
11

Numerical methods

Until now, we have mostly considered magnetostatic problems that have analytic
solutions. In practice, this has usually restricted our choice of problems to situa-
tions where one of the problem boundaries coincides with a coordinate system axis
and to solutions that can be written as products of functions of a single coordinate.
Frequently, more complicated problems can only be solved using numerical meth-
ods.[1] A number of commercial and freeware programs are available for solving
magnetic problems. A lot of effort has been devoted to making many of these
programs accurate, efficient, and user-friendly. If such a program is available and
can address the problem under consideration, it is often the best choice to use it.
However, there are occasions when new code must be written to solve a problem.
It is also important to have some basic understanding about the methods involved in
obtaining these solutions. In this chapter, we will examine three numerical methods
that have been used for solving boundary value problems involving the Poisson
equation: finite differences, finite elements, and integral equations. In each case,
the analytical equation or its solution is approximated in some way that leads to
a matrix equation for the unknown potential or field. We conclude the chapter with
a discussion of inverse problems and optimization techniques.

11.1 Finite difference method

In the finite difference method, the continuous space of the problem domain is
replaced with a grid of discrete points called nodes.[1] The grid, which is com-
monly rectangular or polar, must extend over the whole space of the problem. This
usually requires grid points outside all conductors and iron, out to a point where the
potential has some assumed value, typically zero. Symmetries in the configuration
may be used to reduce the required grid size. For some problems, it may be
necessary to use reduced grid spacing in regions where the field gradient is large
or where high accuracy is required.
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Unknown quantities are calculated at the nodes. Derivatives defined on the
continuous domain of the physical problem are replaced with difference approx-
imations defined in terms of the values of the unknown function at the nodes. For
example, assume that u is an unknown function and that a one-dimensional
problem space has been discretized with the grid spacing h ¼ Δx. The Taylor series
for the node at location xþ h is

uðxþ hÞ ¼ uðxÞ þ h
∂u
∂x

���
x
þ h2

2!

∂2u
∂x2

���
x
þ Oðh3Þ: (11.1)

Ignoring second- and higher-order terms, the first derivative can be approximated
in terms of the node values by

∂u
∂x

≃
uðxþ hÞ � uðxÞ

h
: (11.2)

This is called the forward difference because it involves the next higher node than
the node at x. Similarly taking h→� h, we find the backward difference is

∂u
∂x

≃
uðxÞ � uðx� hÞ

h
: (11.3)

We can obtain an approximation for the derivative that is accurate through the h2

term in the Taylor series by calculating

uðxþ hÞ � uðx� hÞ ≃ uþ hu0 þ h2

2
u00 � uþ hu0 � h2

2
u00:

The central difference approximation for the first derivative is then

∂u
∂x

≃
uðxþ hÞ � uðx� hÞ

2h
: (11.4)

We can approximate the second derivative from its definition as

∂2u
∂x2

≃
1

h
uðxþ hÞ � uðxÞ

h
� uðxÞ � uðx� hÞ

h

� �
¼ 1

h2
½uðxþ hÞ � 2uðxÞ þ uðx� hÞ�:

(11.5)

Example 11.1: one-dimensional Poisson equation
To illustrate the basic concepts of the finite difference method, let us consider the
solution of the one-dimensional Poisson’s equation

∂2u
∂x2

¼ f
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in the greatly simplified situation shown in Figure 11.1. The line is discretized into 7
nodes. Let u refer to the unknown quantity, which we assume satisfies the Dirichlet
boundary conditions u0 ¼ 0 and u6 ¼ 0. Assume that the source function f has the
value f3 ¼ v at the center of the line and is 0 otherwise. The values of u at the five
interior nodes are the unknown quantities. Using Equation 11.5, each interior node
satisfies the equation

uðxþ hÞ � 2uðxÞ þ uðx� hÞ ¼ h2f :

We can write the equations for the five unknowns in the form of a matrix equation

Cu ¼ g: (11.6)

For the case here, we have

�2 1 0 0 0
1� 2 1 0 0
0 1� 2 1 0
0 0 1� 2 1
0 0 0 1� 2

266664
377775

u1
u2
u3
u4
u5

266664
377775 ¼

0
0
v
0
0

266664
377775;

which has the solution

u ¼

�½ h2v
�h2v
�3=2 h2v
�h2v
�½ h2v

266664
377775:

For a square grid in two dimensions, let us designate the node under consideration
as node 0 and its four nearest neighbors as nodes 1–4, as shown in Figure 11.2.
We can write the Laplacian operator in terms of the values at the five nodes as [2]

r2u ≃
1

h2
½uðx� h; yÞ þ uðxþ h; yÞ þ uðx; y� hÞ þ uðx; yþ hÞ � 4uðx; yÞ�:

(11.7)

It is also possible to write a generalized version for the two-dimensional Laplacian
where the distances from a given node to each of its nearest neighbors can be
different. If h is the characteristic grid spacing, then [3]

Figure 11.1 Nodes on a line.
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r2u ≃
2

h2
u1

pðpþ rÞ þ
u2

qðqþ sÞ þ
u3

rð pþ rÞ þ
u4

sðqþ sÞ �
1

pr
þ 1

qs

� �
u0

� �
; (11.8)

where p, q, r, s are dimensionless scaling factors for the spacings from node 0 to its
nearest neighbors. Using this expression for problems where the physical boundaries
of conductors and iron are parallel to the x and y axes, it is possible to set up the
equations for the interior nodes together with nodes coinciding with the boundaries.
Higher-order difference equations for the Laplacian are also possible.[4]
A complication arises in setting up the node equations for nodes adjacent to

boundaries that do not align exactly with the grid spacing, for example nodes next
to circular boundaries in a rectangular grid. For Dirichlet boundary conditions, we
can make use of the fact that we know the value of uðx; yÞ on the boundary.
Consider a node 0 adjacent to the boundary shown in Figure 11.3. The two-
dimensional Laplacian operator acting at u0 can be approximated as [5]

r2u ≃
2

h2
uA

sð1þ sÞ þ
uB

tð1þ tÞ þ
u3

1þ s
þ u4
1þ t

� 1

s
þ 1

t

� �
u0

� �
; (11.9)

where s and t are dimensionless scale factors.
There are also complications in setting up the difference equations when the

problem requires Neumann boundary conditions.[6] Here we will only consider the
situation shown in Figure 11.4, which is a planar boundary in a square grid between

Figure 11.2 Node structure in two dimensions.

Figure 11.3 Node near a curved boundary.
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two regions (a) and (b) with different permeabilities. Let us consider an arbitrary
point 0 along the boundary. Since point 0 is part of region a, the Laplace equation is

Aa1 þ A2 þ Aa3 þ A4 � 4A0 ¼ 0; (11.10)

where we use A for the unknown function here. For region a, node 1 is fictitious and
must be eliminated from the final difference equation. Node 0 is also a part of
region b, so we have

Ab1 þ A2 þ Ab3 þ A4 � 4A0 ¼ 0; (11.11)

where node 3 is fictitious in region b. The Neumann boundary condition at node 0 is

1

μa

Aa1 � Aa3

2h

� �
¼ 1

μb

Ab1 � Ab3

2h

� �
:

Substituting for Aa1 from Equation 11.10 and Ab3 from Equation 11.11, we find the
difference equation at boundary point 0 is

4A0 � 2μa
μa þ μb

Ab1 � A2 � 2μb
μa þ μb

Aa3 � A4 ¼ 0: (11.12)

If region b has infinite permeability, then the difference equation simplifies to

4A0 � A2 � 2Aa3 � A4 ¼ 0: (11.13)

Interpolation must be used when a value of some quantity u is required at
a location away from one of the nodes. Suppose we want the value of the function
uðx; yÞ, as shown for a rectangular grid in Figure 11.5. The simplest scheme for
estimating the value of u is bilinear interpolation. We first determine which rectangle
in the grid that the desired point is located in. Then defining the variables

Figure 11.4 Boundary between regions with different permeabilities.
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s ¼ x� x1
x2 � x1

t ¼ y� y1
y2 � y1

;

we can approximate the value of uðx; yÞ as [7]

uðs; tÞ ≃ ð1� sÞð1� tÞu1 þ sð1� tÞu2 þ stu3 þ ð1� sÞtu4: (11.14)

This expression varies continuously in x and y and reduces correctly to the node
values at the corners of the rectangle.
The discrepancy between the result from using the difference approximation and

the exact result from solving the differential equation is known as the truncation
error. The error can be estimated by examining the first term in the Taylor series that
was neglected in deriving the difference formula under consideration. For a square
mesh, the error on the second derivative goes like

∼
2h2

4!

∂4u
∂x4

���
0
:

The error is proportional to h2, so one method of improving the accuracy in a finite
difference calculation is to reduce the mesh spacing. We can monitor the improve-
ment in accuracy by finding the maximum absolute value for the difference

eij ¼ uh2ij � uh1ij ;

where the superscript refers to the mesh spacing used for the solution and ði; jÞ
refers to nodes common to both mesh spacings. This approach is ultimately limited
by the growth in the size of the coefficient matrix and by rounding errors in the
numerical calculations. An alternative approach for increasing the accuracy of the
calculation is to use higher-order difference equations.
The quality of a solution can be monitored by calculating the residual for each of

the interior nodes. For a general node for the Poisson equation, the residual is
defined as

Figure 11.5 Bilinear interpolation.
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Ri; j ¼ 4 ui; j � ui; jþ1 � ui; j�1 � uiþ1; j � ui�1; j � h2μi; j Ji; j: (11.15)

If the difference equation exactly satisfies Poisson’s equation, the residual should
be 0.
For problems using iteration algorithms, we can compute

eij ¼ unij � un�1
ij

for the unknown function at the node ði; jÞ, where the superscript refers to the
iteration number. For these methods, one can estimate the quality of the solution by
calculating the difference at all the nodes. Let M refer to the absolute value of the
largest difference in the mesh.

M ¼ max jeijj
For the 5-point Laplacian operator in Equation 11.7, the error ε between the exact
solution of the difference equation and the approximate solution after n iterations is
bounded by [8]

ε ≤
Mρ2

4h2
; (11.16)

where ρ is the radius of the smallest circle that encompasses the entire field region.
In problems where iron saturation is a consideration, the permeability of the iron

can be made a variable at each of the nodes in the iron regions.[9] The permeabil-
ities are stored on a separate mesh. After each iteration of the potential, the field in
the iron region is updated. A table of B-μ values can be used to relate the perme-
ability to the field at the node. The mesh of permeability values is then updated
using, for example, an under-relaxation algorithm.

11.2 Example solution using finite differences

As a simple example, let us consider a rectangular conductor with constant
current density J close to a sheet of iron with permeability μr ¼ 100, as shown
in Figure 11.6.
Assume that the conductor and the sheet are uniform in the z direction, so that

a two-dimensional analysis is justified. Assume that the figure is up-down sym-
metric, so that the x axis lies in a symmetry plane.We solve the problem using finite
differences on a square 200 × 200 mesh. For simplicity, we have chosen the
boundaries of the conductor and the iron sheet to line up with node locations.
The problem requires Dirichlet boundary conditions on the left, right, and top outer
borders, where we set Az ¼ 0. Because of the up-down symmetry, the bottom
border requires a Neumann boundary condition.
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In applying the Poisson equation here, four types of node patterns are required,
as shown in Figure 11.7. In each case, node 0 refers to the node we are currently
evaluating. For a general interior node where all the neighbor nodes are in the same
region, we apply the pattern (a), which results in the relation

4A0 ¼ A1 þ A2 þ A3 þ A4 þ f ; (11.17)

where f ¼ h2μ J for nodes inside the conductor and 0 otherwise. For nodes on the
symmetry plane, pattern (b) gives

4A0 ¼ A1 þ 2A2 þ A3 þ f :

For the left side of the iron sheet, we can use Equation 11.12 for pattern (c) with
μa ¼ 1 and μb ¼ 100. For the right side of the sheet, we use Equation 11.12 for
pattern (d) with μa ¼ 100 and μb ¼ 1.

Figure 11.6 Conductor close to an iron sheet.

Figure 11.7 Finite difference node patterns.
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For problems with a very large number of unknown nodes, it is not practical to
solve the matrix equation using direct methods. Instead iterative methods must be
used. A common method is to use the Successive Overrelaxation (SOR) algorithm.
[10, 11] Let us define An

j;k to be the value of the potential at the interior node at
location ðj; kÞ after n iterations. On the next iteration, we update the value of the
potential according to the prescription

Anþ1
j;k ¼ ð1� αÞ An

j;k þ α A	
j;k; (11.18)

where α is called the overrelaxation parameter. For efficient convergence, we need
1 < α < 2. The optimal value for α is problem dependent, but the value α ~ 1.7,
which we use here, is typical. The quantity A	

j;k is the solution for Ajk from the
appropriate nodal solution of Poisson’s equation. For example, using
Equation 11.17 for a general node, the SOR relation is

Anþ1
j;k ¼ ð1� αÞAn

j;k þ
α
4

Anþ1
j�1;k þ An

jþ1;k þ Anþ1
j;k�1 þ An

j;kþ1 þ fj;k
h i

:

Thus the updated value of the potential has two contributions. The first term is an
adjustable fraction of its value on the previous iteration. The second term is
a fraction of the Poisson equation residual at the node, calculated from the values
of the potential at the neighbor nodes. Note that the calculation of the residual uses
values for two nodes that have already been updated for a given iteration and values
for two nodes from the previous iteration. The iterations continue until

max

�����A
nþ1
j;k � An

j;k

An
j;k

�����≤ τ
over all the interior nodes.1 The tolerance τ ¼ 10�5 was used in this example. This
criterion was satisfied after 7,511 iterations.
The magnetic field was calculated at the center of every square formed by four

neighbor nodes, as shown in Figure 11.8.

Bx ¼ ∂yAz ¼ 1

2h
ð�A1 þ A2 þ A3 � A4Þ

By ¼ �∂xAz ¼ � 1

2h
ðA1 þ A2 � A3 � A4Þ:

The results of the calculations for the magnetic field are shown in Figure 11.9.

1 Or just the difference in values if the potential is 0.
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11.3 Finite element method

In the finite elementmethod, the problem space is completely subdivided into a set of
subregions called finite elements.[1, 12] The potential in each element is represented
by an interpolation function that is defined in terms of the potential values at the
nodes of the element. The Poisson equation and its boundary conditions can be
formulated in terms of energy functionals. The minimization of this functional
generates a set of algebraic equations that can be solved directly or through iterative
techniques. The method is quite flexible since there is considerable freedom in
choosing element shapes to match boundary and interface geometries.

Figure 11.9 Magnetic field pattern for the example finite difference problem.

Figure 11.8 Magnetic field calculation.
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For simplicity, we restrict our discussion here to two-dimensional problems.
The nonlinear Poisson equation can be written in the form

∂
∂x

γ
∂A
∂x

� �
þ ∂
∂y

γ
∂A
∂y

� �
¼ �J;

where γ is the reluctivity and A and J only have nonvanishing components in the
z direction. This differential equation can be expressed in terms of the energy func-
tional [13]

F ¼
ðð ðB

0
γb db� JA

� �
dx dy�

þ
A
∂A
∂n

dl; (11.19)

where b is the magnitude of the magnetic field.

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂A
∂x

� �2

þ ∂A
∂y

� �2
s

: (11.20)

The line integral in Equation 11.19 vanishes since we require that the potential
satisfy either Dirichlet or Neumann boundary conditions everywhere on the
boundary. If the reluctivity is constant over an element, we can perform the
integration over b to get the simplified energy functional

F ¼
ðð

γ
2

∂A
∂x

� �2

þ ∂A
∂y

� �2
" #

� J A

( )
dx dy: (11.21)

The simplest two-dimensional finite element is a triangle, as shown in
Figure 11.10. We assume the potential varies linearly inside the element.

A ¼ c1 þ c2 xþ c3 y: (11.22)

Figure 11.10 Triangular finite element.

11.3 Finite element method 255

https://doi.org/10.1017/9781009291156.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291156.012


If we write this expression for each of the three nodes, we have three equations that
can be solved for the three unknown coefficients ci in terms of the potentials and
coordinates at the nodes. Substituting the result back into Equation 11.22, we find

A ¼ A1
ðx2y3 � x3y2Þ þ ðy2 � y3Þxþ ðx3 � x2Þy

2S

� �
þA2

ðx3y1 � x1y3Þ þ ðy3 � y1Þxþ ðx1 � x3Þy
2S

� �
þ A3

ðx1y2 � x2y1Þ þ ðy1 � y2Þxþ ðx2 � x1Þy
2S

� �
;

(11.23)

where S is the area of the triangle.

S ¼ ½½ðx2y3 � x3y2Þ þ ðy2 � y3Þx1 þ ðx3 � x2Þy1� (11.24)

The coefficients of the node potentials in this equation are known as shape functions,
ζ.[14] Thus we can also write the interpolation function for the potential as

A ¼ ζ1A1 þ ζ2A2 þ ζ3A3: (11.25)

The shape function ζ1 has the properties that

ζ1ðx1; y1Þ ¼ 1
ζ1ðx2; y2Þ ¼ 0
ζ1ðx3; y3Þ ¼ 0

and similarly for ζ2 and ζ3.
In order to evaluate the simplified energy functional in Equation 11.21, we need

the derivatives of A from Equation 11.23.

∂A
∂x

¼ ðy2 � y3ÞA1 þ ðy3 � y1ÞA2 þ ðy1 � y2ÞA3

2S

∂A
∂y

¼ ðx3 � x2ÞA1 þ ðx1 � x3ÞA2 þ ðx2 � x1ÞA3

2S

(11.26)

Substituting into Equation 11.21, we get

F ¼ γ
2

ðð ½ðy2 � y3ÞA1 þ ðy3 � y1ÞA2 þ ðy1 � y2ÞA3�2
4S2

(

þ ½ðx3 � x2ÞA1 þ ðx1 � x3ÞA2 þ ðx2 � x1ÞA3�2
4S2

)
dx dy

�
ðð
JA dx dy:
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The solution of the field equations is equivalent to finding a function A that
minimizes this energy functional.[15] The potentials at the three nodes may be
considered to be the parameters of the functional F for a given element. Thus we
require that

∂F
∂A1

¼ γ
2

ðð
2½ðy2 � y3ÞA1 þ ðy3 � y1ÞA2 þ ðy1 � y2ÞA3�ðy2 � y3Þ

4S2

�
þ 2½ðx3 � x2ÞA1 þ ðx1 � x3ÞA2 þ ðx2 � x1ÞA3�ðx3 � x2Þ

4S2

�
dx dy

�
ðð
J
∂A
∂A1

dx dy ¼ 0

with analogous expressions for the derivatives with respect to A2 and A3.
The integrand for the first integral is independent of x and y and the integrand for
the second integral may be evaluated using Equation 11.23. Thus we have

∂F
∂A1

¼ γ
4S

ðy2 � y3Þ2A1 þ ðy3 � y1Þðy2 � y3ÞA2 þ ðy1 � y2Þðy2 � y3ÞA3

h i
þ γ
4S

ðx3 � x2Þ2A1 þ ðx1 � x3Þðx3 � x2ÞA2 þ ðx2 � x1Þðx3 � x2ÞA3

h i
�
ðð
J
ðx2y3 � x3y2Þ þ ðy2 � y3Þxþ ðx3 � x2Þy½ �

2S
dx dy ¼ 0

with analogous expressions for the derivatives with respect to A2 and A3. For
elements containing current, the second integral can be evaluated by assuming
that J is constant and that x and y are evaluated at the centroid of the triangle.

xc ¼ x1 þ x2 þ x3
3

yc ¼ y1 þ y2 þ y3
3

:

In this case, the numerator in the last term is 2S/3, so the integral has the value JS/3.
Thus minimization of the functional over the triangular element leads to the matrix
equation

γ
4S

C11 C12 C13

C21 C22 C23

C31 C32 C33

24 35 A1

A2

A3

24 35 ¼ J S
3

1
1
1

24 35: (11.27)

The coefficient matrix C is symmetric with six unique elements.
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C11 ¼ ðy2 � y3Þ2 þ ðx3 � x2Þ2
C12 ¼ ðy3 � y1Þðy2 � y3Þ þ ðx1 � x3Þðx3 � x2Þ
C13 ¼ ðy1 � y2Þðy2 � y3Þ þ ðx2 � x1Þðx3 � x2Þ
C22 ¼ ðy3 � y1Þ2 þ ðx1 � x3Þ2
C23 ¼ ðy3 � y1Þðy1 � y2Þ þ ðx1 � x3Þðx2 � x1Þ
C33 ¼ ðy1 � y2Þ2 þ ðx2 � x1Þ2:

(11.28)

Each triangular element introduces an analogous set of equations. However, if
N is the total number of elements, the number of unknown potentials is less than
3N because all of the elements share boundaries with neighbor triangles. For
example, if we consider the two elements shown in Figure 11.11, the first element
introduces three unknown potentials while the second element only adds one more.
The resulting set of equations can be solved for the potentials using direct or
iterative methods.
Setting up a realistic finite element problem involves a great deal of careful

bookkeeping and computations.[13, 15] The problem space must be completely
covered by the set of finite elements. The elements and nodes must be indexed and
the association of each element with its corresponding nodes, current, and perme-
ability must be clearly established. The boundary conditions must be imposed on
the appropriate subset of the nodes. The coefficients for Equation 11.27 must be
determined and an appropriate method used for solving the resulting system of
equations. Additional iterative techniques must be applied if the problem contains
saturable iron.

11.4 Integral equation method

Thus far we have discussed numerical methods for solving the Poisson differential
equation directly and for solving the potentials by minimizing the energy func-
tional for the magnetostatic field. Here we examine a third approach where the
unknown potentials or sources of the field are expressed in terms of an integral

Figure 11.11 Two neighboring 2D elements.
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equation. A major advantage of the integral equation method over methods based
on the solution of a differential equation is that the mesh only needs to encompass
the iron region (and possibly the conductor region if the current density is not
uniform).[16, 17] The boundary condition at infinity follows naturally and does not
have to be imposed at the edge of a mesh. An important disadvantage is that the
resulting matrix equation is dense, so the solution time grows rapidly as the number
of elements is increased. Also the flux density computed near the iron elements can
be strongly affected by the discretization. There are many ways to formulate
a solution of Poisson’s equation using integral equations.[17, 18, 19] In addition,
it is also possible to formulate procedures which combine differential and integral
equation techniques.[20]
We describe here an integral equation approach that uses the magnetization of

iron elements as the unknown function.2 Recall that the magnetization is related to
the magnetic field intensity by

M
! ¼ B

!
μ0

� H
! ¼ χðHÞ H!; (11.29)

where χ is the susceptibility. The field intensity has contributions from both
conductor currents and from the magnetization in the iron. The total field inten-
sity is

H
! ¼ H

!
c þ H

!
m;

so the magnetization is given by

M
! ¼ χ ðH!c þ H

!
mÞ:

The contributionHc can be calculated for simple conductor configurations using
the complex variable techniques given in Chapter 5 or directly from the Biot-
Savart law

H
!

cð r!Þ ¼ 1

4π

ð
J
!ð r0!Þ � R

!
R3

dV 0; (11.30)

where R
! ¼ r!� r0

!
: Using Equation 3.32, the field due to the magnetization is

H
!

mð r!Þ ¼ � 1

4π
r
ð
M
!ð r0!Þ· R

!
R3

dV 0: (11.31)

2 This procedure was adopted by a group at the Rutherford High Energy Laboratory in the development of the
GFUN program.
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Break the iron region into N elements and assume the magnetization is constant
over the area of each element. The magnetization at some element i will depend on
the field at i due to the conductors and on the field at i due to the magnetization from
all the elements. Thus we have

M
!

i ¼ χi H
!

ci � 1

4π
ri

ðXN
j¼1

M
!

j·
R
!

ij

R3
ij

dVj

" #
: (11.32)

We define the contribution to the field at element i due to the magnetization at
element j in terms of the coupling constants

Gij ¼ � 1

4π
ri

ð
M̂ j·

R
!

ij

R3
ij

dVj: (11.33)

It is important to note that the components ofG depends on the directions of the unit
vectors used to define M, but do not depend on the magnitude of M. We can then
rewrite Equation 11.32 as

M
!

i ¼ χi H
!

ci þ
XN
j¼1

Gij M
!

j

" #
:

Rearranging this equation, we have

M
!

i

χi
�
XN
j¼1

Gij M
!

j ¼ H
!

ci;

which can be written in the standard matrix equation form [17]

XN
j ¼ 1

δi j
χj

� Gij

 !
M
!

j ¼ H
!

ci: (11.34)

This is a set of algebraic equations for the N unknown magnetization elements.
The number of unknowns is 2N for two-dimensional problems and 3N for three
dimensions. The field components due to the conductors at each iron element can
be calculated directly, so the right-hand side of Equation 11.34 is known. However,
the problem is generally nonlinear because χ depends on the field due to the
unknown magnetizations.
Returning to the definition of the coupling constant in Equation 11.33, we

know from the vector identity B.2 that the gradient of the scalar product can be
expanded as
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ri M̂ j·
R
!

ij

R3
ij

 !
¼ M̂ j � ri � R

!
ij

R3
ij

 !" #
þ R
!

ij

R3
ij

�ðri � M̂ jÞ þ ðM̂ j·riÞ R
!

ij

R3
ij

 !

þ R
!

ij

R3
ij

·ri

" #
M̂ j:

Two of the terms vanish because the derivative in field coordinates acts on the unit
vector along themagnetization in source coordinates. Another term vanishes because
of the curl operator acting on the linear vector R. Thus only the third term on the
right-hand side remains. Writing this out in terms of components, we have

ðM̂ j·riÞ R
!

i j

R3
i j

 !

¼ M̂ jx∂ix þ M̂ jy∂iy þ M̂ jz∂iz

 � ðxi � xjÞx̂ þ ðyi � yjÞŷ þ ðzi � zjÞẑ

fðxi � xjÞ2 þ ðyi � yjÞ2 þ ðzi � zjÞ2g3=2

24 35
¼ M̂ jx

R5
i j

R2
i jx̂� 3ðxi� xjÞR!

h i
þ M̂ jy

R5
i j

R2
i jŷ� 3ðyi� yjÞR!

h i
þ M̂ jz

R5
i j

R2
i jẑ� 3ðzi� zjÞR!

h i
:

After inserting this expression into Equation 11.33, we can identify the three-
dimensional coupling constants

Gix; jx ¼ � 1

4π

ð R2
ij � 3ðxi � xjÞ2

R5
ij

dVj

Gix; jy ¼ � 1

4π

ð�3ðxi � xjÞðyi � yjÞ
R5
ij

dVj

and similarly for the other components.[21, 22] The G coupling matrix is sym-
metric. There are constraints on the sum of the diagonal elements.[21]

Gix; jx þ Giy; jy þ Giz; jz ¼ 0 if i ≠ j
�1 if i ¼ j

�
In two dimensions,Mj is uniform along z, the field observation point has zi ¼ 0,

and ri and Mj only have x and y components. We find the two-dimensional
coupling constants by integrating the three-dimensional couplings over z

Gij ¼ � 1

4π

ðð
ðM̂ j·riÞ R

!
ij

R3
ij

 !
dzj dSj;
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where dSj is the two-dimensional area element. This can be written in the form

Gij ¼ � 1

4π

ð
½M̂ jx I1 þ M̂ jy I2� dSj; (11.35)

where

I1 ¼
ð∞
�∞

R2
i j x̂ � 3ðxi � xjÞ½ðxi � xjÞ x̂ þ ðyi � yjÞ ŷ � zj ẑ�

R5
i j

dzj

and

I2 ¼
ð∞
�∞

R2
i j ŷ � 3ðyi � yjÞ½ðxi � xjÞx̂ þ ðyi � yjÞ ŷ � zj ẑ�

R5
i j

dzj:

Let rij be the distance between the observation point and the centroid of the iron
element in the x-y plane. Then the integral I1 can be broken into the three simpler
integrals3 ð∞

�∞

dzj

fr2ij þ z2j g3=2
¼ 2

r2ijð∞
�∞

dzj

fr2ij þ z2j g5=2
¼ 2

3r4ijð∞
�∞

zj

fr2ij þ z2j g5=2
dzj ¼ 0

with the result that

I1 ¼ 2

r2ij
x̂ � 4ðxi � xjÞ

r4ij
r!ij

I2 ¼ 2

r2ij
ŷ � 4ðyi � yjÞ

r4ij
r!ij:

Inserting these results into Equation 11.35, we find the two-dimensional coupling
constants are the dimensionless, geometric factors

3 GR 2.271.5, 2.263.3, 2.271.7.
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Gix; jx ¼ 1

2π

ð ðxi � xjÞ2 � ðyi � yjÞ2
r4ij

dSj

Gix; jy ¼ Giy; jx ¼ 1

2π

ð
2ðxi � xjÞðyi � yjÞ

r4ij
dSj

Giy; jy ¼ 1

2π

ð ðyi � yjÞ2 � ðxi � xjÞ2
r4ij

dSj:

(11.36)

There are also constraints on the sum of the two-dimensional diagonal
elements.[21]

Gix; jx þ Giy; jy ¼ 0 if i ≠ j
�1 if i ¼ j

�
Once we know the coupling constantsG, we can solve Equation 11.34 to find the

magnetization in each of the iron elements. Then the field at any position can be
found from the sum of the fields due to all the current elements together with the
sum of all the fields due to the ironmagnetizations. In applications where saturation
in the iron is important, the permeability of all the iron elements must be recom-
puted using the magnetizations and a μ–H table for the iron material. The process is
then iterated until the maximum change in permeability in any element is less than
some tolerance value.

Example 11.2: setting up the integral equations for a dipole configuration
We will illustrate the two-dimensional integral equation algorithm by considering
a simple example of currents and iron blocks arranged in a dipole configuration. Once
the current and iron magnetization has been determined in the first quadrant, the
dipole symmetry constrains the geometry and polarity of the currents and magnetiza-
tions in the other quadrants, as illustrated in Figure 11.12. The currents have polarities
{I, –I, -–I, I} in the four quadrants. If we let ðM ð1Þ

x ;M ð1Þ
y Þ refer to the magnetization of

an iron element in the first quadrant, then the dipole symmetry requires that

Mð2Þ
y ¼ Mð3Þ

y ¼ Mð4Þ
y ¼ Mð1Þ

y

Mð2Þ
x ¼ Mð4Þ

x ¼ �Mð1Þ
x

Mð3Þ
x ¼ Mð1Þ

x ;

where the numeral superscripts refer to the quadrants. Making use of the dipole
symmetry allows us to treat only the magnetization components in the first quadrant
as unknowns. This can be important in problems with large numbers of iron elements
since it reduces the size of the matrix equation by a factor of four.
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Assume, for example, that there are two iron elements in the first quadrant. We can
find the right-hand side of Equation 11.34 using the techniques in Chapters 4 and 5.
We evaluate the field at the centroids of each of the iron elements. The magnetization
has a constant magnitude and direction in each element. The coupling constants for
the field due to the magnetizations can be found from Equation 5.72.

H	ðzoÞ ¼ M
4π i

þ
dz	

z� zo
:

We can determine the coupling constants Gxx and Gyx by evaluating H* with M = 1
and the coupling constants Gxy and Gyy by evaluating H* with M ¼ i.

The field components due to the magnetization in each iron element can be found
from

H	
mx ¼ Gxx Mx þ Gxy My

H	
my ¼ Gyx Mx þ Gyy My:

(11.37)

This gives the field anywhere outside the iron block. However, when the observation
point is inside the block, the numerical procedure must ensure that H andM point in
opposite directions, as they must inside a magnetic material. For the dipole config-
uration, we define the matrix coefficientsC as sums over the coupling constants in the
four quadrants. For example,

Ci x j x ¼ Gð1Þ
xx � Gð2Þ

xx þ Gð3Þ
xx � Gð4Þ

xx ;

where the minus signs take into account the reversal in the sign of Mx in the second
and fourth quadrants. The other three coefficients are similarly defined. The matrix
Equation 11.34 can be written for the case of two iron elements as

Figure 11.12 Dipole configuration of a current and iron magnetization.
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ðs1 � C1x1xÞM1x � C1x1yM1y � C1x2xM2x � C1x2yM2y ¼ Hc1x

�C1y1xM1x þ ðs1 � C1y1yÞM1y � C1y2xM2x � C1y2yM2y ¼ Hc1y

�C2x1xM1x � C2x1yM1y þ ðs2 � C2x2xÞM2x � C2x2yM2y ¼ Hc2x

�C2y1xM1x � C2y1yM1y � C2y2xM2x þ ðs2 � C2y2yÞM2y ¼ Hc2y;

where si ¼ 1=ðμri � 1Þ and the numeral subscripts refer to the two iron elements in
the first quadrant.
After solving the matrix equation, M is known for all the iron blocks. The

contribution of the iron to the field at any location can be found using
Equation 11.37, where G is now evaluated for the desired field point.

11.5 The POISSON code

We have shown results from the POISSON code4 a number of times previously
in this book. POISSON is one of the earliest examples of a finite element
program. We give a brief description here of the method used in the code for
solving the two-dimensional Poisson equation.[23, 24] The user defines the
boundaries and properties of the physical regions in the problem, together with
the boundary conditions at the borders of the problem space. The program then
automatically sets up an irregular triangular mesh where every interior node is
surrounded by six triangles. All boundaries and interfaces between regions lie
on mesh lines. The current density is assumed to be constant in each triangle in
a conductor region and the permeability is assumed to be constant in each
triangle in an iron region.
The code does not solve the Poisson equation directly. Instead, the solution

algorithm makes use of the Ampère lawþ
H
!

·dl
!¼

ð
J
!

·n̂ dS:

Allowing for saturation in the iron, this can be written asþ
γðBÞB!·dl

!¼ μ0

ð
J
!

·n̂ dS;

where γ is the reluctivity. The vector potential is assumed to only have a z
component and to satisfyr·A

! ¼ 0: Expressing B in terms of the vector potential,
we get

4 http://laacg.lanl.gov/laacg/services
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þ
γðBÞ ∂A

∂y
x̂ � ∂A

∂x
ŷ

� �
·dl
!¼ μ0

ð
J
!
·n̂ dS:

The contour around each mesh point follows a twelve-sided path through the
interior of the six surrounding triangles. After a lengthy calculation,[24]
a difference equation for the potential at node 0 can be derived in terms of the
potentials at the six neighbor nodes as

A0 ¼

X6
i¼1

Ai wi þ μ0
3

X6
i¼1

Ji Si

X6
i¼1

wi

:

In this equation, Si is the area of the triangle. The wi are coupling coefficients that
involve the parameters of the triangles on adjacent sides of the line connecting A0 to
neighboring node i. Looking at the diagram in Figure 11.13,

w1 ¼ ½ðγ1cot θ1 þ γ2cot θ4Þ
with similar expressions for the other five couplings.
The vector potential varies linearly inside any triangle. As a result, the magnetic

field is constant over the area of the triangle. Values for the potential are updated
using the successive over-relaxation algorithm. The new values of the field are then
used to estimate new values for γ and for the couplings w. An under-relaxation
algorithm is used to update the final values of the couplings for each iteration

wnþ1
i ¼ ð1� αÞwn

i þ αwnew
i ;

where the relaxation parameter satisfies 0 < α < 1.
As an illustration of using POISSON, we return to the simple problem discussed

in Section 11.2. The input commands to define the problem are shown in

Figure 11.13 Relation among nodes in the POISSON algorithm.
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Table 11.1. The first REG command defines the problem domain and specifies the
mesh size and the boundary conditions. The PO commands define points around
the boundary of regions. The second region defines the conductor and specifies the
current. The third region defines the iron sheet. POISSON sets up a triangular mesh
using this information and then solves the Poisson equation using the SOR algo-
rithm. For this example, the program used 112,896mesh points, converged in 1,160
iterations, and had an average residual of 5� 10�7. The resulting field distribution,
shown in Figure 11.14, agrees qualitatively well with the finite difference result in
Figure 11.9. The shielding effects of the iron sheet are clearly apparent in the figure.

11.6 Inverse problems and optimization

We have previously defined the inverse problem as finding a current distribution
that generates a specified magnetic field configuration. We discussed several
problems of this type in Chapter 8. The solution of inverse problems is simplified

Table 11.1 POISSON input commands for the example problem

Example: rectangular conductor near iron sheet
&reg kprob=0, ! Poisson or Pandira problem
icylin=0, ! rectangular coordinates
mode=-1, ! iron has fixed finite permeability
fixgam=0.01, ! reluctivity
dx=0.3,dy=0.3, ! mesh size intervals
nbslo=1, ! Neumann boundary condition on lower edge
nbsup=0, ! Dirichlet boundary condition on upper edge
nbslf=0, ! Dirichlet boundary condition on left edge
nbsrt=0 & ! Dirichlet boundary condition on right edge
&po x=0.0,y=0.0 &
&po x=100.,y=0.0 &
&po x=100.0,y=100.0 &
&po x=0.0,y=100.0 &
&po x=0.0,y=0.0 &

! problem domain

&reg mat=1,cur=19500. &
&po x=30.0,y=0.0 &
&po x=50.0,y=0. &
&po x=50.0,y=30. &
&po x=30.0,y=30.0 &
&po x=30.0,y=0.0 &

! conductor

&reg mat=2 &
&po x=70.0,y=0.0 &
&po x=72.0,y=0.0 &
&po x=72.,y=70.0 &
&po x=70.,y=70.0 &
&po x=70.0,y=0.0 &

! iron sheet
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by constraining the coil geometry. For example, by specifying that the unknown
currents lie on a cylindrical current sheet, it is possible to use Fourier-Bessel
transforms to find the azimuthal and longitudinal current components that produce
a specified target field inside a magnet aperture.[25] Another interesting approach
used a numerical variational process to modify the contours of a uniform current
density block conductor.[26] The target field was expressed in terms of a multipole
expansion of the transverse field in the aperture. Higher-order multipoles were
minimized by varying the geometry of the outer boundary of initial circular or
elliptical current blocks.
A powerful technique for solving inverse problems is to make use of numerical

optimization methods. Let us consider in more detail the numerical solution for two
interesting inverse problems. As the first example, assume we have a solenoid
channel with a constant axial field B1 and that we need to design an interface region
to a second solenoid channel with constant axial field B2. Assume the interface has
length L measured from the center of the last magnet in the first channel to the
center of the first magnet of the second channel. Assume in addition that the
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Figure 11.14 Field distribution for the example problem.
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transition region and second channel have to accept the full magnetic flux present in
the first channel. Then the desired field profile in the interface region must satisfy
the four constraints

Bzð0Þ ¼ B1

BzðLÞ ¼ B2

dBz

dz
ð0Þ ¼ 0

dBz

dz
ðLÞ ¼ 0:

A model field profile that satisfies these constraints is

BzðzÞ ¼ B1

1þ c z2 þ d z3
; (11.38)

where

c ¼ 3 ðB1 � B2Þ
B2 L2

d ¼ � 2 ðB1 � B2Þ
B2 L3

:

If r1 is the inner radius of the coils in the first channel, then the requirement for
constant flux puts an additional constraint on the allowed inner radius of the
downstream coils.

rðzÞ ≥ r1
ffiffiffiffiffiffiffiffiffiffiffi
B1

BzðzÞ

s
:

For example, let the coil C1 be the last solenoid in a 10 T channel with a fixed
inner radius of 10 cm and coil C14 be the first solenoid in a 2 Tchannel. Assume the
transition region is 7 m long and contains 12 solenoids that are 45 cm long,
separated by 5 cm, and have adjustable inner radius, radial thickness, and current
density. The axial field for each solenoid uses Equation 7.46. The merit function
f for the minimizer compares the desired value of the field at N locations zi from
Equation 11.38 with the calculated sum of the fields from all the coils, each with
a set of parameters aj.

f ¼
XN
i¼1

X14
j¼1

Bzðzi; ajÞ
 !

� BzðziÞ
" #2

:
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The calculation shown here used N = 36. Minimization of this function used
methods that do not require calculation of the derivatives.[27] The initial mini-
mization was done using a simplex algorithm. The most useful parameters to adjust
were the current densities and the inner radii of the coils. The axial parameters are
severely constrained here by the chosen geometry for the transition region. After
a preliminary solution had been found, the Powell direction-set method was used
for the final minimization. The optimized axial field is compared with the desired
field profile in Figure 11.15.
As a second example of optimization, let us consider the design of the central

section of a long dipole magnet with a circular cross-section. Assume that field
quality in the dipole aperture is the matter of concern and that we want to minimize
the strength of the first four allowed harmonics of the dipole field. We saw in
Chapters 4 and 5 that the multipole coefficients depend on the limiting angles of
annular conductor blocks. In order to eliminate four multipoles we will need to use
at least three blocks. We choose here a conductor design with two radial layers,
each of which has two conductor blocks, as shown in Figure 11.16. The contribu-
tion to the multipoles from an annular conductor block with constant current
density was given in Equations 5.68–5.70. We again use a minimization algorithm,
where the merit function is now given by

f ¼
X4
i¼1

wi

X16
j¼1

bnðni; ajÞ
 !

� ebnðniÞ
" #2

:

Figure 11.15 The optimized axial field (dots) and the desired field profile (line) in
the transition region between two solenoid channels.
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The index i sums over desired multipole orders, the index j sums over coils, and the
normalized multipole ratio is defined as

bn ¼
Bn½T=mn�1� rn�1

ref ½mn�1�
B1½T� :

The ebn factors are the desired values of the multipole ratios, which we take here as
0. The aj are the set of parameters that describe conductor block j. The parameters
of the coils in quadrants 2–4 are related to the parameters of the coils in quadrant 1
by the dipole symmetry. For this calculation the adjustable parameters are the end
angles of the blocks nearest the midplane and the start and end angles of the second
block in each layer. The start angle of the two blocks nearest the midplane are made
as close to 0 as possible to maximize the dipole field. The wi are weights that
determine the importance of satisfying the constraint onmultipole ni. The reference
radius used for the multipole calculations was 2/3 of the magnet aperture. After
minimization, the allowed multipole ratios b3; b5; b7, and b9 have strengths ~10

�4.
In the design of actual magnets,[28] a need for high precision field quality

may require that allowed multipoles higher than b9 are also minimized.
In addition, the conductor may have to be described in terms of individual
turns of the cable separated by the appropriate insulation thickness, instead of
the continuous conductor blocks used here. This introduces the additional
constraint that there must be an integral number of turns in a conductor block.
In addition, if the coils are surrounded by an iron shell, saturation effects, which
cause the multipole strength to vary with the excitation current, may have to be
taken into account.

Figure 11.16 Conductor blocks in the first quadrant of a dipole magnet.

11.6 Inverse problems and optimization 271

https://doi.org/10.1017/9781009291156.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291156.012


References

[1] A. Frisiani, G. Molinari & A. Viviani, Introduction, in M. Chari & P. Silvester
(eds.), Finite Elements in Electrical and Magnetic Field Problems, Wiley, 1980,
p. 1–10.

[2] N. Gershenfeld, The Nature of Mathematical Modeling, Cambridge University Press,
1999, p. 86–91.

[3] K. Binns & P. Lawrenson, Analysis and Computation of Electric and Magnetic Field
Problems, Pergamon Press, 2nd ed., 1973, p. 246.

[4] D. Jones, Methods in Electromagnetic Wave Propagation, vol. 1, Oxford University
Press, 1987, p. 113.

[5] G. Smith, Numerical Solution of Partial Differential Equations: Finite Difference
Methods, 2nd ed., Oxford University Press, 1978, p. 216.

[6] K. Binns & P. Lawrenson, op. cit., p. 268.
[7] W. Press, S. Teukolsky, W. Vetterling & B. Flannery, Numerical Recipes in Fortran,

2nd ed., Cambridge University Press, 1992, p. 117.
[8] W. Milne, Numerical Solution of Differential Equations, Dover, 1970, p. 217.
[9] G. Parzen & K. Jellett, Computation of high field magnets, Part. Acc. 2:169, 1971.
[10] W. Press, et al., op. cit., p. 857–860.
[11] K. Binns & P. Lawrenson, op. cit., p. 260–265.
[12] N. Gershenfeld, op. cit., p. 93–101.
[13] M. Chari, Finite element solution of magnetic and electric field problems in electrical

machines and devices, in M. Chari & P. Silvester (eds.), Finite Elements in Electrical
and Magnetic Field Problems, Wiley, 1980, p. 87–107.

[14] R. Gallagher, Shape functions, in M. Chari & P. Silvester (eds.), ibid., p. 49–67.
[15] P. Silvester &M. Chari, Finite element solution of saturable magnetic field problems,

IEEE Trans. on Power Apparatus and Systems 89:1642, 1970.
[16] J. Simkin & C. Trowbridge, Three dimensional nonlinear electromagnetic field

computations using scalar potentials, IEE Proc. 127:368, 1980.
[17] J. Simkin & C. Trowbridge, Magnetostatic fields computed using an integral equation

derived from Green’s theorems, Proc. Compumag, Rutherford Appleton Laboratory,
Oxford, 1976, p. 5.

[18] C. Trowbridge, Applications of integral equation methods to the numerical solution of
magnetostatic and eddy current problems, in M. Chari & P. Silvester (eds.), op. cit.,
p. 191–213.

[19] C. Trowbridge, Progress in magnet design by computer, Proc. 4th Int. Conf. Magnet
Technology, Brookhaven National Laboratory, 1972, p. 555.

[20] B. McDonald & A. Wexler, Mutually constrained partial differential and integral
equation field formulations, in M. Chari & P. Silvester (eds.), op. cit., p. 161–190.

[21] M. Newman, C. Trowbridge & L. Turner,GFUN: an interactive program as an aid to
magnet design, Proc. 4th Int. Conf. Mag. Tech., Brookhaven National Laboratory,
1972, p. 617.

[22] F. Mingwu, S. Hanguang &W. Jingguo, Some experiences of using integral equation
method to calculate magnetostatic fields, IEEE Trans. Mag. 21:2185, 1985.

[23] A. Winslow, Numerical solution of the quasilinear Poisson equation in a nonuniform
triangle mesh, J.Comp. Phys. 1:149, 1966.

[24] J. Billen & L. Young, Poisson-Superfish, Los Alamos National Laboratory report LA-
UR-96–1834, 2006, p. 577–596.

[25] R. Turner, A target field approach to optimal coil design, J. Phys. D: Appl. Phys. 19:
L147, 1986.

272 Numerical methods

https://doi.org/10.1017/9781009291156.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291156.012


[26] G. Morgan, Two dimensional, uniform current density, air core coil configurations for
the production of specifiedmagnetic fields, Proc. 1969 Part. Accel. Conf.,Washington
DC, p. 768.

[27] W. Press, et al., op. cit., p. 402–413.
[28] E. Bleser, et al., Superconducting magnets for the CBA Project, Nuc. Instr. Meth.

Phys. Res. A 235:435, 1985.

References 273

https://doi.org/10.1017/9781009291156.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291156.012

