
J. Functional Programming 7 (1): 103–123, January 1997 c© 1997 Cambridge University Press 103

On the effectiveness of functional language

features: NAS benchmark FT

J. HAMMES, S. SUR and W. BÖHM†
Department of Computer Science, Colorado State University,

Ft. Collins, CO 80523, USA

Abstract

In this paper we investigate the effectiveness of functional language features when writing

scientific codes. Our programs are written in the purely functional subset of Id and executed

on a one node Motorola Monsoon machine, and in Haskell and executed on a Sparc 2.

In the application we study – the NAS FT benchmark, a three-dimensional heat equation

solver – it is necessary to target and select one-dimensional sub-arrays in three-dimensional

arrays. Furthermore, it is important to be able to share computation in array definitions. We

compare first order and higher order implementations of this benchmark. The higher order

version uses functions to select one-dimensional sub-arrays, or slices, from a three-dimensional

object, whereas the first order version creates copies to achieve the same result. We compare

various representations of a three-dimensional object, and study the effect of strictness in

Haskell. We also study the performance of our codes when employing recursive and iterative

implementations of the one-dimensional FFT, which forms the kernel of this benchmark. It

turns out that these languages still have quite inefficient implementations, with respect to

both space and time. For the largest problem we could run (323), Haskell is 15 times slower

than Fortran and uses three times more space than is absolutely necessary, whereas Id on

Monsoon uses nine times more cycles than Fortran on the MIPS R3000, and uses five times

more space than is absolutely necessary. This code, and others like it, should inspire compiler

writers to improve the performance of functional language implementations.

Capsule Review

Functional programming often seems to be dominated by the rival schools of strict languages

implemented through a SECD machine, and lazy languages based on the combinator/graph

reduction. As this refreshing and eminently practical paper shows, there is still lots to be learnt

from the less well publicised third approach of single assignment languages implemented

through dataflow. It is also a sober reminder that lazy and single assignment functional

language implementations have a long way to go to match the efficiency of their imperative

sisters.

The authors have been investigating the time and space behaviour of Id and Haskell

versions of the NAS FT benchmark, a Fast Fourier Transform used to solve a heat equation

which involves selecting slices from a three-dimensional array. Their analysis is meticulous,

and brings what is, to my mind, a salutary though nonetheless unwelcome conclusion:

the more control a programmer has over memory management, the faster and more space

efficient functional algorithms become. Thus, the Id versions are improved by explicit space

† This work was supported in part by NSF Grants MIP-9113268 and CDA-9422007, ARPA
Contract PO 691964 and a Motorola Monsoon donation from ARPA.

https://doi.org/10.1017/S0956796897002621 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002621

104 J. Hammes, S. Sur and W. Böhm

deallocation and the Haskell versions by the use of strict constructs. This is in stark contrast

to the promise of functional programming to free users from low level concerns.

The authors have also compared Haskell and Fortran: Fortran won hands down. They are

now going to turn their attention to functional languages with eager (pH) and strict evaluation

(Sisal). The results will make fascinating reading. Perhaps someone might try the NAS FT

benchmark on LISP and Standard ML, and indeed on Miranda. It would be interesting to

see how the more mainstream lazy and strict languages compare on this realistic problem,

and how strict functional languages measure up against Big Blue’s legacy.

1 Introduction

In this paper we study the design of purely functional implementations of the

NAS three-dimensional FFT PDE benchmark FT (Bailey et al., 1991), written in

Id (Nikhil, 1990) and Haskell (Hudak et al., 1992), in an attempt to assess which

declarative language features are of importance when writing efficient, machine

independent, parallel scientific codes.

Vectors, matrices and higher dimensional grids play an important role in many

scientific codes. Our benchmark is no exception, as it performs three-dimensional

Fast Fourier Transforms (FFT) by applying one-dimensional FFTs in all three

directions. Hence, when creating or accessing grids, sub-grids need to be selected

and targeted. We call this the slicing problem. When grid elements are created,

substantial sub-computations can be shared by pairs of elements. We call this

the sharing problem. The representation of the grids influences the expressibility and

efficient implementation of slicing and sharing, as well as their resource requirements.

We discuss various representations and their effects on time and space efficiency in

Id and Haskell.

Two approaches to the slice selection problem are investigated: the creation of a

selection function that is passed to a higher order function; and the creation of a copy

of the sub-grid that is passed to a first order function. We also study two approaches

to the slice targeting problem: collection of the vectors into a matrix-of-vector

structure; and concatenation of sub-grids into a higher dimensional grid. Arrays

can be specified using array comprehensions and by association lists; Haskell has

only the latter. We compare the two approaches with regard to their suitability for

sub-computation sharing and for slice targeting. We also compare the performance

of our codes with recursive and iterative implementations of the one-dimensional

FFT, which forms the kernel of the code. Finally, we look at array strictness and its

effect of space efficiency in Haskell.

For Id we report the time and space performance of the codes run on a one

node Monsoon machine. Monsoon was chosen because it is part of the Id/Monsoon

project of MIT and Motorola, and other performance studies for Id programs on

this machine have already been performed. An overview of the Id implementation

and performance on Monsoon is given in Hicks et al. (1993). We measure time

performance in the number of machine cycles spent, and we measure our programs’

space usage by determining the maximal amount of heap space allocated. We show

https://doi.org/10.1017/S0956796897002621 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002621

On the effectiveness of functional language features 105

that the Id heap manager’s behaviour is deleterious to the time performance of the

recursive codes.

We show that the association list representation, though expressible in Id, does

not suit the language implementation well, as most compiler effort has gone in

optimizing arrays and loops, and as association lists are much more difficult to

explicitly deallocate than arrays. We show this by measuring the performance of an

iterative first order version that employs association lists as intermediate structures

to solve the sharing problem in the one-dimensional FFT.

For Haskell we use the Glasgow GHC 0.26 compiler and the Chalmers compiler

0.999.7, both run on a SPARC 20/50. We measure time performances using the C

shell’s /bin/time averaged over five runs; space performance is measured using the

heap profiling options in both compilers. We use the Chalmers compiler to measure

the effects of array strictness by adding annotations to the programs.

The rest of this paper is organized as follows. Section 2 specifies the NAS FT

problem. Section 3 discusses programming issues. Sections 4 and 5 detail the various

Id and Haskell implementations respectively, and analyse their performances. Section

6 provides conclusions and future research.

2 Problem specification

NAS benchmark FT solves the following three-dimensional heat equation:

δu(x, t)

δt
= α∇2u(x, t),

where x is a position in three-dimensional space and α a constant describing con-

ductivity. When a Fourier transform is applied to each side, this equation becomes:

δv(z, t)

δt
= −4απ2|z|2v(z, t),

where v(z, t) is the Fourier transform of u(x, t). This equation has the solution:

v(z, t) = e−4απ2|z|2tv(z, 0).

The discrete version of the above problem is solved using FFTs. First a three-

dimensional FFT is performed on the original array u(x, 0), then the results are

multiplied by certain exponentials and lastly an inverse three-dimensional FFT is

performed.

In the FT benchmark, the complex array U is initialized using a pseudo-random

number generator. Setting V equal to the three-dimensional FFT of U, α = 10−6

and t = 1, the intermediate value W is computed:

Wj,k,l = e−4απ2(j̄2+k̄2+l̄2)tVj,k,l

https://doi.org/10.1017/S0956796897002621 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002621

106 J. Hammes, S. Sur and W. Böhm

U

V Exp

W

X

3-D FFT Exponential terms

multiply

Random 3-D array

Adjust exponentials and

Checksum

for t = 1 to 6

Inverse 3-D FFT

Fig. 1. Flow diagram of the FT benchmark.

where j̄ is defined as

j̄ = j for 0 ≤ j < n1/2

j̄ = j − n1 for n1/2 ≤ j < n1.

The indices k̄ and l̄ are similarly defined with n2 and n3. X, the three-dimen-

sional inverse FFT of W , is then computed. Finally, a checksum is computed and

produced as output. The computation of W, X and the checksum, is repeated for

values t from one to six. V is computed once. The array of exponential terms for

t > 1 can be obtained as the t-th power of the array for t = 1. Figure 1 shows the

flow diagram of the NAS FT benchmark program involving forward and inverse

three-dimensional FFTs. A three-dimensional FFT takes a complex array of size

n1×n2×n3 and performs n2×n3 n1-point one-dimensional FFTs in the n1 direction,

followed by n3 × n1 n2-point one-dimensional FFTs in the n2 direction, followed by

n1 × n2 n3 point one-dimensional FFTs in the n3 direction. Figure 2 sketches the

steps performed and the orientation of the intermediate one-dimensional FFTs.

2n1n2n3 pseudo-random floating point values are created as specified in the FT

benchmark and used to fill the complex array U.

Any algorithm for the individual one-dimensional complex FFT is allowed. We

compare a recursive version, performing shuffles and recombinations of two half

sized arrays, to an iterative version, which reorders the array using bit-reversal of

https://doi.org/10.1017/S0956796897002621 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002621

On the effectiveness of functional language features 107

(a) (b) (c) (d)

Fig. 2. Steps in performing a three-dimensional FFT.

the index and performs butterfly group recombinations on one array (van Loan,

1992). Bit-reversal is implemented using a table lookup as it is a relatively expensive

operation which needs to be done many times for the same size.

A butterfly stage takes two input array elements, which are a distance k away

from each other and produces two result array elements, which are targeted at the

same positions. Order log(n) butterfly stages are performed where k takes growing

powers of two values until k = n/2. In our codes the smallest value of k is four, and

recombinations for k = 1 and k = 2 are done in an optimized way. This cuts out

the bottom two levels of the FFT call tree, making the program more space and

time efficient. The bottom case of four involves multiplications with simple roots of

unity ±1 and ±i. These multiplications can be eliminated, leading to better code

than inlining the general case function would achieve, as this function would access

the roots of unity from an array and would not eliminate the simple multiplications.

Moreover, the bottom level of k = 1 merely returns the input array and not going to

this level avoids a problem in deallocating intermediate arrays in Id, as a one-dimen-

sional FFT function now always creates a new result array (Böhm and Hiromoto,

1993).

3 Programming issues

Arrays in a functional language can be created using monolithic array constructors

called array comprehensions, similar in spirit to list comprehensions. While Id has

explicit syntax for array comprehensions as distinguished from list comprehensions,

Haskell has only list comprehensions, and these are used to specify arrays through

association lists. (Though the semantics of Haskell defines arrays through association

lists, some programmers may view the composition of the array function with a list

generator as if it is array comprehension syntax. It is also possible that compiler

optimization may elide the list, either as an effect of deforestation or through explicit

detection of this common array-building technique.)

An association in Haskell is an (index, value) pair, denoted (i1, ..., in) := v, where

the index is a tuple of values of the Ix type class. Lists of associations are often

created using list comprehensions, such as:

[(i,j) := f i j | i <- [1..n1], j <- [1..n2]]

In the butterfly recombination part of the one-dimensional FFT there are ex-

pressions that should be shared among array element computations. Sharing is not

directly expressible in the list comprehension syntax, but its effect can be achieved

https://doi.org/10.1017/S0956796897002621 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002621

108 J. Hammes, S. Sur and W. Böhm

by building a list of sublists, followed by concatenation into one list. Each sublist

will contain elements that share a computation. Here is a simple example:

concat [let v = <expr1>

m = <expr2>

in [i := m+v, i+1 := m-v] | i <- [1,3..n1]]

Arrays in Haskell are defined by two boundary tuples and an association list,

where the indices of the association list must be within the boundaries. An index

may be undefined or multiply defined in the association list, but an attempt to read

such an element from the array will cause a run-time error.

While the list of associations, and the small sublists in the case of sharing,

appear to be inefficient, deforestation (Gill et al., 1993) may often eliminate the

lists entirely and put the generated elements directly into the array. If this behavior

is achieved, then neither expressibility nor efficiency requires a separate syntax for

array comprehensions.

Id has an explicit array comprehension syntax that allows an array to be defined in

a number of regions of the form | [target] = expression ‖ generator, where the value

of each element of the region is defined by the expression and placed in the position

specified by the target. Both target and expression can be parameterized by the loop

variables in the generator. The following is an example Id array comprehension:

{2D_array((1,n), (1,n)) of

| [i,j] = i + j || i <- 1 to n-1 ; j <- (i+1) to n

| [i,j] = i + j || i <- 2 to n ; j <- 1 to (i-1)

| [i,i] = 1 || i <- 1 to n }

Id’s array comprehensions have no way of expressing shared computations among

array elements. However, Id also has list comprehensions that, though different in

syntax, are essentially equivalent to those in Haskell, so it is possible in Id to

use list comprehensions and association lists in the same way as they are used in

Haskell. The Id counterpart of the Haskell array function, which builds the array

from the association list, is easy to construct. Thus, from the point of view of

language expressibility, both Haskell and Id are capable of expressing the sharing

of computations among statically known, fixed numbers of array elements via list

comprehension and concatenation.

In the three-dimensional FFT we need to go one step further: we need to select as

well as target one-dimensional sub-arrays, or slices, of the complete array. There are

two approaches to selecting slices. The first approach dynamically creates a selection

function and passes this function as a parameter to a higher order version of the

one-dimensional fft function. When provided with an index parameter, the selection

function yields an array element from the slice in the three-dimensional object. In

a sense, the selection function plays the role of a copy of a one-dimensional slice

of the three-dimensional array without the need for an actual copy. The second

approach simply creates a copy of the slice and passes this as a parameter to a first

order version of the one-dimensional fft function.

There are also two approaches to targeting a one-dimensional slice of a three-

dimensional object. In the first approach, the representation of the three-dimensional

https://doi.org/10.1017/S0956796897002621 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002621

On the effectiveness of functional language features 109

object is a matrix of vectors of complex numbers. This representation allows a vector

to be defined as an array element. The second approach uses the association list

representation, concatenating association lists together and building the array from

the associations.

4 Id implementations and performance

The Id versions that represent intermediate three-dimensional objects by matrices

of vectors and select a slice by copying it have the following top level structure:

v1 = { matrix ((1,t2),(1,t3)) of

| [j,k] = fft (get_x j k x) ro1 fwd || j <- 1 to t2; k <- 1 to t3};

v2 = { matrix ((1, t3),(1,t1)) of

| [k,i] = fft (get_y k i v1) ro2 fwd || k <- 1 to t3; i <- 1 to t1};

v3 = { matrix ((1, t1),(1,t2)) of

| [i,j] = fft (get_z i j v2) ro3 fwd || i <- 1 to t1; j <- 1 to t2};

where x is a three-dimensional array, v1, v2 and v3 are matrices of vectors, roi is

a table of roots of unity of the appropriate size, fwd a boolean indicating forward

or reverse FFT, and the three functions get x, get y and get z are specialized to

deal with the appropriate representation and orientation of the three-dimensional

object (see Figure 2), and copy a one-dimensional slice out of it in the proper

direction.

In the non copying higher order version a selection function is created and passed

to the one-dimensional fft function. The keyword fun is the Id equivalent of lambda

in a dynamically defined function.

v1 = { matrix ((1,t2),(1,t3)) of

| [j,k] = fft {fun i = x[i,j,k]} t1 ro1 fwd

|| j <- 1 to t2; k <- 1 to t3};

v2 = { matrix ((1,t3),(1,t1)) of

| [k,i] = fft {fun j = v1[j,k][i]} t2 ro2 fwd

|| k <- 1 to t3; i <- 1 to t1};

v3 = { matrix ((1,t1),(1,t2)) of

| [i,j] = fft {fun k = v2[k,i][j]} t3 ro3 fwd

|| i <- 1 to t1; j <- 1 to t2};

The fft function checks whether the input array size is four (the bottom case), and

if so, directly performs the transformation. Otherwise it divides the input array into

two half-sized arrays containing the odd and even elements of the input array using

a shuffle function (van Loan, 1992). After doing a recursive application of fft to

these two arrays, it combines the results of the recursive function applications into

a result array of a size equal to the size of the input array. The higher order version

of fft gets a selection function rather than an array parameter. Consequently, the

shuffle function creates new selection functions instead of arrays.

typeof fft = (I -> F) -> I -> Vector F -> I -> Vector F;

def fft fv size RofU fwd =

if (size == 4) then ... bottom case ... else

{ (left_fv, right_fv) = shuffle fv size;

https://doi.org/10.1017/S0956796897002621 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002621

110 J. Hammes, S. Sur and W. Böhm

fft_left = fft left_fv (div size 2) RofU fwd;

fft_right = fft right_fv (div size 2) RofU fwd;

in combine fft_left fft_right

};

typeof shuffle = (I -> F) -> I -> ((I -> F), (I -> F));

def shuffle fv size =

{ fv_L = {fun i = fv ((i*2)-1)};

fv_R = {fun i = fv (i*2)}

in (fv_L, fv_R)

};

When the combine function needs the array values to compute the recombination,

an index value is provided to the selection function, which triggers the application

of O(log(n)) selection functions to access the appropriate element of the original

three-dimensional array. No copying of arrays is needed; only selection functions

have been created. Each time a selection function is called, a closure is invoked. For

each one-dimensional higher order fft invocation, there will be O(n) closures and

O(n× log(n)) closure invocations. In contrast, for each first order fft invocation O(n)

intermediate shuffle arrays will be created occupying O(n× log(n)) space.

The association list implementation of the copying iterative version is a direct

translation of its Haskell counterpart, using association lists as discussed in section 3.

It demonstrates that the sharing expressed in the Haskell programs is also expressible

in Id.

4.1 Storage use

The maximal amount of heap memory available on a one node Monsoon machine

is four megawords, where a word is an eight byte entity. From Figure 1 it can

be seen that in a functional implementation of FT four three-dimensional objects

with complex (two word) elements (V , Exp, W , and X) are required simultaneously.

Hence, the minimal space requirements for the 83, 163, 323, and 643 problems are 32 K

bytes, 256 Kbytes, 2048 Kbytes, and 16 Mbytes, respectively. The NAS benchmark

size is 643. Table 1 provides the heap space usage of our original, non-deallocating

codes in K bytes. An ‘xxx’ indicates that the program ran out of memory. All

versions use excessive amounts of space (from 25 to 110 times more than absolutely

necessary). For all codes that use the matrix-of-vector representation for intermediate

results, the largest problem size we could run on a one node Monsoon machine was

163. The association list version performs more than three times worse than its array

comprehension counterpart.

We have coded a non-functional Id version of the NAS benchmarks (Sur and

Böhm, 1994), which solves the 643 sized problem on a one node Monsoon machine.

Note that the data structures in these problems are 64 times larger than in a 163

sized problem. This code relies on side-effecting in I-structures, and updating in

place in M-structures (Barth, et al., 1991).

A main cause of space inefficiency in the current Id implementation is the lack of

automatic deallocation and garbage collection. Deallocation must be programmed

https://doi.org/10.1017/S0956796897002621 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002621

On the effectiveness of functional language features 111

Table 1. Heap space (in Kbytes) used in the Id versions without deallocation

Problem Size Cop-Rec Cop-Iter Sel-Rec Sel-Iter Cop-Iter (Asl)

83 1136 1056 832 824 3501

163 12120 9200 7080 6888 xxx

323 xxx xxx xxx xxx xxx

explicitly using the @release directive. In order to synchronize production, con-

sumption, and release of closures and data structures, barriers (−−−) are needed.

In a block, all expressions preceding a barrier are completely evaluated before any

expression following the barrier starts evaluating. A @release X directive in a block

without an explicit barrier has the effect of releasing X after the whole block has

been evaluated. We have implemented explicit deallocation for data structures as

well as closures in our matrix of vector codes. We refrained from explicit dealloca-

tion in the association list code, as it was only created to show that Id has the same

expressive power as Haskell with respect to the sharing problem, but clearly does

not compete in terms of efficiency with the matrix of vector codes. With explicit

deallocation, the fft function from the previous section becomes:

typeof fft = (I -> F) -> I -> Vector F -> I -> Vector F;

def fft fv size RofU fwd =

if (size == 4) then ... bottom case ... else

{ (left_fv, right_fv) = shuffle fv size;

fft_left = fft left_fv (div size 2) RofU fwd;

fft_right = fft right_fv (div size 2) RofU fwd;

@release left_fv; @release right_fv;

res = combine fft_left fft_right

@release fft_left; @release fft_right

in res};

};

The heap structures, in this case both closures (left fv and right fv) and arrays

(fft left and fft right), are released as soon as possible.

Since any heap structure needs a name if it is to be released, Id programs tend

to be written in an incremental style rather than a compositional style. When

dynamic functions are created through partial application, each argument uses heap

space, and if that space is to be released, each application of an argument must

be separately named. Furthermore, sometimes the arguments are not evident in the

source code but are introduced by the compiler through lambda lifting. A simple

example shows how this can occur and how it can lead to space leaks.

typeof test = I -> I -> I;

def test a b = { @release g;

g = {fun i = (a-i)*b}

in h g (a+b)};

https://doi.org/10.1017/S0956796897002621 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002621

112 J. Hammes, S. Sur and W. Böhm

Table 2. Heap space (in Kbytes) used in the Id versions with deallocation

Problem Size Cop-Rec Cop-Iter Sel-Rec Sel-Iter

83 160 168 176 176

163 1320 1248 1320 1296

323 22048 9832 22184 10008

The test function above allocates two heap closure objects for g, one for the partial

application of a and one for the partial application of b, but it releases only the

second one. Since the first one is unnamed, it cannot be released. The programmer,

in the source program, can release both heap objects through explicit lambda lifting

and naming of each application, as follows:

typeof test = I -> I -> I;

def test a b = { @release g’; @release g;

f = {fun a b i = (a-i)*b};

g’ = f a; g = g’ b

in h g (a+b)};

The selection functions exhibit this kind of behavior. For example, in

{fun i = x[i,j,k]}

the variables x, j, and k each use heap space; the three applications must be explicitly

named and eventually released.

Table 2 shows the space requirements of our codes with explicit deallocation.

The space use is considerably reduced, and is now between five and ten times the

absolute minimum. To reduce the memory requirements further, the Id compiler

would need to perform Build and Update in Place optimizations, as is done in the

Sisal compiler (Cann, 1992).

For problem size 323 we begin to see that the iterative codes are more space

efficient than the recursive codes. This is because no intermediate shuffle structures

are required, and fewer intermediate butterfly structures (all of the same size) are

created.

Work on compiler directed storage management for Id, based on abstract inter-

pretation, is described in Hicks (1993). This approach has the drawback that the

compiler cannot always determine whether an object passed into (or returned from)

a recursive function has been created anew or is old. If it is old, the object cannot

safely be deallocated. This occurs for example in the bottom level of an fft function

whose base case is size one. In the base case it returns the old object; otherwise it

recursively creates a new object, meaning it is safe to release the old object. This

problem is discussed in more detail in Böhm and Hiromoto (1993).

https://doi.org/10.1017/S0956796897002621 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002621

On the effectiveness of functional language features 113

Table 3. Megacycles for COP-ITER, f77 on MIPS R3000 versus Id on Monsoon

Problem Size f77 on MIPS R3000 Id on one PE Monsoon

83 3.3 26

163 25.2 192

323 174.2 1583

4.2 Time analysis

The Monsoon machine can be made to count cycles spent in certain parts of

the program during execution. It can also report the number of cycles spent in

various classes of instructions. Details of the Monsoon and its monitoring system are

described in Hicks et al. (1993). Here we simply report the total number of Monsoon

Megacycles spent in executing a program. The Monsoon is a ten Megahertz machine,

so dividing the reported numbers by ten gives the number of seconds spent.

Table 3 compares the number of megacycles spent in the Id copy/iteration version

with deallocation running on a one processor Monsoon Machine to the Fortran 77

version of the code that comes with the NAS distribution, running on a DEC

Station 5000, which contains a MIPS R3000 processor. This baseline performance

comparison of MIPS R3000 and Monsoon is discussed in detail in Hicks et al.

(1993). The MIPS R3000 requires about nine times fewer cycles than the Monsoon.

The Id codes are not optimal because efficiency enhancing non-functional features

such as I-structures and M-structures were not used.

In Fortran 77 a three-dimensional object is allocated in a contiguous area in mem-

ory, which allows one-, two- or three-dimensional indexing. A three-dimensional FFT

is performed in three stages, each stage performing n1 × n2 one-dimensional FFTs,

just as in the functional code. Between these stages, transpositions are performed by

actual copying, which is not done in the functional code. (We assume that the extra

copying in Fortran is done for cache performance reasons.) Each one-dimensional

FFT is then performed by copying a slice out of the three-dimensional object, per-

forming a one-dimensional FFT on the copy, and copying the result back into the

three-dimensional object. A different one-dimensional FFT algorithm (Stockham) is

used.

See Tables 4 and 5 for the time performance of our codes. These tables show that

deallocation for the iterative codes does not seriously affect time performance. The

deallocating recursive codes, however, show an excessive increase in time require-

ments for the 323 problem, and we believe this to be caused by the heap manager.

To see the overall effect of the manager, we ran a simple experiment with three

simple functions, up, down and level, which allocate space in increasing, decreasing,

and unchanging block sizes. For a given value of n, all three functions allocate the

same total volume of space.

https://doi.org/10.1017/S0956796897002621 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002621

114 J. Hammes, S. Sur and W. Böhm

Table 4. Megacycles spent in the Id versions without deallocation

Problem Size Cop-Rec Cop-Iter Sel-Rec Sel-Iter Cop-Iter (Asl)

83 19 25 23 54 78

163 153 199 201 425 xxx

323 xxx xxx xxx xxx xxx

Table 5. Megacycles spent in the Id versions with deallocation

Problem Size Cop-Rec Cop-Iter Sel-Rec Sel-Iter

83 23 26 25 54

163 251 192 232 414

323 98769 1583 75895 3300

def up n = { s = 0 in

{for i <- 1 to n do next s = s + f i; finally s }};

def down n = { s = 0 in

{for i <- n downto 1 do next s = s + f i; finally s }};

def level n = { s = 0 in

{for i <- 1 to (div n 2) do next s = s + f n; finally s }};

def f i = { @release a; a = {array (1,i) of | [1] = 1 }; in a[1] };

Figure 3 displays the megacycles for these functions for n from 100 to 4800, and

shows that there is a large discrepancy between manipulating objects of the same or

decreasing size versus objects of increasing size. This behaviour explains the large

time performance difference between the iterative and recursive codes. For each

one-dimensional fft the iterative codes perform O(log(n)) cheap allocates of equal

sized objects, whereas the recursive codes perform O(n) cheap allocates of objects of

decreasing size, and O(n) expensive allocates of objects of increasing size.

5 Haskell implementations and performance

In this section, the following definitions are assumed:

type Element = Complex Double

type Vector = Array Int Element

type Threedim = Array (Int, Int, Int) Element

type Matrix_of_Vectors = Array (Int, Int) Vector

type Sel_func = Int -> Element

https://doi.org/10.1017/S0956796897002621 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002621

On the effectiveness of functional language features 115

up

down

level

Mcycles x 103

3n x 10

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

0.00 1.00 2.00 3.00 4.00 5.00

Fig. 3. Megacycles for up, down and level for varying n.

5.1 Three-dimensional arrays as intermediate structures

In the Haskell codes, the most straightforward approach uses three-dimensional

arrays as the intermediate structures between the FFTs performed in each dimension.

The structure of the three-dimensional FFT function, using the copy technique for

slicing, looks like this:

cffts_i :: Three_dim -> Three_dim

cffts_i x = array ((1,1),(n2,n3)) [(j,k) :=

let

vect = array (1,n1) [i := x!(i,j,k) | i <- [1..n1]]

g (i := v) = (i,j,k) := v

in map g (assocs (fft vect rofu_i fwd))

| j <- [1..n2], k <- [1..n3]]

cffts_j :: Three_dim -> Three_dim

cffts_j x = array ((1,1),(n1,n3)) [(i,k) :=

let

vect = array (1,n2) [j := x!(j,k)!i | j <- [1..n2]]

g (j := v) = (i,j,k) := v

in map g (assocs (fft vect rofu_j fwd))

| i <- [1..n1], k <- [1..n3]]

https://doi.org/10.1017/S0956796897002621 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002621

116 J. Hammes, S. Sur and W. Böhm

cffts_k :: Three_dim -> Three_dim

cffts_k x = array ((1,1),(n1,n2)) [(i,j) :=

let

vect = array (1,n3) [k := x!(i,k)!j | k <- [1..n3]]

g (k := v) = (i,j,k) := v

in map g (assocs (fft vect rofu_k fwd))

| i <- [1..n1], j <- [1..n2]]

cfft3d :: Three_dim -> Three_dim

cfft3d = cffts_k . cffts_j . cffts_i

The fft function produces an array, which is transformed into an association

list by assoc. The rofu arrays are the precomputed roots of unity, and fwd is a

forward/reverse FFT selector. The vect arrays are the slices formed by copying.

The cfft3d function is formed as a composition of the three functions. Each array

returned by the one-dimensional fft is decomposed to its association list form. Then

a one-dimensional-to-three-dimensional function g is applied to its elements, and all

the lists are concatenated to form a true three-dimensional array. Semantically this

creates intermediate lists that will consume space and time. However, deforestation

in a compiler may be able to eliminate the intermediate lists and copy the elements

directly from the vectors to the three-dimensional array.

Since the vectors from the one-dimensional ffts are simply broken down to

association lists, it might seem sensible to eliminate the array itself and have the

one-dimensional fft return an association list instead. However, the one-dimensional

fft uses arrays internally as it iterates or recurses, and the final array is a natural

result of that process. While it is possible to eliminate the arrays within the one-

dimensional fft and instead to use association lists exclusively, the resulting code is

more complicated and obscure because list elements must be ordered so as to bring

elements together for use at the right times. This order is implicit and is not evident

when looking at the code, making it difficult for a reader to understand how the

code works. The advantage of arrays over lists in FFT codes arises out of the ability

to use elements in an order that is different from that in which they were produced.

5.2 Matrix-of-vector intermediate structures

It is possible to eliminate the three-dimensional intermediate arrays by simply

gathering, in a matrix, the vectors returned by the one-dimensional fft. The consumer

of that matrix of vectors must then be modified to access that structure. This results

in the following code:

fft :: Vector -> Array Int Element -> Int -> Vector

cffts_i :: Threedim -> Matrix_of_Vectors

cffts_i x = array ((1,1),(n2,n3)) [(j,k) :=

let vect = array (1,n1) [i := x!(i,j,k) | i <- [1..n1]] in

fft vect rofu_i fwd | j <- [1..n2], k <- [1..n3]]

https://doi.org/10.1017/S0956796897002621 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002621

On the effectiveness of functional language features 117

cffts_j :: Matrix_of_Vectors -> Matrix_of_Vectors

cffts_j x = array ((1,1),(n1,n3)) [(i,k) :=

let vect = array (1,n2) [j := x!(j,k)!i | j <- [1..n2]] in

fft vect rofu_j fwd | i <- [1..n1], k <- [1..n3]]

cffts_k :: Matrix_of_Vectors -> Matrix_of_Vectors

cffts_k x = array ((1,1),(n1,n2)) [(i,j) :=

let vect = array (1,n3) [k := x!(i,k)!j | k <- [1..n3]] in

fft vect rofu_k fwd | i <- [1..n1], j <- [1..n2]]

cfft3d :: Threedim -> Matrix_of_Vectors

cfft3d = cffts_k . cffts_j . cffts_i

The cffts i function takes a true three-dimensional array, whereas the cffts j and

cffts k functions take a matrix-of-vectors. The vectors that are returned by the one-

dimensional fft are collected into matrices. Though it is not shown here, the actual

code takes the final matrix of vectors and builds a true three-dimensional array as

the return value of the cfft3d function.

The structure of the selection function version is similar:

fft :: Sel_func -> Int -> Array Int Element -> Int -> Vector

cffts_i :: Threedim -> Matrix_of_Vectors

cffts_i x = array ((1,1),(n2,n3)) [(j,k) :=

let f i = x!(i,j,k) in

fft f n1 rofu_i fwd | j <- [1..n2], k <- [1..n3]]

etc...

The selection function f and the dimension size n1 replace the copied vector. The

dimension size is needed here because the selection function does not carry bounds

information, whereas in the copy version the fft function could look at the bounds

of the copied array to get the size.

Since the recursive one-dimensional fft must shuffle its source array into two

subarrays, the selection version of the code must have a shuffle function that takes

the selection function and returns two new selection functions, one for each of the

two subarrays:

shuffle :: Sel_func -> (Sel_func, Sel_func)

shuffle f = ((\i -> f ((i*2)-1)), (\i -> f (i*2)))

5.3 Space analysis

Both the Glasgow and Chalmers Haskell compilers allow heap profiling, which can

produce snapshots of the heap at various times during the program’s execution.

The Glasgow profiling can be broken into cost centres (Sansom and Peyton-Jones,

https://doi.org/10.1017/S0956796897002621 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002621

118 J. Hammes, S. Sur and W. Böhm

Table 6. Peak heap use (in Kbytes) for Haskell versions with three-dimensional

intermediate forms

Problem Size Cop-Rec Cop-Iter Sel-Rec Sel-Iter

Glasgow 83 483 441 464 426

163 4908 4380 4516 4013

Chalmers 83 804 834 623 691

163 6300 7038 5115 5828

Table 7. Peak heap use (in Kbytes) for Haskell versions with matrix-of-vector

intermediate forms

Problem Size Cop-Rec Cop-Iter Sel-Rec Sel-Iter

Glasgow 83 432 402 463 413

163 4524 3667 4513 3807

Chalmers 83 375 404 356 398

163 3330 3490 3214 3496

1994) that are specified by the programmer and allow attention to be focused on

specific areas of interest within the program. All the programs were compiled with

-O optimization.

Table 6 shows the peak heap consumption of the Haskell codes that use three-

dimensional intermediate arrays, and Table 7 shows the same information for the

matrix-of-vectors codes. These tables also compare the Glasgow and Chalmers

compilers. The Chalmers executables favour selection/recursion, and perform worst

for copy/iteration, especially with three-dimensional intermediates. In contrast, the

Glasgow executables favour selection/iteration, and perform worst for copy/recur-

sion. It is interesting to note that Chalmers is significantly worse than Glasgow for

the three-dimensional intermediates, whereas it tends to be better than Glasgow for

matrix-of-vector intermediates.

The result of each benchmark is a set of checksums that are computed by summing

selected elements of the three-dimensional fft result arrays. This means that lazy

evaluation is probably leaving some elements of the arrays unevaluated if they aren’t

demanded by the checksum, and it also means that strictness analysis will conclude

that the array elements are non-strict. However the intent of the checksums in the FT

benchmark is to get a compact ‘signature’ of the ffts, not to prevent some elements

https://doi.org/10.1017/S0956796897002621 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002621

On the effectiveness of functional language features 119

a.out +RTS -hC -i0.04 -RTS 422,022,577 bytes x seconds Mon Nov 6 15:33 1995

seconds0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0

by
te

s

0k

500k

1,000k

1,500k

2,000k

2,500k

3,000k

3,500k

4,000k

Fft:1d_assocs

Fft:1d_array

Fft:3d_result

Support:CAFs_in_...

Fft:mat_of_vect

Main:main

Fft:val

Fig. 4. Heap profile for 163 copying, recursive version (Glasgow).

from being computed, so a strict evaluation of all array elements is appropriate and

should lead to more efficient heap performance, as will now be shown.

Non-strict arrays require the presence of thunks, which are unevaluated expres-

sions. In Haskell an array is created from an association list that is strict in its indices

but not in its values. This allows allocation of space for the array, but requires that

the array’s elements start out as thunks. When an array element is subsequently

demanded, its thunk is evaluated and the value goes into the array in its place. The

problem is that thunks take more space than array elements. Figure 4 shows the

heap profile for the Glasgow 163 copy-recursion code. To help understand the space

cost of thunks, the following cost centres were established:

• mat of vect: the intermediate matrices, but not the one-dimensional vectors

they contain

• 1d in: the slice copies sent to the one-dimensional fft

• 3d result: the true three-dimensional result array

• 1d array: the arrays returned from the one-dimensional ffts

• 1d assocs: the association lists for the one-dimensional ffts, not including the

values in the association lists

• val : the values in the one-dimensional association lists

• main: everything else

The 1d assocs cost centre contains the lists (but not the values) used in the

concatenated two-element lists that implement sharing (see section 3). It is not easy

to determine exactly where a compiler succeeds in deforesting, but the existence

of this band indicates that these association lists have not been deforested by this

https://doi.org/10.1017/S0956796897002621 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002621

120 J. Hammes, S. Sur and W. Böhm

Table 8. Peak heap use (in Kbytes) for strict Haskell versions (Chalmers)

Problem Size Cop-Rec Cop-Iter Sel-Rec Sel-Iter

83 94 86 92 89

163 755 713 743 698

323 5988 6102 6170 6048

compiler. Nevertheless, it is interesting to note that this cost centre represents a

small part of the heap requirements, leading to the conclusion that association list

deforestation would not significantly improve the heap performance of the programs.

The val cost centre, which is the top white band, represents only the array

elements returned by the one-dimensional fft (including its intermediate arrays that

occur during iteration or recursion), and the profile shows that more than half of

the peak heap requirement is attributed to these array values. The white part of the

first and biggest peak contains the values used in V and in the first X array (see

Figure 1). After the first X and its checksum have been computed, the white space

consists only of V ’s contents, which by then have been evaluated. The white area

of the remaining five peaks represents the contents, at first as thunks and then as

values, of the remaining X arrays. The fact that the heap use drops so dramatically

between peaks suggests that the large val area in the first peak must be attributed

not only to the values in these arrays, but mainly to the space requirements of the

thunks, since the trough between peaks contains the evaluated contents of V . (Its

values are needed through all six iterations.)

To measure the effects of strict arrays, the Chalmers compiler was used to compile

versions of these codes in which the value in every array association is annotated

as strict. Table 8 shows that the peak heap requirements are reduced by as much

as 80% over the lazy versions. This made it feasible to run the 323 problem that in

non-strict evaluation simply consumed too much space. There are no clear winners

among these strict codes; their heap requirements are very similar.

5.4 Time analysis

Table 9 shows the time performance of the codes that use three-dimensional in-

termediate structures. Both Glasgow and Chalmers favour the selection/recursion

code, and both show the copy versions performing worse than the selection versions.

Glasgow outperforms Chalmers in all four versions.

Table 10 shows the time performance for the matrix-of-vector codes. Both com-

pilers again favour selection/recursion, and perform worst for copy/recursion. Per-

formance improvement over the three-dimensional intermediates ranges from about

20 to 40%.

https://doi.org/10.1017/S0956796897002621 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002621

On the effectiveness of functional language features 121

Table 9. Execution time (seconds) for Haskell versions with three-dimensional

intermediate forms

Problem Size Cop-Rec Cop-Iter Sel-Rec Sel-Iter

Glasgow 83 1.68 1.68 1.38 1.42

163 17.6 15.0 13.5 14.7

Chalmers 83 2.04 2.26 1.78 2.24

163 24.9 27.2 17.9 23.1

Table 10. Execution time (seconds) for Haskell versions with matrix-of-vector

intermediate forms

Problem Size Cop-Rec Cop-Iter Sel-Rec Sel-Iter

Glasgow 83 1.22 1.26 0.96 1.12

163 13.9 11.7 10.3 11.1

Chalmers 83 1.72 1.88 1.46 1.78

163 16.7 16.5 13.1 16.1

Table 11. Execution time (seconds) for strict Haskell versions (Chalmers)

Problem Size Cop-Rec Cop-Iter Sel-Rec Sel-Iter

83 2.04 2.18 1.70 2.02

163 16.8 17.3 14.5 16.6

323 288.7 240.0 207.4 238.8

Table 11 shows the time performance for the strict array codes compiled with the

Chalmers compiler. The performance is slightly worse than the lazy codes. Again,

selection/recursion is favoured and copy/recursion is the poorest performer.

The Fortran FT code was also run on the same machine, allowing comparison

of its performance with that of Haskell. Table 12 compares the best of the Haskell

codes (Glasgow-lazy for 83 and 163, and Chalmers-strict for 323) with Fortran.

6 Conclusion

In writing the NAS FT benchmark in Haskell and the purely functional subset of

Id, three important lessons were learned.

https://doi.org/10.1017/S0956796897002621 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002621

122 J. Hammes, S. Sur and W. Böhm

Table 12. Comparison of Haskell and Fortran time performance

Problem Size best Haskell Fortran ratio

83 0.96 0.20 4.8

163 10.3 1.60 6.4

323 207.4 13.43 15.2

The first lesson is that these languages still have quite inefficient implementations,

with respect to both space and time. For the largest problem we could run (323),

Haskell is 15 times slower than Fortran and uses three times more space than is

absolutely necessary, whereas Id on Monsoon uses nine times more cycles than

Fortran on the MIPS R3000, and uses five times more space than is absolutely

necessary. For Haskell, deforestation might improve the space efficiency slightly,

but more serious space efficiency was gained by strictifying the array values. In Id,

deallocation needs to be explicitly programmed, and the heap management run time

system’s implementation can give rise to serious time inefficiencies when increasing

sized objects are allocated, as happens in the recursive codes.

The next lesson is that, while slice selection is expressible as a selection function,

the slice targeting problem is not as elegantly solved. The most natural intermediate

structure in these codes, a three-dimensional array of complex numbers, requires

explicitly decomposing the one-dimensional array into its associations and mapping

them to three-dimensional associations. While deforestation might eliminate the

intermediate lists in this process, it will not allow the fft function to put its final

values directly into the three-dimensional object. An alternate view is to add slicing

constructs to the language, which could allow compilers to do produce more efficient

slicing code. The idea of slice selection and assignment in languages is not new:

languages such as Algol 68 and APL treat slices as first class array objects.

The third lesson is that, as in all programming languages, the choice of algorithm,

data representation, and programming style influence the efficiency of the final code,

and conversely, the relative efficiency of certain language features influences the

programming style. This encourages Id programmers who are concerned with the

efficiency of their codes to use explicit I-structures and M-structures (Sur and Böhm,

1994).

In future work we will investigate the expressiveness and efficient implementation

of other functional programming languages such as pH, which will provide paral-

lelism and a more eager evaluation mechanism than Haskell, and Sisal, which allows

strict evaluation, efficient array manipulation, and parallel implementation across a

large spectrum of parallel machines.

7 Obtaining source code and documentation

The source codes are available by anonymous ftp from schubert.cs.colostate.edu ,

directory pub/FT functional . The NAS FT benchmark specification requires that

https://doi.org/10.1017/S0956796897002621 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002621

On the effectiveness of functional language features 123

the program itself generate the array data, so the only required inputs are the three

dimensions of the three-dimensional object.

Acknowledgements

Arvind and Nikhil pointed out the selection function approach as an alternative to

copying. Simon Peyton Jones pointed out that association lists allow the expression

of sharing, and Andy Gill explained the behavior of the deforestation algorithm in

the Glasgow Haskell compiler.

References

Arvind, Nikhil, R. S. and Pingali, K. K. (1989) I-structures: Data Structures for Parallel

Computing. ACM Transactions on Programming Languages and Systems , 11(4), 589–632.

Bailey, D. et al. (1991) The NAS Parallel Benchmarks. Report RNR-91-002 revision 2, NASA

Ames Research Center.

Barth, P. S. and Arvind Nikhil, R. S. (1991) M-structures: Extending a parallel, non-strict,

functional language with state. Proc. FPCA, Cambridge, MA, August.

Böhm, A. P. W. and Hiromoto, R. E. (1993) Dataflow Time and Space Complexity of FFTs.

J. Parallel and Distributed Computing, 18.

Bollman, D., Sanmiguel, F. and Seguel, J. (1992) Implementing FFT’s in Sisal. Proc. Second

Sisal Users Conference, December. LLNL Report CONF-9210270.

Cann, D. (1992) Retire Fortran? A Debate Rekindled. Communications of the ACM, 35(8),

81–89.

Feo, J. and Cann, D. (1993) Developing a high-performance FFT algorithm in Sisal for a

vector supercomputer. Proc. Sisal’93 , October. LLNL Report CONF-9310206.

Gill, A., Launchbury, J. and Peyton-Jones, S. (1993) A Short Cut to Deforestation. Proc.

Functional Programming Languages and Computer Architecture, Copenhagen, June. ACM

Press.

Hicks, J., Chiou, D., Ang, B. S. and Arvind Nikhil, R. S. (1993) Performance studies of Id on

the Monsoon dataflow system. J. Parallel and Distributed Computing , 18, 273–300.

Hicks, J. (1993) Experiences with Compiler-Directed Storage Reclamation. Proc. Functional

Programming Languages and Computer Architecture, Copenhagen, June. ACM Press.

Hudak, P. and Fasel, J. (1992) A gentle Introduction to Haskell. ACM SIGPLAN Notices,

27(5).

Hudak, P., Peyton Jones, S. and Wadler, P. (eds). (1992) Report on the Programming Language

Haskell, A Non-strict Purely Functional Language (Version 1.2). ACM SIGPLAN Notices,

27(5).

Nikhil, R. S. (1990) Id Version 90.0 Reference Manual. Computational Structures Group Memo

284-1, MIT.

Sansom, P. and Peyton-Jones, S. (1994) Time and Space Profiling for Non-Strict Higher-Order

Functional Languages. POPL 1995 (submitted).

Sur, S. and Böhm, A. P. W. (1994) Functional, I-structure, and M-structure Implementations

of NAS Benchmark FT. Proc. PACT’94, Montreal, Canada, August.

van Loan, C. (1992) Computational Frameworks for Fast Fourier Transform. SIAM Frontiers

in Applied Mathematics .

https://doi.org/10.1017/S0956796897002621 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002621

