A SIMPLE PROOF OF CHEBOTAREV'S DENSITY THEOREM OVER FINITE FIELDS

STEVE MEAGHER

(Received 15 December 2017; accepted 4 May 2018; first published online 12 July 2018)

Abstract

We present a simple proof of the Chebotarev density theorem for finite morphisms of quasi-projective varieties over finite fields following an idea of Fried and Kosters for function fields. The key idea is to interpret the number of rational points with a given Frobenius conjugacy class as the number of rational points of a twisted variety, which is then bounded by the Lang-Weil estimates.

2010 Mathematics subject classification: primary 11G25; secondary 14G15.
Keywords and phrases: Chebotarev density theorem, quasi-projective variety, Frobenius conjugacy class, Lang-Weil bounds.

1. Introduction

Let G be a finite group and let X / k be a quasi-projective variety, that is, a geometrically irreducible, integral separated scheme of finite type over a field k, of dimension d with a G-action. Let $Y=X / G$ be the quotient and $f: X \longrightarrow Y$ be the quotient morphism. Assume that f is étale and k is finite.

For any closed point $\bar{y} \in Y$ and any point $\bar{x} \in f^{-1}(\bar{y})$, the decomposition group is $D(\bar{x})=\{g \in G \mid g(\bar{x})=\bar{x}\}$. For a closed point $\bar{x} \in X$, let $k(\bar{x})$ denote the residue field of \bar{x}. There is a natural epimorphism $D(\bar{x}) \rightarrow \operatorname{Gal}(k(\bar{x}) / k(\bar{y})$) (see [7, Proposition 2.5, page 342]), which is an isomorphism because f is étale. We call the preimage $\varphi_{\bar{y}}$ of the field automorphism of $k(\bar{x})$ given by $\alpha \mapsto \alpha^{k(\bar{y}) \mid}$ the Frobenius of \bar{y}. Its choice depends on \bar{x} and altering the choice of \bar{x} to $\bar{x}^{\prime} \in f^{-1}(\bar{y})$ corresponds to conjugating $\varphi_{\bar{y}}$ by a $g \in G$ such that $\bar{x}^{\prime}=g \bar{x}$. Thus, the conjugacy class of $\varphi_{\bar{y}}$ is well defined.

A point $y \in Y\left(\mathbf{F}_{q}\right)$ is a morphism of schemes, $y: \operatorname{Spec}\left(\mathbf{F}_{q}\right) \longrightarrow Y$. We let $\{\bar{y}\}$ denote the image, so that \bar{y} is a closed point. With this notation, if the base of Y is \mathbf{F}_{q}, then $k(\bar{y})=\mathbf{F}_{q}$.

Theorem 1.1 (Chebotarev). With notation as above, for a conjugacy class $C \subset G$,

$$
\left|\left\{y \in Y_{\mathbf{F}_{q}}\left(\mathbf{F}_{q}\right) \mid \varphi_{\bar{y}} \in C\right\}\right|=\frac{|C|}{|G|} q^{d}+O\left(q^{d-(1 / 2)}\right)
$$

[^0]where the implied constant depends only on $|C| /|G|$ and the degree, dimension and ambient dimension of an embedding of X into projective space.

The proof interprets the set of rational points with fixed Frobenius conjugacy class as the set of rational points on a certain twist of X. Using the Lang-Weil bounds, Theorem 1.1 follows. In the case of function fields, this idea goes back to Fried [2], who used the cyclic case as a special first case, and to Kosters [4], who obtained a formula in the case of non étale covers which are cyclic. Our only contribution is to present a geometric proof for varieties of any dimension which is independent of the structure of G. Lang's original proof [6] uses fibrations by curves. For a more modern proof using étale sheaves and L-functions, see [1, Theorem 4.1].

2. Proof of Theorem 1.1

Let $g \in G$ be an element of order m and let $C(g)$ be the conjugacy class of g. In this situation, given $y \in Y\left(\mathbf{F}_{q}\right)$ such that $\varphi_{\bar{y}} \in C(g)$, there exists $x \in X\left(\mathbf{F}_{q^{m}}\right)$ such that $f(x)=y$. Let Frob denote the q-power Frobenius of $\mathbf{F}_{q^{m}}$.

We define the twist ${ }^{1} X^{g}$ of X to be the \mathbf{F}_{q} variety associated to the 1-cocycle $a_{\sigma}: \operatorname{Gal}\left(\overline{\mathbf{F}}_{q} / \mathbf{F}_{q}\right) \rightarrow G$ given by Frob $\mapsto g$. As a variety, X^{g} is the quotient

$$
X \times_{\operatorname{Spec}\left(\mathbf{F}_{q}\right)} \operatorname{Spec}\left(\mathbf{F}_{q^{m}}\right) /\left\langle\left(g^{-1}, \operatorname{Spec}(\operatorname{Frob})\right)\right\rangle
$$

endowed with an \mathbf{F}_{q} structure. An \mathbf{F}_{q} rational point of X^{g} corresponds to a unique $\mathbf{F}_{q^{m}}$ rational point $x: \operatorname{Spec}\left(\mathbf{F}_{q^{m}}\right) \longrightarrow X_{\mathbf{F}_{q}}$ such that $g \circ x=x \circ \operatorname{Spec}($ Frob $)$. This means that if $\{\bar{x}\}$ is the image of x in X, then $g \bar{x}=\bar{x}$ and the image of g in $\operatorname{Gal}\left(\mathbf{F}_{q^{m}} / \mathbf{F}_{q}\right)$ is Frob. Thinking of G as a constant group scheme, we likewise twist G by a_{σ} to obtain a group scheme G^{g} whose $\mathbf{F}_{q^{s}}$ rational points are

$$
G^{g}\left(\mathbf{F}_{q^{s}}\right)=\left\{h \in G \mid g^{s} h=h g^{s}\right\} .
$$

The twist X^{g} is equipped with a G^{g} action, which is fixed-point free. Again Y is the quotient and we denote the quotient morphism by f^{g}. Let

$$
Y(g, q)=\left\{y \in Y_{\mathbf{F}_{q}}\left(\mathbf{F}_{q}\right) \mid \varphi_{\bar{y}} \in C(g)\right\} .
$$

By construction of X^{g} and f^{g}, we have $Y(g, q)=f^{g}\left(X^{g}\left(\mathbf{F}_{q}\right)\right)$. If $Z(g) \subset G$ is the centraliser of g, then by definition $G^{g}\left(\mathbf{F}_{q}\right)=Z(g)$. Therefore,

$$
\begin{equation*}
X^{g}\left(\mathbf{F}_{q}\right) / Z(g)=X^{g}\left(\mathbf{F}_{q}\right) / G^{g}\left(\mathbf{F}_{q}\right)=f^{g}\left(X^{g}\left(\mathbf{F}_{q}\right)\right)=Y(g, q) \tag{2.1}
\end{equation*}
$$

Here, we use the fact that since f^{g} is a quotient morphism for the algebraic group G^{g}, the \mathbf{F}_{q} rational points of a fibre form a $G^{g}\left(\mathbf{F}_{q}\right)$ orbit. This fact follows because G^{g} acts freely on X^{g} [10, Theorem (B), page 105].

Putting together (2.1) and the identity $|Z(g)|=|G| /|C(g)|$,

$$
\begin{equation*}
|Y(g, q)|=\frac{|C(g)|}{|G|}\left|X^{g}\left(\mathbf{F}_{q}\right)\right| . \tag{2.2}
\end{equation*}
$$

[^1]Since X^{g} is itself a variety of the same dimension d as $Y_{\mathbf{F}_{q}}$, the Lang-Weil bounds [8] and (2.2) yield

$$
\left||Y(g, q)|-\frac{|C(g)|}{|G|} q^{d}\right| \leq A q^{d-(1 / 2)}+B q^{d-1}
$$

where A depends only on the degree of an embedding of X^{g} into projective space and $|C(g)| /|G|$ and B depend only on the degree, dimension, ambient dimension of the embedding and $|C(g)| /|G|$. We fix a degree- δ embedding of X into \mathbf{P}^{N} such that G acts on X via projective linear maps. Then X^{g} also has a degree- δ embedding into $\mathbf{P}_{\mathbf{F}_{q}}^{N}$ (see the Appendix). Therefore,

$$
A=\frac{|C(g)|}{|G|}(\delta-1)(\delta-2) \quad \text { and } \quad B=\frac{|C(g)|}{|G|} B^{\prime},
$$

where B^{\prime} depends only on δ, d and $N[8]$.

3. Examples of Theorem 1.1

3.1. Zeros of degree- \boldsymbol{n} polynomials. Assume that n is coprime to q. Let $p(z) \in \mathbf{F}_{q}[z]$ be monic of degree n so that

$$
p(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0} .
$$

The zeros of $p(z)$ are all defined over $\mathbf{F}_{q^{n}}$. For a divisor d of $n!$, one can ask what proportion of degree- n polynomials defined over \mathbf{F}_{q} has zeros defined over $\mathbf{F}_{q^{d}}$ and no smaller extension.

The coefficients of $p(z)$ are the standard symmetric polynomials in the zeros of $p(z)$. Let $f: \mathbf{A}^{n} \longrightarrow \mathbf{A}^{n}$ be the morphism given by the standard symmetric polynomials, so that $f^{-1}\left(a_{0}, \ldots, a_{n-1}\right)$ is the set of all permutations of the ordered zeros of $p(z)$. Moreover, f is the quotient morphism for \mathbf{A}^{n} equipped with the natural action of S_{n} (the symmetric group on n letters). In this case f is not étale. However, by removing the diagonal of \mathbf{A}^{n} one obtains an étale morphism g, which corresponds to assuming that $p(z)$ has no repeated zeros.

Then $\mathbf{F}_{q^{d}}$ is the extension generated by the zeros of $p(z)$ if and only if the Frobenius element φ_{a} of $a=\left(a_{0}, \ldots, a_{n-1}\right)$ is an order- d element of S_{n}. Let $C_{d} \subset S_{n}$ be the set of elements of order m, so that C_{d} is closed under conjugation. Note that C_{d} is empty unless d is the least common multiple of the $d_{i} \leq n$ such that $\sum d_{i}=n$. Of course if C_{d} is empty there are no such polynomials.

So, the proportion of degree- n polynomials, without repeated zeros, whose zeros generate $\mathbf{F}_{q^{d}}$ is approximately $\left|C_{d}\right| / n!$. In particular, the proportion of polynomials whose zeros are defined over \mathbf{F}_{q} and do not repeat is $1 / n!$.
3.2. Legendre elliptic curves. Let $X=\mathbf{A}^{1}-\{0,1\}$ be the affine line minus 0 and 1 and let $Y=\mathbf{A}^{1}$ be the affine line. The set of Möbius transformations which permute 0,1 and ∞ in the projective line is isomorphic to S_{3}. Therefore, S_{3} acts on X and the quotient is Y. Then, for q large, approximately $1 / 6$ of the $j \in Y\left(\mathbf{F}_{q}\right)$ will have a rational
point $\lambda \in X\left(\mathbf{F}_{q}\right)$ lying above them, ${ }^{1} 1 / 2$ will have an element $\lambda \in Y\left(\mathbf{F}_{q^{2}}\right)$ lying above them, and $1 / 3$ will have an element $\lambda \in X\left(\mathbf{F}_{q^{3}}\right)$ lying above them. In fact, the elements of Y can be interpreted as j-invariants of elliptic curves and an element $\lambda \in X\left(\mathbf{F}_{q^{s}}\right)$ lying above j as a Legendre elliptic curve, $y^{2}=x(x-1)(x-\lambda)$ with j-invariant j. So, for q large, the 'probability' that an \mathbf{F}_{q} rational j-invariant is realised by an \mathbf{F}_{q} rational Legendre elliptic curve is approximately $1 / 6$.
3.3. L-functions of curves. Chavdarov [1] proved a conjecture of Katz that the proportion of curves whose L-function is irreducible in an algebraic family over \mathbf{F}_{q} approaches 1 as q approaches infinity (provided the family has so-called 'big monodromy'). By combining Chebotarev's theorem and sieve theory, Kowalski obtained more precise bounds on the number of hyperelliptic curves in a family over \mathbf{A}^{1} over \mathbf{F}_{q} whose L function is not irreducible [5, page 178], making more explicit the results of Chavdarov. In addition, Kowalski gave bounds on the number of curves in such families whose number of \mathbf{F}_{q} rational points is a square [5, page 193].

Appendix

This appendix establishes the result needed for the implicit constant, namely that for some N there is an embedding of X into \mathbf{P}^{N} of degree δ such that all the twists X^{g} also admit embeddings into \mathbf{P}^{N} of degree δ.

In this section k will be a field, K / k a finite Galois extension, X / k a quasi-projective variety and $G \subset \operatorname{Aut}\left(X_{K}\right)$ a finite group. We will call a variety X^{\prime} / k a G-twist of X if for some finite Galois extension K / k there is an isomorphism

$$
\Psi: X_{K}^{\prime} \longrightarrow X_{K}
$$

inducing a 1-cocycle

$$
a_{\sigma}: \operatorname{Gal}(K / k) \rightarrow G: \sigma \mapsto\left({ }^{\sigma} \Psi\right) \circ \Psi^{-1} .
$$

The cocycle a_{σ} defines a twisted action of $\operatorname{Gal}(K / k)$ on $X \times_{\operatorname{Spec}(k)} K$ by letting σ act as $\left(a_{\sigma}, \sigma\right)$, and the quotient by this action is X_{K}^{\prime}. Moreover, each 1-cocycle defines a twist of X (by [12, Ch. III, Proposition 5], as X is quasi-projective). If $G \subset \operatorname{Aut}\left(X_{k}\right)$ is considered as a constant group scheme over k, then a_{σ} defines a twisted action of $\operatorname{Gal}(K / k)$ on $G \times_{\operatorname{Spec}(k)} K$, which defines a twisted algebraic group G^{\prime} / k isomorphic to G over K. The action of $G^{\prime}(S)$ on $X^{\prime}(S)$ is exactly the same as that of $G\left(S_{K}\right)$ on $X\left(S_{K}\right)$ as the former are respective subsets of the latter. There is an isomorphism between the quotients ${ }^{2}\left(X^{\prime} / G^{\prime}\right)_{K}$ and $(X / G)_{K}$ induced by Ψ and the universal property of quotients, which descends to k as the action of G is trivial on the quotients.

Propositions A. 1 and A. 2 establish that there is an N so that if X^{\prime} is any twist then X and X^{\prime} both embed into \mathbf{P}^{N} and are isomorphic over K under an element of $\mathbf{G} \mathbf{L}_{N+1}(K)$.

[^2]Proposition A. 1 is slightly more general than what we need, as it also applies to cases where some of the automorphisms of X are not defined over k (but are all defined over K).

Proposition A.1. Let $\varphi: X \longrightarrow \mathbf{P}_{k}^{N}$. Let $\rho: G \longrightarrow \mathbf{G L}_{N+1}(K)$ be a group homomorphism compatible with φ. If X^{\prime} is a G-twist of X, then there is an embedding of X^{\prime} into \mathbf{P}_{K}^{N} and an element $\gamma \in \mathbf{G L}_{N+1}(K)$ inducing an isomorphism between X_{K}^{\prime} and X_{K}. In particular, if X has degree δ under φ, then X^{\prime} does too.

Proof. Let $\Psi: X_{K}^{\prime} \longrightarrow X_{K}$ be an isomorphism and let a_{σ} be the corresponding 1cocycle. It follows that X^{\prime} is determined, up to k-isomorphism, by the class of $a_{\sigma} \in \mathrm{H}^{1}(\operatorname{Gal}(K / k), G)$. It therefore suffices to show two things:
(i) every element of $\mathrm{H}^{1}(\operatorname{Gal}(K / k), G)$ has the form $\left({ }^{\sigma} \gamma\right) \gamma^{-1}$ for some $\gamma \in \mathbf{G L}_{N+1}(K)$;
(ii) if $a_{\sigma}=\left({ }^{\sigma} \gamma\right) \gamma^{-1}$, then there is an embedding $X^{\prime} \subset \mathbf{P}_{k}^{N}$ and γ gives an isomorphism between X_{K}^{\prime} and X_{K}.
For (i), ρ induces a morphism

$$
\mathrm{H}^{1}(\operatorname{Gal}(K / k), G) \rightarrow \mathrm{H}^{1}\left(\operatorname{Gal}(K / k), \mathbf{G L}_{N+1}(K)\right)
$$

and the latter is trivial by Hilbert's theorem 90 [11, Proposition 3, page 151].
For (ii), let $a_{\sigma}=\left({ }^{\sigma} \gamma\right) \gamma^{-1}$ be a 1-cocycle, let x_{0}, \ldots, x_{N} be the homogeneous coordinate functions of \mathbf{P}_{k}^{N}, let $I_{1} \subset k\left[x_{0}, \ldots, x_{N}\right]$ be the homogeneous ideal defining the closure of X_{k} and let I_{2} be the homogeneous ideal defining the closed variety $Z_{k} \subset$ \mathbf{P}_{k}^{N} such that $X_{k}=\bar{X}_{k}-Z_{k}$. Note that if $g \in \rho(G)$ and $F \in I_{\epsilon}$, then $F\left(g x_{0}, \ldots, g x_{N}\right) \in I_{\epsilon}$, where $\epsilon \in\{1,2\}$. Consider the twisted $\operatorname{Gal}(K / k)$ action on $K\left[x_{0}, \ldots, x_{N}\right]$ given by letting $\sigma \in \operatorname{Gal}(K / k)$ act on x_{i} by $x_{i} \mapsto\left({ }^{\sigma} \gamma\right) \gamma^{-1}\left(x_{i}\right)$ and on $\lambda \in K$ by $\lambda \mapsto \sigma(\lambda)$. Let $y_{i}=\gamma^{-1} x_{i}$. Then y_{i} is invariant under the twisted action of $\operatorname{Gal}(K / k)$. Let $\left\{F_{1, \epsilon}, \ldots, F_{m_{\epsilon}, \epsilon}\right\} \subset I_{\epsilon}$ be a set of $\rho(G)$-invariant generators. Put

$$
H_{i, \epsilon}\left(y_{0}, \ldots, y_{N}\right)=F_{i, \epsilon}\left(\gamma y_{0}, \ldots, \gamma y_{N}\right)
$$

Let $X_{K}^{\prime \prime}$ be the variety defined by the locus of the $H_{i, 1}$ with the locus of the $H_{i, 2}$ removed. The set of $H_{i, \epsilon}$ is invariant under the twisted action of $\operatorname{Gal}(K / k)$ as

$$
\begin{aligned}
\sigma\left(H_{i, \epsilon}\left(y_{0}, \ldots, y_{N}\right)\right) & =\sigma\left(F_{i, \epsilon}\left(\gamma y_{0}, \ldots, \gamma y_{N}\right)\right) \\
& =F_{i, \epsilon}\left(\sigma(\gamma) y_{0}, \ldots, \sigma(\gamma) y_{N}\right) \\
& =F_{i, \epsilon}\left(\left({ }^{\sigma} \gamma\right) \gamma^{-1} x_{0}, \ldots,\left({ }^{\sigma} \gamma\right) \gamma^{-1} x_{N}\right) \\
& =F_{j, \epsilon}
\end{aligned}
$$

for some j as $\left({ }^{\sigma} \gamma\right) \gamma^{-1} \in \rho(G)$. Thus, $X_{K}^{\prime \prime}$ descends to a variety $X^{\prime \prime}$ defined over k. Moreover, $X_{K}^{\prime \prime}$ is isomorphic to X_{K} via γ and has a 1-cocycle a_{σ}. Therefore, $X^{\prime \prime} \cong_{k} X^{\prime}$.
Proposition A.2. There exists an N, an embedding $\varphi: X \longrightarrow \mathbf{P}_{k}^{N}$ and a group homomorphism $\rho: G \longrightarrow \mathbf{G} \mathbf{L}_{N+1}(k)$ compatible with φ if the quotient X / G is a quasiprojective variety.

Proof. Let $f: X \longrightarrow Y$ be the quotient morphism. Since Y is quasi-projective, it has an ample line bundle L. The morphism f is finite (see, for example, [10, page 105]) and therefore $f^{*} L$ is also an ample line bundle. This is because ample means that $\mathcal{F} \otimes\left(f^{*} L\right)^{\otimes n}$ is globally generated for sufficiently large n, but, as L is ample, $f_{*} \mathcal{F} \otimes L^{\otimes n}$ is globally generated and therefore so is $f^{*} f_{*} \mathcal{F} \otimes f^{*} L^{\otimes n}$. But the latter surjects onto $\mathcal{F} \otimes f^{*} L^{\otimes n}$ as f is finite and hence affine (see [9, page 39]).

Therefore, for some $n>0$, the power $M=\left(f^{*} L^{\otimes n}\right)$ is very ample. For any line bundle T over a variety Z, we let $[T]$ denote the geometric line bundle corresponding to T. So, $[T]$ is a scheme over Z, with structure morphism $p:[T] \longrightarrow Z$, such that there is an open cover U_{i} of Z and isomorphisms $\varphi_{i}: p^{-1}\left(U_{i}\right) \cong U_{i} \times \mathbf{A}^{1}$, so that $\varphi_{i} \circ \varphi_{j \mid U_{i} \cap U_{j}}^{-1}: U_{i} \cap U_{j} \times \mathbf{A}^{1} \cong U_{i} \cap U_{j} \times \mathbf{A}^{1}$ respects the vector space structure of \mathbf{A}^{1}. The sections of p over any open set U are $T(U)$.

There is an equivalence between the category of geometric line bundles and line bundles. We will use the fact that $\left[f^{*} T\right] \cong[T] \times_{Y} X$. This follows as $[T] / Y$ is affine, so $[T]=\operatorname{Spec}(\mathcal{A})$ for some quasi-coherent O_{Y}-algebra \mathcal{A} (actually \mathcal{A} is the symmetric algebra of T). So, $\left[f^{*} T\right] \cong \operatorname{Spec}\left(f^{*} \mathcal{A}\right) \cong \operatorname{Spec}(\mathcal{A}) \times_{Y} X$. See, for example, [13, Tags 01 S 5 and 01 M 1] or [3, Proposition 1.7.11, page 17].

In particular, $[M] \cong\left[L^{\otimes n}\right] \times_{Y} X$. There is an action of G on $\left[L^{\otimes n}\right] \times_{Y} X$ given by $g(a, x)=(a, g x)$, where $(a, x) \in\left[L^{\otimes n}\right] \times_{Y} X(S)$ and S / X is a scheme over X. Therefore, there is an action of G on M. The action on M induces an action of G on $\mathrm{H}^{0}(X, M)$ and a group homomorphism $\rho: G \longrightarrow \mathbf{G L}_{N+1}(k)$ which is compatible with the embedding

$$
X \rightarrow \mathbf{P}\left(\mathrm{H}^{0}(X, M)\right): x \mapsto\left[s_{0}(x): s_{1}(x): \cdots: s_{N}(x)\right],
$$

where $N+1$ is the dimension of $\mathrm{H}^{0}(X, M)$ as a k-vector space.

References

[1] N. Chavdarov, 'The generic irreducibility of the numerator of the zeta function in a family of curves with large monodromy', Duke Math. J. 87 (1997), 151-180.
[2] M. Fried, 'The nonregular analogue of Tchebotarev's theorem', Pacific J. Math. 112 (1984), 303-311.
[3] A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique II. Étude globale élémentaire de quelques classes de morphismes, Publications Mathématiques, 8 (IHES, Bures-sur-Yvette, 1961).
[4] M. Kosters, 'A short proof of the Chebotarev density theorem for function fields', Math. Commun. 22 (2017), 1-7.
[5] E. Kowalski, The Large Sieve and its Applications: Arithmetic Geometry, Random Walks and Discrete Groups (Cambridge University Press, Cambridge, 2008).
[6] S. Lang, 'Sur les séries L d'une variété algébrique’, Bull. Soc. Math. France 84 (1956), 335-407.
[7] S. Lang, Algebra, revised third edn (Springer, New York, 2002).
[8] S. Lang and A. Weil, 'Number of points of varieties in finite fields', Amer. J. Math. 76(4) (1954), 819-827.
[9] D. Mumford, Lectures on Curves on an Algebraic Surface (Princeton University Press, Princeton, NJ, 1966).
[10] D. Mumford, Abelian Varieties (Hindustan Book Agency, New Delhi, 2008).
[11] J.-P. Serre, Local Fields (Springer, New York, 1979).
[12] J.-P. Serre, Cohomologie Galoisienne, cinquième éd., Lecture Notes in Mathematics, 5 (Springer, Berlin, 1997).
[13] The Stacks Project, http://stacks.math.columbia.edu, 2017.

STEVE MEAGHER, School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia
e-mail: sjmeagher@gmail.com

[^0]: (C) 2018 Australian Mathematical Publishing Association Inc.

[^1]: ${ }^{1}$ The reader new to twists should consult the Appendix.

[^2]: ${ }^{1}$ For λ being \mathbf{F}_{q} rational means that φ_{j} is the identity element, so $|C|=1$ and $|G|=6$. Likewise λ being $\mathbf{F}_{q^{2}}$ rational means that φ_{j} is a 2-cycle, so $|C|=3$, etc.
 ${ }^{2}$ That the quotients exist is shown on [10, page 105].

