THE RADICAL OF THE ALGEBRA OF ANY FINITE SEMIGROUP OVER ANY FIELD

T. E. HALL

(Received 14 March 1969)

Communicated by G. B. Preston

1. Introduction and summary

For a finite semigroup S and a field Φ , denote by $\Phi[S]$ the semigroup algebra of S over Φ , and when S has a zero element, denote by $\Phi_0[S]$ the contracted semigroup algebra of S over Φ (see § 5.2 [1]). Then theorem 5.31 [1], due to E. Hewitt and H. S. Zuckerman, gives a determination of the radical of $\Phi[S]$ when S is commutative and the characteristic of Φ does not divide the order of any subgroup of S; and on page 168 [1] some results concerning the radical of $\Phi_0[S]$ when S is completely 0-simple are given, the determination of the radical in the general case remaining open.

In [2], G. Lallement and M. Petrich determine the radical of $\Phi_0[S]$ when S is any finite completely 0-simple semigroup, their result being as follows.

RESULT 1 (from [2]). Let $T = \mathscr{M}^0(G; m, n; P)$ be any finite completely 0-simple semigroup and Φ any field. Then the radical of the Munn algebra $\mathscr{B} = \mathscr{M}(\Phi[G]; m, n; P)$, which we identify with $\Phi_0[T]$ (lemma 5.17 [1]) is determined by

Rad $\mathscr{B} = \{X \in \mathscr{B} : PXP \text{ is over rad } \Phi[G]\}.$

In this paper we determine the radical of $\Phi_0[S]$, when S is any finite semigroup with a zero element (see theorem 2). As noted on page 160 [1], 'if $S \cup z$ is the semigroup resulting from the adjunction of a zero element z to a semigroup S (whether or not S has a zero to begin with) then $\Phi_0[S \cup z] \cong \Phi[S]$.' Thus the following also determines the radical of $\Phi[S]$, where S is any finite semigroup, with or without a zero element.

We use throughout the notations and conventions of A. H. Clifford and G. B. Preston [1].

2. Rad $\Phi_0[S]$

Let $S = S^0$ be a finite semigroup and let Φ be a field. Let J_i $(i = 1, \dots, p)$ denote the \mathscr{J} -classes of S for which the corresponding principal factors, $Q_i = S^1 J_i S^1 / I(J_i)$ $(i = 1, \dots, p)$ say, are 0-simple (see page 72 [1]). Then by

350

Radicals of algebras

theorem 3.5 [1], each Q_i is isomorphic to z regular Rees matrix semigroup over a group with zero, i.e $Q_i \cong \mathscr{M}^0(G_i; m_i, n_i; P_i)$ say. We assume for convenience that $Q_i = \mathscr{M}^0(G_i; m_i, n_i; P_i)$, for $i = 1, \dots, p$. Moreover, we shall also identify $\Phi_0[Q_i]$ with the Munn algebra $\mathscr{B}_i = \mathscr{M}(\Phi[G_i]; m_i, n_i; P_i)$ (lemma 5.17 [1]). Now $\Phi_0[Q_i]/\operatorname{rad} \Phi_0[Q_i]$ is semisimple, and hence contains an identity, $E_i + \operatorname{rad} \Phi_0[Q_i]$ say. Let ϕ_i denote the natural homomorphism of $\Phi_0[S^1J_iS^1]$ onto $\Phi_0[Q_i]$ (see pages 170, 171 [1]).

THEOREM 1. The radical of $\Phi_0[S]$ is determined by

$$Rad \Phi_0[S] = \{X \in \Phi_0[S] : for \ i = 1, \cdots, p, (XE_i)\phi_i \in rad \Phi_0[Q_i]\} \\ = \{X \in \Phi_0[S] : for \ i = 1, \cdots, p, P_i(XE_i)\phi_i P_i \ is \ over \ rad \Phi[G_i]\}.$$

PROOF. From lemma 5.6 [1] and the main representation theorem for semisimple algebras (page 154 [1]) we see that the radical of $\Phi_0[S]$, as defined on page 149 [1], is simply the set

 ${X \in \Phi_0[S]}$: for every proper irreducible representation Γ of S over Φ , $\Gamma(X) = 0$.

We now use extensively theorem 5.33 [1].

(i) Take any element X in $\Phi_0[S]$ such that $(XE_i)\phi_i \in \operatorname{rad} \Phi_0[Q_i]$ for $i = 1, \dots, p$, and let Γ be any proper non-null irreducible representation over Φ of S, and thus also of $\Phi_0[S]$. Since S is finite, Γ is principal, with apex J_k for some element $k \in \{1, \dots, p\}$. Now Γ' , the representation of Q_k induced by Γ (see page 171 [1]) is also irreducible and non-null, and by lemma 5.6 [1] is effectively a representation of $\Phi_0[Q_k]/\operatorname{rad} \Phi_0[Q_k]$, whence $\Gamma'(E_k) = I_n$, where n is the degree of Γ' . Clearly then (from (2') page 171 [1])

$$\Gamma(X) = \Gamma(X)I_n = \Gamma(X)\Gamma(E_k) = \Gamma(XE_k) = \Gamma'((XE_k)\phi_k) = 0,$$

since $(XE_k)\phi_k \in \operatorname{rad} \Phi_0[Q_k]$. It follows that $X \in \operatorname{rad} \Phi_0[S]$.

(ii) Take now any element X in rad $\Phi_0[S]$ and any element $i \in \{1, \dots, p\}$. Let Γ' be any proper non-null irredicible representation of Q_i . Then as in (i), $\Gamma'(E_i) = I_n$, where n is the degree of Γ' . Define a representation Γ of $\Phi_0[S]$ by

$$\Gamma(Y) = \Gamma'((YE_i)\phi_i)$$
 for all Y in $\Phi_0[S]$.

Then Γ is irreducible, whence

$$\Gamma'((XE_i)\phi_i) = \Gamma(X) = 0.$$

Hence $(XE_i)\phi_i \in \operatorname{rad} \Phi_0[Q_i]$, and the result follows.

REMARK 1. The determination of rad $\Phi_0[S]$ given by theorem 1 would be more complete if we could give a construction for the E_i , instead of merely proving their existence, i.e. if we could solve the following problem: given a finite completely 0-simple semigroup $T = \mathcal{M}^0(G; m, n; P)$ and a field Φ , construct, in terms of the variables Φ , G, P, an element E in $\Phi_0[T]$ such that $E + \operatorname{rad} \Phi_0[T]$ is the identity element of $\Phi_0[T]/\operatorname{rad} \Phi_0[T]$. However, in the next theorem, we are able to circumvent this problem and give a complete determination of rad $\Phi_0[S]$ by replacing each E_i by all the elements, one at a time, in J_i . It is important to note that J_i is finite, so that we have a finite procedure for determining, of any given element in $\Phi_0[S]$, whether it is in rad $\Phi_0[S]$ or not.

REMARK 2. A solution to the problem in rema.k 1 would make more complete the determination, given by theorem 5.33 [1], of all irreducible representations over Φ of a finite semigroup S (see the proof of theorem 1).

THEOREM 2. The radical of $\Phi_0[S]$ is determined by

$$Rad \ \Phi_0[S] = \{X \in \Phi_0[S] : for \ all \ s \in J_i, \ (Xs)\phi_i \in rad \ \Phi_0[Q_i], \quad for \ i = 1, \cdots, p\}$$
$$= \{X \in \Phi_0[S] : for \ all \ s \in J_i, \ P_i(Xs)\phi_iP_i$$
$$is \ over \ rad \ \Phi[G_i], \ for \ i = 1, \cdots, p\}.$$

PROOF. Take any element $X \in \Phi_0[S]$ and any element $i \in \{1, \dots, p\}$ such that $(XE_i)\phi_i \in \operatorname{rad} \Phi_0[Q_i]$. Take any proper non-null irreducible representation Γ' of Q_i over Φ with degree *n*, and any element $s \in J_i$. Extend Γ' to Γ as above. Then

$$\Gamma'[(Xs)\phi_i] = \Gamma(Xs) = \Gamma(X)\Gamma(s) = \Gamma(X)I_n\Gamma(s)$$
$$= \Gamma(XE_i)\Gamma(s) = \Gamma'((XE_i)\phi_1)\Gamma(s) = 0.$$

Hence $(Xs)\phi_i \in \operatorname{rad} \Phi_0[Q_i]$ for each element $s \in J_i$.

Conversely, suppose $(Xs)\phi_i \in \operatorname{rad} \Phi_0[Q_i]$ for each $s \in J_i$. Since $E_i \in \Phi[J_i]$, it follows that $(XE_i)\phi_i \in \operatorname{rad} \Phi_0[Q_i]$. Hence, for any $X \in \Phi_0[S]$ and any $i \in \{1, \dots, p\}$, we have $(XE_i)\phi_i \in \operatorname{rad} \Phi_0[Q_i]$ if and only if $(Xs)\phi_i \in \operatorname{rad} \Phi_0[Q_i]$ for each element $s \in J_i$. Theorem 2 now follows from theorem 1.

References

- A. H. Clifford and G. B. Preston, *The Algebraic Theory of Semigroups* (Math. Surveys, number 7, Amer. Math. Soc., Vol I, 1961).
- [2] G. Lallement and M. Petrich, 'Irreducible matrix representations of finite semigroups', *Trans. Amer. Math. Soc.* 139 (1969), 393-412.

Monash University Clayton