I2, and they have same colour.

However (2.11) can not occur in Case 2 since J'2 and I2 have two different colours. There-

fore, (2.10) holds.

In Case 3, there exists I e { 2 , . . . , k + 2} such that rx e [tt, iJ+i) and

(2.12) (J2 u 73 u • • • u 7m) c (7, u 7,+i u • • • u 7fc+2).

If

(72u73u• • • u7m) c (7,u7,+1 u• • • u7t+2)

holds, we take // := /, ("I (J2 U 7 3 U • • • U 7 m ) . Then // ^ 0 and

(2.13) (72 u 73 u • • • u 7m) = (7j u 7|+1 u • • • u Ik+2).

Thus we can reduce the problem with n = k + 1 to the new problem with n = k + 2 — I.

So by the reduction and Observation 2, there exists j 0 € {2 , . . . , m } , such that either

(2.14) Jj0 C /,' ( c //) and they have same colour

or for some i0 G {I + 1,... ,k + 2},

(2.15) Jj0 C Iio and they have same colour. n
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3. T H E MAIN RESULTS

DEFINITION 3.1: A function u £ D* has a zero j e {0, . . . ,T + 2} if u{j) = 0. If

u{j) = 0, and u(j - l)u{j + 1) < 0

for some j £ { 1 , . . . , T + 1}, then we say that j is a simple zero of u. If u(k)u(k + 1) < 0

for some A; € { 1 , . . . , T + 1}, then we say that u has a node at k + 1/2.

We say j is a point of sign-variation if it is a simple zero and or if it is a node. We

shall denote by NSVu(T) the number of the points of sign-variations of a function u on

T.

REMARK 3.2. The point s given by the definition of node of u does not belong to the

set { 0 , 1 , . . . , T + 2}. This idea of nodes can be found from Agarwal, Bohner and Wong

THEOREM 3 . 3 . Assume that (Hi) is satisfied. Ifallzeros off in { 1 , . . . ,T+1} are

simple zeros, and ifu is the unique solution of (2.2) and all zeros ofu in {0 ,1 , . . . ,T + 2}

are simple zeros. Then NSVu(T) < NSVf{l).

P R O O F : The case NSVf(T) = 0 is trivial.

We now deal with the case NSVf(T) > 1.

Let all of the points of sign-variation of u and / on T be given by

o,\ < a2 < • • • < ar, and 6i < 62 < • • • < h

respectively. Then

0 = ao < ai < a2 < • • • < ar < ar+i = T + 2,

and
0 = 60 < h < 62 < • • • < bi < bl+i =T + 2,

and
NSV/(T) = r, NSVu(T) = I.

If fU) > 0 for all j € (a,,a3+1) n T, then we dye the interval {as,aa+i) in blue; if

f(j) < 0 for all j 6 (<z4, a3+1) n T, then we dye the interval (a,, a4+1) in red; If u(j) > 0

for all j € (6T,6T+i) n T, then we dye the interval (6T,6T+1) in blue; if f(i) < 0 for all

j e (bT,bT+i) nT , then we dye the interval (6T,6T+i) in red.

Suppose on the contrary that r > 1. Since all zeros of / and u i n { l , . . . , T - l - l }

are simple zeros, we are in the position of applying Lemma 2.5 now. Hence there exist

jo € {1, • • •, r + 1} and i0 6 { 1 , . . . , / + 1}, such that

(i) (ajo-i.OjoJC^io-i.&Jo);

(ii) f{k)u{k) > 0 for k G {aJO_i + 1 , . . . , ajo^ - 1}.

However this contradicts Lemma 2.4. Therefore r ̂  I. D
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4. T H E NONLINEAR P R O B L E M

Assume the following

(H2) j e C ' f R . I ) ;

(H3) There exists two constants a0 and /30, such that

0<a^g'{s) < 0 < Ax.

For ip e D = {u € D* | u(0) = u(T + 2) = 0}, let

r+2

Let

and for </? S F , let \\<P\\Y := ] £ ^ i l | v ( j ) | • ^ *s c ' e a r ^&t *^e above are norms on D and
Y, respectively, and that the finite dimensionality of these spaces makes them Banach
spaces.

THEOREM 4 . 1 . Assume that (H2) and (H3). Tien

(4.1) u(0) = u(T + 2) = 0,

has a unique solution.

PROOF: Define an operator L : D —> Y by

(4.2)

Then it is easy to check that L is an bijection from Y onto D, and

1
(4.3) \\L~l\IK-+D =

Now (4.1) is equivalent to the fixed point problem

(4.4) u(j) = L-1 [£±2(U(,-)) - g(u(j)) + f(j)] := (Tu)(j), j € {0,1,..., T + 2}.

For every u,v € D,

(4.5) \Tu(j)
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for some 9{j) G (0,1). This together with (H3) and (4.3) implies that T : D ->• D is
a contraction mapping. So by the Contraction Mapping Principle, T has unique fixed
point in D, and accordingly (4.1) has unique solution. D

THEOREM 4 . 2 . Assume that (H2) and (H3). Assume that all zeros of f in
{1 , . . . ,T -t-1} are simple zeros. Let u be the unique solution of (4.1) and assume that
all zeros of u in {0 ,1 , . . . , T + 2} are simple zeros. Then JVSVu(T) ^ NSVf(T).

REMARK 4.1. Theorem 4.2 is a similar result to [3, Theorem 9]. However the main
conditions are much weaker than those imposed on [3, Theorem 9] where the following
restrictions are needed

(h.2) <?(0) = 0;

(h.5) G(u) = G{-u) where G{u) = £ g(s)ds.

Moreover the proof of Theorem 4.2 is much simple than the proof of [3, Theorem 9].

PROOF OF THEOREM 4.2: Set

c*(k) = \ <
[

Then (4.1) can be rewritten as

A2u(j - 1) + c*(j)u{j) = f{j), j € {1 , . • •, T + 1}

(4.6) u(0) = «(T + 2) = 0.

Now the desired result is an immediate consequence of Theorem 3.3. D
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