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Introduction. Consider the following problem of Lagrange 

in the calculus of var ia t ions: relat ive to diffèrentiable curves x (t) 

satisfying x (t ) = x and x (t ) = x find a curve minimizing 

f f F{x ,x , \ }d t 

(1) \ subject to the r e s t r a in t* 

\ - Fix*,*?, \} =0 and X.(t ) =0 

By integrating the equation of r e s t r a in t in (1) it follows that the 
problem of Lagrange can be re-formulated: minimize X(t ) 

given by the integral equation 

t 
1 

( I 1 ) M t ) = f F{x*(t). i*(t>.X(t)}dt 
1 « . 

relat ive to the same curves as before. Assume that F is 

* • or . o r 

If the r e s t r a in t were of the form X - F(x , x ) = 0, this 
would be a special case of A. Lichnerowicz, Les espaces 
variat ionnels généra l i sés , Ann. Sci. Ecole norm. sup. (3) 
62, 339-384 (1945). 
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positive homogeneous of degree one (briefly plus-one) in the 

.<* 2 

x so that F is plus-two while 

t?\ t Q *a ^^ 1 a Z F 2 1 rZ 

(2) g. . (x , x ,X) = : 7 = - F 
i;i 2 A j A i 2 . i . j 

o x o x x x 
. or 

is p lus-zero in x . The standard proper t ies of homogeneous 
functions (see [1]) imply that (1 ' ) may be writ ten in the form 

t . . 1/2 
(3) X(t) = f {g. .(xÛ ' ,x a ,X)x1x J} d r . 

Given a curve , (3) defines its X-length and the ex t remals 
of (3) define geodesies and distances in a geometry which will 
be called symmetr ic F ins ler fatigue. If the g.. a r e independent 

of x , the geometry becomes symmetr ic Riemann fatigue. 
The word symmetr ic is used here to s t r e s s the fact that as 
given by (2) the g.. a re symmetr ic . The present paper is 

pr imar i ly concerned with the differential geometry of sym
met r ic Riemann fatigue. Symmetr ic Fins ler fatigue is studied 
in [2], while non-symmetr ic Riemann fatigue (except for the 
brief comments concluding this paper) will be studied in a 
lat ter paper. Its motivation will be seen in (iv) below. 

9g.. 
It will be seen that the t ensors g and 3 g = J 

ij x ij ax 
play a fundamental role . Tensors formed from only the g 

i j 

and its derivatives with respec t to x a re called conservat ive; 
if B g . or its derivatives appear , the tensor is called d i ss i -

X ij 
pative. The principle resu l t s of the present paper a r e : 

(i) a distinction between conservative and dissipative 
covariant differentiation denoted respect ively by A' ' . and 

A** . ; 
• • . i 

(ii) the ex t remals of (3), or geodesies, depend on 3 g.. 
X ij 
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and a r e d i s s i p a t i v e . C o o r d i n a t e t r a n s f o r m a t i o n s l e ave \ 
i n v a r i a n t , be ing the l eng th of a c u r v e , and hence l ead to con
s e r v a t i v e t e n s o r s . The equa t ion 

def ines g e o d e s i e s for € = 1 and a u t o - p a r a l l e l c u r v e s for € = 0 ; 

(iii) a c o n s e r v a t i v e c u r v a t u r e t e n s o r R., hav ing a l l the 
o jk i 

p r o p e r t i e s u sua l ly found in R i e m a n n i a n g e o m e t r y r e l a t i v e to 
c o n s e r v a t i v e d i f f e r en t i a t i on ; a d i s s i p a t i v e c u r v a t u r e t e n s o r 

R wi th the p r o p e r t i e s 
j k i 

R . . = R * . 
i j ija 

F . . = R a . . = R . . - R. . = - F . . 
!J <*ij J1 iJ J1 

F , + F . , . + F . . = 0 
I J , K j k , i k i , j 

i j | k j k j i k i | j 

a 
(iv) if in add i t ion it i s a s s u m e d t h a t for f ixed x the 

g . . (x , \) v a r y p r o p o r t i o n a t e l y wi th X ( c o n f o r m a i t a n g e n t 

s p a c e s ) t hen the g e o d e s i e s and a u t o - p a r a l l e l c u r v e s equa t ion 
m a y be w r i t t e n 

ox1 

6t 2 ë V \ ë q 3 

whi le the g e o d e s i e s b e c o m e 

g = px where p = 9. g 3 -̂̂  *• 
, or X or p 

if \ i s an appropriate solution of the Hami l ton-Jacobi equa t ion . 
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In view of (iv) and the analogous equations of e lec t ro-magnet ic 
theory, the significance of a non-symmet r i c Riemann fatigue 
geometry is c lea r . 

Pre l iminary Theorems . 

LEMMA i . The Euler -Lagrange equations associated 
with (1) or ( i 1 ) a re 

(4) ~ F . - F . = F F . 
dt # i i .1 X 

X X X 

Proof. Consider JJL as Lagrange mult ipl ier and set 

G = F + n(X-F). Then ^ - ( G . ) - G , = 0 and ~ (G- ) - G, =0 
dt %i î dt X X 

x x 
become 

f i F . = (i-\i)(~ F . - F .) and ji = ( l - ^ ) F . 
, i a t • î î \ 
X X X 

Eliminating \i and (1-p.) yields the lemma. 

et 
Since the g..(x ,X) in the express ion 

t . . 1/2 
Mt) = / { g . ^ X l x V } dr 

depend on x and on X which in turn may also be a function 
a * 3 

of x f for clari ty let 9 =—— always imply X fixed and let 
k Q K 

à x 
D=D, denote 

k k 
x 

ÛT 

the total par t ia l derivative with r e spec t to x . The operation 
D implies of course a specified function X(xa). With this 

xC 

convention we may state the following 
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THEOREM 1. In symmetric Riemann fatigue the Euler-
Lagrange equations (geodesic equations) maybe written in the 
form 

where 

6x iaa .6 1 a .a.Q.i 

ir= "g \ V + 28xVxx 

• 1 

6x ..i i .j .k 

sT = x + W x 

Yjk " 2 g ' j g ak + kg
ffj " <*gjk' 

and where the parameter is chosen such that 

1/2 

* = ië^) = 1 . 

Proof. An immediate result of substituting 
. . 1/2 

F = {g..x1i3} into (4). 

In [3] it is shown that given a function H{ x , p , X} 
2 ° 

which is plus-one in p and such that det(H ) f 0, one can 
PiPj 

always associate a Lagrangian F{x , x , X} , plus-one in x , 
such that the characteristic equations of the partial differential 
equation 

(5) H{x ,p ,X} = 1 » where p =d X , 
a a a 

coincide with the Euler- Lagrange equations associated with (1) 
or (1? ). Since the present paper is concerned with Riemann 
fatigue it suffices to show that the function 

1/2 
(6) H{x ,pa ,X} = {g J (x ,X)p iPj} 
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. . 1/2 
i s a Hamiltonian for F{ x , x f X } = { g . . ( x , X ) x x } . Here 

g denotes the inverse m a t r i x of g. . , a s s u m i n g a s a lways 

that det(g. . ) t 0 . 
y 

LEMMA 2. The c h a r a c t e r i s t i c equations of the partial 
differential equation 

i- a i,Z 

(7 .1 ) {g 1 J (x f f ,X)p .p . } = 1 , where p. = 3 . X , 
i J i i 

can be writ ten in the form 

(7 .2 ) x1 = g1 Jp. , implying p. = g..*3 , 

(7-3) p i = -2fr p a p p"2-fr-Vp p i ' 
ox 

1/2 
(7 .4 ) X = { g ^ p . p . } = 1 . 

Proof. The c h a r a c t e r i s t i c equations for the genera l 
equation (5) are given by [4] 

X = S p H = H by homogene i ty , 
A a P 

x1 = H 
P i 

p. = - H . - p.H. , 
l i i X 

x 

so that (7. 2) , (7. 3) and (7. 4) fo l low immedia te ly given (7. 1 ) . 

If (7. 1) i s to be the Hamilton- Jacobi equation a s s o c i a t e d 
with (1) or ( l f ) , one has m e r e l y to prove the fol lowing 
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THEOREM 2. The characteristic equations (7.2) and 
(7. 3) coincide with the Euler- Lagrange equations as given in 
Theorem 1, so that (6) defines the Hamiltonian and (7. 1) the 
Hamilton- Jacobi equation in symmetric Riemann fatigue. 

Proof. By (7. 2) p. ^g. .* 1 , so that 

9 g 3 g 

p. = —*- x x + a * *xr + g. . 
1 a k 9 * 1J 

ori J 
But by (7. 4), X = 1. Finally, since g. g = 6., it follows that 

i a l 

a i g V p = g
a k g pj 9 i g ^ x = " a i g jk^ x 

and, similarly, 

X or (3 l X j k i a 

Substituting in (7.3) yields 

g..** + * g . A k - ^ . g . ^ x k = -a g..^ +|». g.-g. À V , 
&ij k*ij 2 l^jk X °ij 2 X jk ia 

proving the t h e o r e m . 

A solution of (7. 1) which i s z e r o on a s e t P wi l l be 

ca l led a distance function from P , and the g e o d e s i e s which 

coincide with the corresponding c h a r a c t e r i s t i c s (7. 2) and (7. 3) 

wi l l be ca l l ed X-geodes ies f rom P . 

T e n s o r s in Riemann Fat igue. To recapitulate the m a i n 
formulas 

. . 1 /2 
F{xa ,x*,X} =. {gj.fx^X)*1*?} 
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H { x a , p ,X} = {g1 J(xa ,X)p.p.} 
a l j 

1/2 

where g and g.. are symmetric inverse matrices. If X is 

a distance function and x*(t) the corresponding X- geodesic then 

/ 0 , . i ij ij 3X 
(8) x = g V = g — r • 

J a*3 

The geodesies are given by 

(9) 

where 

ôx1 i * ~ .ar .p . i ia .p 
= — 9. g x x x - g 9 g nxT , ôt 2 X *ap X&*p 

ôx „i i .j .k 
— = x + ^ x 

provided the parameter i s chosen such that X = 1. Finally 

ap 
(10) 

and 

a, g . = - g . g a% g 

a , g . . = - g . g . f l
a t g 

k i j îûf jp k 

Since the v., are defined in terms of a implying X 
j k i 

fixed, many of the standard identities from Riemannian geometry 
carry over. In particular [5] 

f 

(ID { 

9 Q & 

kgij = g o j v i k + gaiVjk 

v . = 3 . log sTe where g = det g.. , 
ca i i j 
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(assuming g positive» otherwise */̂ g and 

ila) ) on 

Since (3) or (31 ) defines a functional on curves, X is 
invariant under coordinate transformations. Denoting the new 
coordinate system by primed indices it follows that the g.. 

transform according to 

(13) g . t . f ( x * \ x ) = A*fA
3!fg..(x*,X) . 

(This assumes that the coordinate transformation does not 
depend on X , an assumption made throughout the remainder.) 
Differentiating with respect to X implies 

BV y i j Bij 
( 1 4 ) OX = A i tAjt Bx 

»g.. 11 
so that g.. and a * are tensors. 

y 8X 

Perform the operation D on both sides of (13). It will 
JK. 

be seen below that the result is the same whether D, . or 9 , , 
k' k1 

is used» Since D„ ,A„ = B A.t f the transformation not 
k* j 1 k' j f 

depending on X , one obtains 

D v,g . , - , s ^^MA ï t (D i .8--> + ^ v t A M 8 . . + A^fA
J.tlrlg.. 

k' i f j f i* j * k* k ij i f k f j * i j i f J k1 i j 

By cyclic permutation this yields 

U5) ( D . , ^ . , + D i f g j f k l - D k i g l t j I ) 

• 4 4 4 {Dj%d+Dî k - * w + * 4 j. 4 «y • 
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d 

However, expanding D. t = 9 ., + -r— • & .. *>i it follows that the 

left side of (15) can be writ ten 
(9 g + 3 g - 3 g ) + (8 g 3 X + 3x g 3 X 
v j t ^ k ' i 1 i» * j ! k ! k ' ^ i ' j 1 ' v X ë k f i f j 1 X^j'k1 if 

- 3 . a 3 X) . 

In view of (14), the second t e r m becomes 

which cancels with the corresponding t e r m on the right of (15), 
verifying the previous statement that 3 m could replace D.. 

Hence (15) reduces to simply 

(16) { i ' j ' .k -} = AJ.AJ.A* {ij,k} +AJ t j tA
J

k ,g i j , 

where { i j ,k} is the Christoffel symbol of the f i rs t kind 
a 

g, V..- Equation (16) is identical to the Riemannian case , 
k a ^ i j 

notwithstanding the fact that {ij»k} is a function of X. 

Hence (16) may be solved for A., .. obtaining 
i f J f 

(17) *''k' = I 7 7 7 •Ai'Vk'*Aj-^'V-
Covariant differentiation may now be defined using (17) , 

and since the formula is identical to the Riemannian case it 
follows that covariant differentiation is also given by the 
c lass ical formulas . If a tensor V1 depends on X, two 
covariant derivatives may be distinguished. 
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Conservat ive differentiation 

V . = 3 .V1 4- v V 
IJ J <*) 

Diss ipat ive differentiation 

v1. = D.V1 + vV". = v1.. + a v1 « x. 
»J J <*1 \3 x J 

In v i ew of (11) it fo l lows that 

g . = 0 s = $ 2 3 X . 
ë i j | k ë i j , k X g i j k 

Corresponding to conservat ive differentiation one may introduce 

A u t o - P a r a l l e l Curves 

6x ..i l j . k 
- — = x + v x x = 0 . 
6t Yjk 

Since X is kept fixed re lat ive to the j operat ion, it i s c l e a r 
a 

that a curvature t ensor R , may be defined as in Riemannian 
oijk 

geometry , 

A . , . . - A. h . = R?._ A , 
i | j k ijkj oijk a 

and that R.., sa t i s f i e s the usual ident i t ies re la t ive to the 
oijk 

j operation. Taking D t of both s ides of (17) one finds that 

A 1 - A 1 

rf j f k f k f j f r f 

if and only if 

i <rf a p or i 
A i ^ - i 11 » = •" . . , A A R , 

<r! j ' r ' k ' j 1 k1 r f a<rfi 

where 
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) 
i 

k 

i i 

D. 
J 

k 
yti 

+ 

k 

V 
p 

V 

k 
VPjj 

P 
" l j 

/ i j 

or ot car 
If we define F . =R . . = D v . - D.v . , and expand D., the 

ij crij l aj j an i 
terms corresponding to 9 . and 3 . cancel as in the Riemannian 

* J 
case since (12) holds. Hence 

(18) F = 3. v a 3 X - 8 V* 8 X = - F 
ij X a) i X en j J1 

It was shown in J. Bazinet* s thesis [2] that the Bianchi 
identity still holds in Riemann-fatigue geometry, 

k ~k k 
R .. + R . . + R . . = 0 > 1 i j , r I j r , i i n , j 

from which it readily follows that the analogue of Maxwell1 s 
first equations hold, namely 

(19) F.. , + F., . + F, . . = 0 
ij,k jk, i ki,j 

Equation (19) can be proved directly as follows. By (11) 

X "ai 
= 3 .3 i n \Tg = 3 .<|> 

while, since X is a function of the x ' s , (3 .X) . = (̂  .M ». 
i «3 1 |J 

= (3.X), =(9.X) • Writing F . = 3 $. 8 .X - 3 #<j>. 3 .X, then 
J ji 3 »i ij j l i j 

r y . k + r
j k . i + r i d f j a « ( 8 j « k - ( 8 k ^ j > 3 i x + { ( 8 k ^ i 

- (a.4>) v ) 8 > + ft8» . - (a.<i>) .} a * • 
i »k j i , j ) , i k 

But (3 4>) - (3 <b) = 3 3 <K. 8 X - 3 3 ë. 3 X , and 
a ,P P ..or a X^ |3 (3 XT a 

substituting yields (19). The definition (18), or its equivalent 
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(18') F . . = y . . - y . . 

is c lear ly analogous to the definition of the e lec t ro-magnet ic 
field F = 9 A - â A as in c lass ica l texts [61. 

ij i j j i 

The fact that F . . is not tr ivially zero can be seen from 

2 2 2 3 2 X 4 4 2 i ^ 
the example f { (x ) + ( i ) + (x ) - e X ( i ) } dt for 
which 

i j 

0 

0 

0 

•v 

0 

0 

0 

-V 

V 
V 
a x 

3 

or et ûr 
Thus far the t ensor s R ., , R.., and F . . =R .. have been 

o i j k l jk i j <nj 
a 

introduced. Since R is identical to the Riemannian c a s e , 
oijk 

as is also the conservative operation n | " differentiation, the 
conservative Ricci and Einstein tensors can be defined 

a aô ij ij i ij 
R.. = R.. , R =g HR a , CJ = R J - - g J R , oij oijor o ap o o 2 o 

and will satisfy the standard equations relat ive to conservat ive 
differentiation. 

Hence ? i j !k 
= 0 , 

R ... = - R ., . oaijk oorikj -R. „ = R., . oiûrjk ojkai 

R., + R, . + R ., ojki oki j oi jk 
= 0 

ojki Jm o j i m j k ojmk| | 
= 0 , G1J .. = 0 

o IJ 
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If t h e s e equations are taken in conjunction with auto -para l l e l 
c u r v e s , one obtains the standard Riemannian geometry in which 
appears a paréimeter X. The conservat ive Riemann-fat igue 
geometry i s obtained in other words by cons ider ing X a s 
loca l ly f ixed. 

For the d i s s ipat ive a s p e c t s of the geometry we have so far 

g i j ,k = \gij V • 

« k ^k 
R .. - - R .. * 

i « i J* 

k k k 
R + R + R . . = 0 (proof not given) , 

i i j , r i j r , i i n , j 

(20) F . . , + F. , . + F . . = 0 . 
i j , k jk , 1 k i , j 

This l i s t i s now to be extended. There i s no difficulty in 
veri fy ing 

~a ~a « # 
R..n + R.. . + IL .. = 0 . 

i jk j k i Taj 

Hence contract ing on a and k one obtains 

R.. - R.. = F . . = Ra.. 
lj J i J l ûrji 

so that the t e n s o r F i s (except for a factor of 2) the non-

s y m m e t r i c part of the R i c c i t ensor R.. . 
iJ 

If T i s an a n t i - s y m m e t r i c t e n s o r , then T = T R.. , 

for 

2T1J = T i j + T3 1 = T i j - T i j 

• J1 »ji t i j , j i , i j 

= T V . . + A J . . = T^R* . - T P V . = 2T*PR 
<*J1 aji api afîj orf 
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The above derivat ion holds equally we l l for T , = T R , 
j j i o»3 

and since R ^ is s y m m e t r i c we have 
oafi J 

F i j .. = F* P R 
,J1 orp 

F 1 J , . * 0 . 
IJ1 

A l s o , from (20), using the fact that A* * . = A* " ,. + 3 A* * ' . 3 .X 
. . . , l . . . ji X . . . i 

it fo l lows that 

i j | k j k | i k i | j X IJ k l jk l X ki j 

However , substituting for F . . f rom (18), that i s 
U 

F . . = (3 v a ) 3 . X - (3 y *)3.X 
ij X ûrj i X orj j 

the second bracketed t e r m b e c o m e s z e r o (3 3 X = 0 s ince not 
X i 

a function of X ) s o that we a l s o have 

F. . ,_ + F . . . + F . = 0 . 
i j | k j k j i k i j j 

Hence , recapitulat ing the propert i e s of F . . , 

' F . . = R .. = R.. - R.. , 

(21) { F . . + F. , . + F . . = 0 , F 1 J . . = F ^ R 
\ i j , k j k , l k i , j , j i o| 

+ F. , ,. + F, . ,. = 0 , F ,., = 0 
V i j | k jk i k i | j jk 

The fol lowing r e m a r k s may be of in teres t . F i r s t , s ince 
the transformat ion law for the Christoffel symbols i s 

i1 i' j k i i i1 

yy k« = A i Aj» Ak» Yjk + Ay v Ai ' 

they are of course not t e n s o r s . But s ince the transformat ion i s 
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assumed independent of X, differentiation yields 

i? J 8 v* = A* AJ A k 8 v1 

so that 9 . v is a tensor . 
X jk 

Secondly, the geodesic equation and auto-para l le l curves 
may be writ ten 

(22) 
. 1 O a Q a 

6 T s € { - g ^ x + I " a x x x } x ' 

where € =0 yields au to-para l le l , € =1 yields geodesies. But 
since the right hand side is a tensor , and since it depends on 
the dissipative quantity 9 g.., one can consider the family of 

curves for 0 < € < 1 , taking € as a measu re of the part ic le 1 s 
reaction to the dissipative field, (somewhat like a charge) . 

Finally, the auto-para l le l curves (€ =0), while dependent 
on X , do not depend on the dissipative fields formed from 
8 g . They a r e geodesies in the Riemarrnian geometry defined 

x 1J 

by the curvature tensor R.., . Hence c lass ica l gravitational 
oijk 

field theory is applicable to them. 

Conformai Riemann Fatigue. No res t r i c t ions have been 
placed on the geometry other than that it be symmetr ic Riemann 
fatigue. In this section a condition is imposed on the variat ion 
of g.. with X. This res t r ic t ion will be wri t ten in the form 

(23) ° = \< 
g. x 

g x x 

and clear ly if g..(x , X ) = f ( x ,X)g..(x ,0 ) , where f(x ,X) acts 

as a gauge function, (23) is satisfied. Expanding (23) and using 

the fact that along geodesies the pa ramete r is such that g x x =1 

one obtains 
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(24) 9 g x : = g x 3 % g x x . 

THEOREM 3. If the space is conformai in the s e n s e of 
(23) then the g e o d e s i e s and auto»paral le l c u r v e s can be wri t ten 

(25) ÔT = ~ 2 g ( \ V X 

for e = 1 and 0 r e s p e c t i v e l y . Further , let X be a d is tance 

function from P while x (t) are X - g e o d e s i e s f rom P . 

Then these X - g e o d e s i c s satisfy 

(26) g = px where p = 9 g 9 X3 X . 
, ot X or p 

Proof. (25) i s immediate upon substitution of (24) in (22). 
To obtain (26), r e c a l l that if xx(t) i s a X - g e o d e s i c then 

• i ÎG i-a* x TV is AX i 

x = g p = g o X. Hence (24) may be wri t ten 

g V p 3 g d X = g ° " j g 7 k 9 , g 9 . X 8 \ g x? . 

iû? 
But mult iplying by g y i e l d s , in v iew of (10) 

8 g
1:ia X = (9 g^k9 X9 XJx1 . 

X e j X e j k 

But the left s ide i s p r e c i s e l y g . and the t h e o r e m fo l l ows . 

Motion of Charges in an E. M. Fie ld . In flat space the 
equations of motion for a charged particle in an e l e c t r o - m a g n e t i c 
field can be wri t ten in the form [6] 

/^> ox 1er .6 JL e 
27) _ - = C g F x P + f c = - , c = 1 

ôt a(3 m 

where 
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->. I K 2 - 1 * 2 - P 
,1 2*e l u x . o o x 

:8) f = - i ^ T ' V ^ 
If a s an approximation one takes equation (27) with 1 = 0 , 
substitution in (28) l eads to the e x p r e s s i o n 

2 
A 2€ e , ia . B . v ia p<r ,<y 

Bo* . v or. i 
- € g

p F F x * i x ) . 
5 OP (T'y 

Substituting back in (27) l e a d s to 

(29) x + { ^ k . _ _ g F îk}^x 

= € g
i f f

( F + ^ F g^F )xP 
6 ap 3 *^ 5 <rp' 

„ 2 
- €(F ^ + -T" 1 - F g ^ F J x 

where we have u s e d the fact that F £ je = 0 s ince F _ i s 
a£ tfp 

s k e w - s y m m e t r i c . A s i m p l e r e x p r e s s i o n can be formed in 
t e r m s of the s t r e s s - e n e r g y t ensor 

T. . « F. g H F ^ . - - r g . . F F 
ij icrô pj 2 6 i j . v .0-

crô 
Substituting for F. g F „ . l e a d s to the 

Approximate equations of mot ion with damping 

(30) | j - = e g
i a , ( F +KT J x P - c(F + KT l / i ^ 1 

ot ap ap ap orp 
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2 , 
where K=(2/3)* e and where 6 stresses the fact that the 
Christ off el symbols have been modified as indicated in (29). 

H e r e g*(3X X = i ' 

In view of (25) and (26) and the similarity between (30) and 
(22) it seems significant to consider the case in which g.. is not 

symmetric for possible applications to electro-magnetic and 
gravitational fields. This, it is hoped, will be the subject of a 
subsequent paper. 
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