MULTIVALENT AND MEROMORPHIC FUNCTIONS OF BOUNDED BOUNDARY ROTATION

RONALD J. LEACH

1. The class $V_{k}(p)$. We generalize the class V_{k} of analytic functions of bounded boundary rotation [8] by allowing critical points in the unit disc U.

Definition. Let $f(z)=a_{q} z^{q}+\ldots(q \geqq 1)$ be analytic in U. Then $f(z)$ belongs to the class $V_{k}(p)$ if for r sufficiently close to 1 ,

$$
\begin{equation*}
\int_{0}^{2 \pi} \operatorname{Re}\left\{1+\frac{r e^{i \theta} f^{\prime \prime}\left(r e^{i \theta}\right)}{f^{\prime}\left(r e^{i \theta}\right)}\right\} d \theta=2 p \pi \tag{1.1}
\end{equation*}
$$

and
(1.2) $\quad \limsup _{r \rightarrow 1^{-}} \int_{0}^{2 \pi}\left|\operatorname{Re}\left\{1+\frac{r e^{i \theta} f^{\prime \prime}\left(r e^{i \theta}\right)}{f^{\prime}\left(r e^{i \theta}\right)}\right\}\right| d \theta \leqq p k \pi$.

We note that (1.1) implies that f has precisely $p-1$ critical points in U. Also, if $f(z) \in V_{k}(p)$, then $\operatorname{Re}\left\{1+z f^{\prime \prime}(z) / f^{\prime}(z)\right\}>0$ for $r_{0}<|z|<1$ if and only if $k=2$. Hence $V_{2}(p)=C(p)$, where $C(p)$ is the class of p-valent convex functions defined by Goodman [4].

If $p=1$, then except for normalization, $V_{k}(p)$ reduces to the class V_{k}. It is well-known that the class $V_{k}(1)$ consists only of univalent functions if $2 \leqq k \leqq 4$. To determine the largest value of k such that each function in $V_{k}(p)$ is at most p-valent, we will need the following

Lemma 1.1. Let $f(z) \in V_{k}(p)$. Then

$$
\lim _{\tau \rightarrow 1^{-}} \int_{0}^{2 \pi}\left|\operatorname{Re}\left\{1+\frac{r e^{i \theta} f^{\prime \prime}\left(r e^{i \theta}\right)}{f^{\prime}\left(r e^{i \theta}\right)}\right\}\right| d \theta \text { exists. }
$$

Proof. Let $f(z)$ have non-zero critical points $a_{1}, \ldots a_{p-q}(q \geqq 1)$, counting multiplicities, and let $r_{0}=\max \left|a_{j}\right|$. Then for $r_{0}<|z|<1$,

$$
\left|\operatorname{Re} 1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|
$$

is subharmonic. Consequently for $\rho<|z|<1$,

$$
\int_{0}^{2 \pi}\left|\operatorname{Re}\left\{1+\frac{r e^{i \theta} f^{\prime \prime}\left(r e^{i \theta}\right)}{f^{\prime}\left(r e^{i \theta}\right)}\right\}\right| d \theta
$$

is a convex function of $\log r$ and hence the limit exists.
Theorem 1.2. Let $f(z) \in V_{k}(p)$. Then $f(z)$ is at most max $[p,\{p k / 2-1\}]$ valent, where $\{p k / 2-1\}$ denotes the smallest integer greater than $p k / 2-1$.

[^0]Proof. By Lemma 1.1, given $\epsilon>0$ we may choose $r_{0}<1$ so that if $r_{0}<r<1$,

$$
\int_{0}^{2 \pi}\left|\operatorname{Re}\left\{1+\frac{r e^{i \theta} f^{\prime \prime}\left(r e^{i \theta}\right)}{f^{\prime}\left(r e^{i \theta}\right)}\right\}\right| d \theta<2\left(\frac{p k}{2}+\epsilon\right) \pi
$$

Since $f(z)$ is analytic for $|z| \leqq r$, it follows by a result due to Umezawa [17] that f is at most max $[p,\{p k / 2-1\}]$ valent in $|z| \leqq r$. The result follows by letting $r \rightarrow 1$.

Note. This was proved by Brannan [1] in the case $p=1$.
Corollary 1.3. Let $f(z) \in V(p)$ with $k<2+2 / p$. Then f is at most p-valent in U.

Our next goal is to obtain representation formulas for $V_{k}(p)$. We will need to use the functions

$$
\begin{equation*}
\psi\left(z, z_{j}\right)=\frac{\left(z-z_{j}\right)\left(1-\bar{z}_{j} z\right)}{z} \tag{1.3}
\end{equation*}
$$

which have been employed by Hummel [6] and others.
Lemma 1.4. Let $f(z)=a_{q} z^{q}+\ldots(q \geqq 1)$ belong to $V_{k}(p)$ and have non-zero critical points $z_{1}, \ldots z_{p-q}$, counting multiplicities. Let

$$
g(z)=\int_{0}^{z} \prod_{j=1}^{p-q} \psi\left(z, z_{j}\right)^{-1} f^{\prime}(z) d z
$$

Then $g(z)$ has $p-1$ critical points all at $z=0$ and $g(z) \in V_{k}(p)$.
Proof. It follows from the definition of $g(z)$ that

$$
1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}=1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\sum_{j=1}^{p-q}\left(\frac{z_{j}}{z-z_{j}}-\frac{z \bar{z}_{j}}{1-\bar{z}_{j} z}\right) .
$$

Let $\epsilon>0$ be given. Since for $|z|=1$

$$
\operatorname{Re}\left\{\frac{z_{j}}{z-z_{j}}-\frac{z \bar{z}_{j}}{1-\bar{z}_{j} z}\right\}=0
$$

there is an $r_{0}<1$ such that if $r_{0}<r<1$, then

$$
\int_{0}^{2 \pi}\left|\operatorname{Re}\left\{1+\frac{r e^{i \theta} g^{\prime \prime}\left(r e^{i \theta}\right)}{g^{\prime}\left(r e^{i \theta}\right)}\right\}\right| d \theta \leqq \int_{0}^{2 \pi}\left|\operatorname{Re}\left\{1+\frac{r e^{i \theta} f^{\prime \prime}\left(r e^{i \theta}\right)}{f^{\prime}\left(r e^{i \theta}\right)}\right\}\right| d \theta+\epsilon
$$

Consequently

$$
\limsup _{r \rightarrow 1^{-}} \int_{0}^{2 \pi}\left|\operatorname{Re}\left\{1+\frac{r e^{i \theta} g^{\prime \prime}\left(r e^{i \theta}\right)}{g^{\prime}\left(r e^{i \theta}\right)}\right\}\right| d \theta \leqq p k \pi+\epsilon .
$$

Since $\epsilon>0$ is arbitrary and g has precisely $p-1$ critical points, $g(z) \in V_{k}(p)$.
Theorem 1.5. Let $f(z)=a_{q} z^{q}+\ldots \in V_{k}(p)$ and suppose $f(z)$ has non-zero critical points $z_{1}, \ldots z_{p-q}$, counting multiplicities. Then:
(i) there is a function $\mu(t)$ of bounded variation on $[0,2 \pi]$ with

$$
\int_{0}^{2 \pi} d \mu(t)=2 p \text { and } \int_{0}^{2 \pi}|d \mu(t)| \leqq p k
$$

and a constant A such that

$$
\begin{equation*}
f^{\prime}(z)=A z^{p-1} \prod_{j=1}^{p-q} \psi\left(z, z_{j}\right) \exp \left[-\int_{0}^{2 \pi} \log \left(1-z e^{-i t}\right) d \mu(t)\right] ; \tag{1.4}
\end{equation*}
$$

(ii) there is a function $h(z) \in V_{k}$ and a constant A such that

$$
\begin{equation*}
f^{\prime}(z)=A z^{p-1} \prod_{j=1}^{p-q} \psi\left(z, z_{j}\right)\left[h^{\prime}(z)\right]^{p} \tag{1.5}
\end{equation*}
$$

(iii) there are two normalized univalent starlike functions $s_{1}(z)$ and $s_{2}(z)$ and a constant A such that

$$
\begin{equation*}
f^{\prime}(z)=A z^{p-1} \prod_{j=1}^{p-q} \psi\left(z, z_{j}\right)\left[\frac{s_{1}(z)}{z}\right]^{\frac{1}{2} p(k+2)}\left[\frac{s_{2}(z)}{z}\right]^{-\frac{1}{p} p(k-2)} . \tag{1.6}
\end{equation*}
$$

Proof. An application of Plessner's Theorem [3, p. 38] to the function $g(z)$ related to $f(z)$ as in Lemma 1.4 yields (1.4), and (1.6) follows by decomposing $\mu(t)$ into the difference of two increasing functions.

The following distortion theorem is an easy consequence of Theorem 1.5 and thus we omit the proof. Hummel [6] has similar results for the class $S(p)$.

Theorem 1.6. Let $f(z)=a_{q} z^{q}+\ldots \in V_{k}(p)$ have non-zero critical points $z_{1}, \ldots z_{p-q}$, counting multiplicities. Let $R_{1}=\max \left|z_{j}\right|, R_{2}=\min \left|z_{j}\right|$. Then with $z=r e^{i \theta}$,

$$
\begin{aligned}
& \left|f^{\prime}(z)\right| \leqq \frac{(1+r)^{\frac{1}{p} p(k-2)}}{(1-r)^{3 p(k+2)}} \frac{q\left|a_{q}\right|}{\Pi\left|z_{j}\right|} r^{q-1} \prod_{j=1}^{p-q}\left(r+\left|z_{j}\right|\right)\left(1+r\left|z_{j}\right|\right) \\
& \left|f^{\prime}(z)\right| \geqq \frac{(1-r)^{\frac{1}{p}(k-2)}}{(1+r)^{j p(k+2)}} \frac{q\left|a_{q}\right|}{\Pi\left|z_{j}\right|} r^{q-1} \prod_{j=1}^{p-q}\left(r-\left|z_{j}\right|\right)\left(1-\left|z_{j}\right| r\right), R_{1}<r<1 \\
& \left|f^{\prime}(z)\right| \geqq \frac{(1-r)^{\frac{1}{p} p(k-2)}}{(1+r)^{\frac{1}{p}(k+2)} \frac{q\left|a_{q}\right|}{\Pi\left|z_{j}\right|} r^{q-1} \prod_{j=1}^{p-q}\left(\left|z_{j}\right|-r\right)\left(1-\left|z_{j}\right| r\right), 0<r<R_{2} .}
\end{aligned}
$$

Theorem 1.7. Let $f(z)=a_{q} z^{q}+\ldots \in V_{k}(p)$ have $p-q$ non-zero critical points $z_{1}, \ldots z_{p-q}$, counting multiplicities. The $f(z)$ is q-valently convex for $|z|<$ r_{q}, where $r q$ is the least positive root of

$$
\begin{aligned}
& \frac{p}{2}\left[\left(1+\frac{k}{2}\right)\left(\frac{1-r}{1+r}\right)+\left(1-\frac{k}{2}\right)\left(\frac{1+r}{1-r}\right)\right] \\
&-\sum_{j=1}^{p-q} \frac{\left|z_{j}\right|\left(1-r^{2}\right)}{\left(\left|z_{j}\right|-r\right)\left(1-\left|z_{j}\right| r\right)}=0 .
\end{aligned}
$$

Proof. Let $\mu(t)$ be the function in (1.4) such that

$$
f^{\prime}(z)=q a_{q} z^{p-1} \prod_{j=1}^{p-q} \psi\left(z, z_{j}\right) \exp \left[-\int_{0}^{2 \pi} \log \left(1-z e^{-i t}\right) d \mu(t)\right] .
$$

Then we compute

$$
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}=\operatorname{Re} \sum_{j=1}^{p-q} \frac{z \psi^{\prime}\left(z, z_{j}\right)}{\psi\left(z, z_{j}\right)}+\operatorname{Re} \int_{0}^{2 \pi} \frac{1+z e^{-i t}}{1-z e^{-i t}} d \mu(t)
$$

Hummel [6] has obtained the bonds
(1.7) $\operatorname{Re} \frac{z \psi^{\prime}\left(z, z_{j}\right)}{\psi\left(z, z_{j}\right)} \geqq \frac{-\left|z_{j}\right|\left(1-r^{2}\right)}{\left(\left|z_{j}\right|-r\right)\left(1-\left|z_{j}\right| r\right)}$.

Since $\mu(t)$ has positive variation $<p(1+k / 2)$ and negative variation $<p(k / 2-1)$ it follows that

$$
\begin{equation*}
\operatorname{Re} \int_{0}^{2 \pi} \frac{1+z e^{-i t}}{1-z e^{-i \bar{l}}} d \mu(t) \geqq p\left(1+\frac{k}{2}\right)\left(\frac{1-r}{1+r}\right)+p\left(1-\frac{k}{2}\right)\left(\frac{1+r}{1-r}\right) \tag{1.8}
\end{equation*}
$$

The result now follows by combining (1.7) and (1.8).
The following corollary is immediate.
Corollary 1.8. Let $f(z)=a_{p} z^{p}+\ldots \in V_{k}(p)$. Then $f(z)$ is p-valently convex for $|z|<\frac{1}{2}\left(k-\left(k^{2}-4\right)^{1 / 2}\right)$ and this result is sharp.
2. Coefficient Bounds for $V_{r}(p)$. Goodman [4] has conjectured that if $f(z)=\sum_{n=1}^{\infty} a_{n} z^{n}$ is at most p-valent in U, then for $n \geqq p+1$,

$$
\begin{equation*}
\left|a_{n}\right| \leqq \sum_{j=1}^{p} \frac{2 j(n+p)!}{\left(n^{2}-j^{2}\right)(p+j)!(p-j)!(n-p-1)!}\left|a_{j}\right| . \tag{2.1}
\end{equation*}
$$

The conjecture (2.1) has been verified for certain subclasses of p-valent functions. If $f(z)$ belongs to the class $K(p)$ of p-valent close-to-convex functions defined by Livingston [9], then (2.1) is known for $n=p+1$ with no restriction on $a_{1}, \ldots a_{p}[\mathbf{9}]$ and for $n \geqq p+1$, provided $a_{1}=\ldots=a_{p-2}=0[\mathbf{1 1}]$.

We recall that if $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \in V_{k}$, then $\left|b_{2}\right| \leqq k / 2,\left|b_{3}\right| \leqq\left(k^{2}+\right.$ $2) / 6[8]$ and $\left|b_{4}\right| \leqq\left(k^{3}+8 k\right) / 4![15]$, with equality if

$$
g(z)=\frac{1}{k}\left[\left(\frac{1+z}{1-z}\right)^{k / 2}-1\right] .
$$

We will first consider functions $f(z) \in V_{k}(p)$ with all critical points at the origin.

Theorem 2.1. Let $f(z)=a_{p} z^{p}+\ldots \in V_{k}(p)$. Then

$$
\begin{aligned}
& (p+1)\left|a_{p+1}\right| \leqq p^{2} k\left|a_{p}\right| \\
& (p+2)\left|a_{p+2}\right| \leqq\left(\frac{p^{2} k^{2}}{2}+p\right) p\left|a_{p}\right| \\
& (p+3)\left|a_{p+3}\right| \leqq \frac{p^{2} k}{6}\left(p^{2} k^{2}+6 p+2\right)\left|a_{p}\right| .
\end{aligned}
$$

All of these results are sharp, with equality for $F^{\prime}(z)=p a_{p}\left[g^{\prime}(z)\right]^{p}$, where

$$
g(z)=\frac{1}{k}\left[\left(\frac{1+z}{1-z}\right)^{k / 2}-1\right] .
$$

Proof. Let $g(z)=z+\sum_{2}^{\infty} b_{n} z^{n}$ be the function in V_{k} related to f by Theorem 1.5. We compute

$$
\begin{aligned}
\frac{f^{\prime}(z)}{p a_{p}}= & z^{p-1}+2 p b_{2} z^{p}+\left[3 p b_{3}+2 p(p-1) b_{2}{ }^{2}\right] z^{p+1} \\
& +\left[4 p b_{4}+p(p-1) 6 b_{2} b_{3}+\frac{4 p(p-1)(p-2)}{3} b_{2}{ }^{3}\right] z^{p+2}+\ldots
\end{aligned}
$$

Comparing coefficients we have

$$
\begin{aligned}
& (p+1) a_{p+1}=2 p^{2} b_{2} a_{p} \\
& (p+2) a_{p+2}=\left[3 p b_{3}+2 p(p-1) b_{2}{ }^{2}\right] a_{p} \\
& (p+3) a_{p+3}=\left[4 p b_{4}+6 p(p-1) b_{2} b_{3}+(4 / 3) p(p-1)(p-2) b_{2}{ }^{3}\right] a_{p}
\end{aligned}
$$

and the result follows from the estimates for $\left|b_{2}\right|,\left|b_{3}\right|$, and $\left|b_{4}\right|$ after a short calculation.

We remark that if $k=2$, we get the known results of Goodman [4] for p-valent convex functions; namely,

$$
\begin{aligned}
& (p+1)\left|a_{p+1}\right| \leqq 2 p^{2}\left|a_{p}\right| \\
& (p+2)\left|a_{p+2}\right| \leqq(2 p+1) p^{2}\left|a_{p}\right| \\
& (p+3)\left|a_{p+3}\right| \leqq \frac{2}{3}(2 p+1)(p+1) p\left|a_{p}\right| .
\end{aligned}
$$

We omit the proof of the next lemma whose proof is similar to [7, Theorem $3.2]$ and [8, p. 7-10].

Lemma 2.2. Let $g(z)=z+b_{2} z^{2}+\ldots \in V_{k}(p)$. Then for any integer $p \geqq 1,\left|3 p b_{3}-2 p(p-1) b_{2}{ }^{2}\right| \leqq p^{2} k^{2} / 2-p$, with equality for

$$
g(z)=\frac{1}{k}\left[\left(\frac{1+i z}{1-i z}\right)^{k / 2}-1\right] .
$$

Theorem 2.3. Let $f(z)=a_{p-1} z^{p-1}+\ldots \in V_{k}(p)$. Then

$$
(p+1)\left|a_{p+1}\right| \leqq p^{2} k\left|a_{p}\right|+(p-1)\left|a_{p-1}\right|\left(p^{2} k^{2} / 2-p+1\right)
$$

Proof. If $a_{p-1}=0$, this reduces to Theorem 2.1 and our result is sharp in this case. We then assume that $a_{p-1} \neq 0$ and hence that $f(z)$ has a non-zero critical point z_{0}, since each function in $V_{k}(p)$ has precisely $p-1$ critical points. Thus there is a function $g(z)=\sum_{n=1}^{\infty} b_{n} z^{n} \in V_{k}(1)$ such that

$$
f^{\prime}(z)=p a_{p} z^{p-2}\left(z-z_{0}\right)\left(1-\bar{z}_{0} z\right)\left[g^{\prime}(z)\right]^{p} .
$$

We may assume without loss of generality that $b_{1}=1$. Let $\left[g^{\prime}(z)\right]^{p}=$ $\sum_{m=0}^{\infty} c_{m} z^{m}$. Then we have $c_{0}=1, c_{1}=2 p b_{2}, c_{2}=3 p b_{3}+\binom{p}{2} 4 b_{2}{ }^{2}$. Now

$$
\begin{aligned}
& \sum_{n=p-1}^{\infty} n a_{n} z^{n-1}=\sum_{m=0}^{\infty}\left[-\bar{z}_{0} c_{m}+\left(1+\left|z_{0}\right|^{2}\right) c_{m+1}-z_{0} c_{m+2}\right] z^{m+p} \\
&+\left[\left(1+\left|z_{0}\right|^{2}\right)-z_{0} c_{1}\right] z^{p-1}-z_{0} z^{p-2}
\end{aligned}
$$

and thus comparing coefficients

$$
\begin{aligned}
& (p-1) a_{p-1}=-z_{0} \\
& p a_{p}=\left(1+\left|z_{0}\right|^{2}\right)-z_{0} c_{1} \\
& (p+1) a_{p+1}=-\bar{z}_{0}+\left(1+\left|z_{0}\right|^{2}\right) c_{1}-z_{0} c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
(p+1) a_{p+1} & =-\bar{z}_{0}+c_{1}\left[\left(1+\left|z_{0}\right|^{2}\right)-z_{0} c_{1}\right]+z_{0} c_{1}^{2}-z_{0} c_{2} \\
& =c_{1} p a_{p}+\left(-z_{0}\right)\left[\bar{z}_{0} / z_{0}+c_{2}-c_{1}^{2}\right] .
\end{aligned}
$$

Consequently

$$
\begin{aligned}
(p+1)\left|a_{p+1}\right| & \leqq\left|c_{1}\right| p\left|a_{p}\right|+(p-1)\left|a_{p-1}\right|\left[1+\left|c_{2}-c_{1}{ }^{2}\right|\right] \\
& =2 p^{2}\left|b_{2}\right| a_{p}|+(p-1)| a_{p-1} \mid\left[1+\left|3 p b_{3}-2 p(p+1) b_{2}{ }^{2}\right|\right]
\end{aligned}
$$

and the result follows by Lemma 2.2 , since $\left|b_{2}\right| \leqq k / 2$.
We note that if $k=2+2 / p$, Theorem 2.3 yields the result

$$
(p+1)\left|a_{p+1}\right| \leqq 2 p(p+1)\left|a_{p}\right|+(p-1)\left|a_{p-1}\right|\left[2(p+1)^{2}-p+1\right]
$$

which is certainly not sharp since (2.1) is known to be sharp for p-valently close-to-convex functions with $n=p+1$. In order to obtain a sharp coefficient bound we restrict our attention to function $f(z)=a_{p-1} z^{p-1}+\ldots \in V_{k}(p)$ with real coefficients. The following lemma will be needed.

Lemma 2.4. Let $g(z)=z+b_{2} z^{2}+\ldots \in V_{k}$ have real coefficients. Then if $p \geqq 2,\left|1+3 p b_{3}-2 p(p+1) b_{2}{ }^{2}\right| \leqq p^{2} k^{2} / 2-p-1$, and this result is shar p.

Proof. By Lemma 2.2, $\left|3 p b_{3}-2 p(p+1) b_{2}{ }^{2}\right| \leqq p^{2} k^{2} / 2-p$, with equality for

$$
g(z)=\frac{1}{k}\left[\left(\frac{1+z}{1-z}\right)^{k / 2}-1\right]=z+\frac{k}{2} z^{2}+\frac{k^{2}+2}{6} z^{3}+\ldots
$$

for which $3 p b_{3}-2 p(p+1) b_{2}{ }^{2}=p-p^{2} k^{2} / 2$. Hence

$$
1+3 p b_{3}-2 p(p+1) b_{2}^{2} \geqq 1+p-p^{2} k^{2} / 2
$$

It remains to show that

$$
1+3 p b_{3}-2 p(p+1) b_{2}^{2} \leqq p^{2} k^{2} / 2-p-1
$$

Suppose then that $3 p b_{3}-2 p(p+1) b_{2}{ }^{2}>p^{2} k^{2} / 2-p-2$. Since $g \in V_{k}$, there is a function $\mu(t)$ of bounded variation on $[0,2 \pi]$ with

$$
\int_{0}^{2 \pi} d \mu(t)=2 \text { and } \int_{0}^{2 \pi}|d \mu(t)| \leqq k
$$

such that

$$
g^{\prime}(z)=\left[\int_{0}^{2 \pi} \log \left(1-z e^{-i t}\right) d \mu(t)\right]
$$

A brief calculation shows that

$$
3 p b_{3}-2 p(p+1) b_{2}^{2}=\frac{p}{2}\left[\int_{0}^{2 \pi} e^{-2 i t} d \mu(t)-p \lambda\left(\int_{0}^{2 \pi} e^{-i t} d \mu(t)\right)^{2}\right]
$$

We have that

$$
\int_{0}^{2 \pi} e^{-i t} d \mu(t)=2 b_{2} \quad \text { is real }
$$

and hence

$$
\frac{p^{2} k^{2}}{2}-p-2<\frac{p}{2} \int_{0}^{2 \pi} e^{-2 i t} d \mu(t) \leqq \frac{p k}{2}
$$

or,
(2.2) $p^{2} k^{2} / 2-p(1+k / 2)-2<0$.

The left hand side of (2.2) is an increasing function of $p,(p \geqq 2)$ for any fixed value of $k \geqq 2$.

When $p=2$, we have

$$
2 k^{2}-2(1+k / 2)-2 \leqq 0
$$

which is impossible for any $k>2$. Thus

$$
1+3 p b_{3}-2 p(p+1) b_{2}{ }^{2} \leqq p^{2} k^{2} / 2-p-1
$$

and the result follows.
Theorem 2.5. Let $f(z)=a_{p-1} z^{p-1}+\ldots \in V_{k}(p)(p>2)$ have real coefficients. Then

$$
(p+1)\left|a_{p+1}\right| \leqq p^{2} k\left|a_{p}\right|+(p-1)\left|a_{p-1}\right|\left(p^{2} k^{2} / 2-p-1\right)
$$

and there is a function in $V_{k}(p)$ for which equality holds.
Proof. If $f(z)$ has real coefficients, then $f(z)$ maps U onto a domain symmetric with respect to the real axis. Since $f(z)$ has precisely $p-1$ critical points, f
has precisely one non-zero critical point z_{0} which must be real since complex roots of the equation $f^{\prime}(z)=0$ occur in conjugate pairs. Using the notation of Theorem 2.3

$$
\begin{align*}
(p+1) a_{p+1} & =p a_{p} c_{1}+(p-1) a_{p-1}\left[\bar{z}_{0} / z_{0}+c_{2}-c_{1}{ }^{2}\right] \tag{2.3}\\
& =2 p b_{2} a_{p}+(p-1) a_{p-1}\left[1+3 p b_{3}-2 p(p+1) b_{2}^{2}\right] .
\end{align*}
$$

Since z_{0} and the a_{n} are real, the c_{n} and hence the b_{n} are real. By Lemma 2.4, since the b_{n} are real,

$$
\left|1+3 p b_{3}-2 p(p+1) b_{2}^{2}\right| \leqq p^{2} k^{2} / 2-p-1
$$

Since $g(z) \in V_{k},\left|b_{2}\right| \leqq k / 2$ and the result follows.
To see that this result is sharp we consider

$$
f^{\prime}(z)=z^{p-2}\left(z-z_{0}\right)\left(1-z_{0} z\right)\left[g^{\prime}(z)\right]^{p}
$$

where

$$
g(z)=\frac{1}{k}\left[\left(\frac{1+z}{1-z}\right)^{k / 2}-1\right] \text { and } 0<z_{0}<\frac{p k-\left(p^{2} k^{2}-4\right)^{1 / 2}}{2}
$$

For this function it follows from (2.3) that

$$
(p+1) a_{p+1}=p^{2} k a_{p}+\left(-z_{0}\right)\left[1+p-p^{2} k^{2} / 2\right]
$$

and hence since $a_{p}>0$ and $a_{p-1}<0$,

$$
(p+1)\left|a_{p+1}\right|=p^{2} k\left|a_{p}\right|+(p-1)\left|a_{p-1}\right|\left(p^{2} k^{2} / 2-p-1\right) .
$$

We note that if $k=2+2 / p$, Theorem 2.5 reduces to a special case of the Goodman conjecture, which is known to be sharp, if correct.

3. Asymptotic coefficient estimates for $V_{k}(p)$.

Theorem 3.1. Let $f(z) \in V_{k}(p)$. Then

$$
\alpha=\lim _{r \rightarrow 1}(1-r)^{\frac{1}{2} p(k+2)} M\left(r, f^{\prime}\right)
$$

exists. If $\alpha>0$, there is a unique θ_{0} so that

$$
\alpha=\lim _{r \rightarrow 1}(1-r)^{\frac{1}{2} p(k+2)}\left|f^{\prime}\left(r e^{i \theta_{0}}\right)\right| .
$$

Proof. The result is known if $p=1[\mathbf{1 2}]$ and hence we may suppose $p \geqq 2$. If f has non-zero critical points $a_{1}, \ldots a_{p-q}$, then by Theorem 1.5 there are two univalent starlike functions $s_{1}(z)$ and $s_{2}(z)$ such that

$$
f^{\prime}(z)=z^{p-1} \prod_{j=1}^{p-q} \psi\left(z, a_{j}\right) \cdot\left[\frac{s_{1}(z)}{z}\right]^{\frac{1}{p}(k+2)} \cdot\left[\frac{s_{2}(z)}{z}\right]^{-\frac{1}{q} p(k-2)} .
$$

Since $z / s_{2}(z)$ and $\psi\left(z, a_{j}\right)$ are bounded near $|z|=1$, it follows from [14] that
$\alpha=0$ unless $s_{1}(z)=z /\left(1-e^{i \theta 0} z\right)^{2}$. Thus we may suppose that

$$
\limsup _{r \rightarrow 1}(1-r)^{\frac{1}{2} p(k+2)} M\left(r, f^{\prime}\right)>0
$$

and that $s_{1}(z)$ is of the form $z /\left(1-e^{i \theta 0} z\right)^{2}$. We may assume without loss of generality that $\theta_{0}=0$.

Choose a sequence $r_{n} \rightarrow 1$ and a point z_{n} on $|z|=r_{n}$ with

$$
\lim _{n \rightarrow \infty}\left(1-r_{n}\right)^{\frac{1}{2} p(k+2)}\left|f^{\prime}\left(z_{n}\right)\right|>0
$$

We will show that the points z_{n} eventually lie interior to a fixed stoltz angle with vertex at $z=1$. Suppose not. Then given $M>0$, there is a subsequence z_{j} such that $\left|1-z_{j}\right|>M\left(1-r_{j}\right)$. If we set $L=\max \left|R\left(e^{i \theta}\right)\right|$, where $R(z)=$ $z^{p-1} \Pi \psi\left(z, a_{j}\right)$, then for j sufficiently large we have

$$
\begin{aligned}
2 L 2^{\frac{1}{2} p(k-2)} & \geqq\left|R\left(z_{j}\right)\right|\left|\frac{z_{j}}{s_{2}\left(z_{j}\right)}\right|^{\frac{1}{4} p(k-2)} \\
& \geqq\left[\left(1-r_{j}\right) \cdot \frac{M}{\left|1-z_{j}\right|}\right]^{\frac{1}{2} p(k+2)}\left|R\left(z_{j}\right)\right|\left|\frac{z_{j}}{s_{2}\left(z_{j}\right)}\right|^{\frac{1}{4} p(k-2)} \\
& =M^{\frac{1}{2} p(k+2)}\left(1-r_{j}\right)^{\frac{1}{2} p(k+2)}\left|f^{\prime}\left(z_{j}\right)\right|
\end{aligned}
$$

which is impossible since $M>0$ was arbitrary and

$$
\lim _{n \rightarrow \infty}\left(1-r_{j}\right)^{\frac{1}{2} p(k+2)}\left|f^{\prime}\left(z_{j}\right)\right|>0 .
$$

Since $s_{2}(z)$ is starlike in $U, \lim _{r \rightarrow 1} r / s_{2}(r)$ exists ([14] and the fact that

$$
r \frac{\partial}{\partial r}\left(\log \left\lvert\, f\left(r e^{i \theta} \mid\right)=\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0\right.\right)
$$

and we have

$$
\lim _{n \rightarrow \infty} \frac{z_{n}}{s_{2}\left(z_{n}\right)}=\lim _{n \rightarrow \infty} \frac{r_{n}}{s_{2}\left(r_{n}\right)} .
$$

It follows that for any sequence z_{n} such that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(1-r_{n}\right)^{\frac{1}{2} p(k+2)}\left|f^{\prime}\left(z_{n}\right)\right|>0 \\
& \begin{aligned}
\lim _{n \rightarrow \infty}\left|R\left(r_{n}\right)\right|\left|\frac{r_{n}}{s_{2}\left(r_{n}\right)}\right|^{\frac{1}{4} p(k-2)} & =\lim _{n \rightarrow \infty}\left|R\left(z_{n}\right)\right|\left|\frac{z_{n}}{s_{2}\left(r_{n}\right)}\right|^{\frac{1}{4} p(k-2)} \\
& \geqq \lim _{n \rightarrow \infty}\left(\frac{1-r_{n}}{\left|1-z_{n}\right|}\right)^{\frac{1}{2} p(k+2)}\left|R\left(z_{n}\right)\right|\left|\frac{z_{n}}{s_{2}\left(z_{n}\right)}\right|^{\frac{1}{2} p(k-2)} \\
& =\lim _{n \rightarrow \infty}\left(1-r_{n}\right)^{\frac{1}{2} p(k+2)}\left|f^{\prime}\left(z_{n}\right)\right| .
\end{aligned} .
\end{aligned}
$$

Since $\left|f^{\prime}(r)\right| \leqq M(r, f)$, we have

$$
\lim _{n \rightarrow \infty}\left(1-r_{n}\right)^{\frac{1}{2} \nu(k+2)}\left|f^{\prime}\left(r_{n}\right)\right|=\lim _{n \rightarrow \infty}\left(1-r_{n}\right)^{\frac{1}{2} p(k+2)} M\left(r_{n}, f^{\prime}\right)
$$

and the result follows.
We note that

$$
\alpha \leqq 2^{\frac{1}{2} p(k-2)} \max _{|z|=1}\left|\prod_{j=1}^{p-q} \psi\left(z, a_{j}\right)\right|
$$

Theorem 3.2. Let $f(z)=\sum_{1}^{\infty} a_{n} z^{n} \in V_{k}(p)$. Then

$$
\lim _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{(n)^{\frac{3}{p}(k+2)-2}}=\frac{\alpha}{\Gamma\left(\frac{1}{2} p(k+2)\right)},
$$

where α is the constant of Theorem 3.1.
Proof. The proof in the case $\alpha>0$ follows by using the major-minor arc technique of Hayman [5, Theorem 5.7] as modified by Noonan [12].

Let us now consider the case $\alpha=0$. Given $\epsilon>0$, we may choose $r_{0}<1$ so that if $r_{0}<r<1, f$ has no critical points and

$$
\int_{0}^{2 \pi}\left|\operatorname{Re}\left\{1+\frac{r e^{i \theta} f^{\prime \prime}\left(r e^{i \theta}\right)}{f^{\prime}\left(r e^{i \theta}\right)}\right\}\right| d \theta<(p k+\epsilon) \pi .
$$

We may assume $p \geqq 2$ since the result is known for $p=1$. An argument similar to that in [2] shows that

$$
\begin{equation*}
\int_{0}^{2 \pi} r\left|f^{\prime}\left(r e^{i \theta}\right)\right| d \theta<2^{3 / 2}[2(p k+\epsilon)+1] \pi M(r, f) \tag{3.1}
\end{equation*}
$$

Since $M\left(r, f^{\prime}\right)=o(1-r)^{-\frac{1}{2} p(k+2)}$,

$$
\begin{equation*}
M(r, f)=o(1-r)^{-\frac{1}{2} p(k+2)+1} \tag{3.2}
\end{equation*}
$$

The result follows by using (3.1), (3.2) and the inequality

$$
\left|a_{n}\right|<\frac{e}{n} \int_{r=1-1 / n}\left|f^{\prime}\left(r e^{i \theta}\right)\right| d \theta
$$

4. The class $V_{k}^{*}(p)$. We say that a function $f(z)$ meromorphic in U belongs to the class $V_{k}^{*}(p)$ if : $f^{\prime}(z)$ has a finite number of zeros and poles in U, there is a $\rho<1$ so that if $\rho<r<1$,

$$
\begin{equation*}
\int_{0}^{2 \pi} \operatorname{Re}\left\{1+\frac{r e^{i \theta} f^{\prime \prime}\left(r e^{i \theta}\right)}{f^{\prime}\left(r e^{i \theta}\right)}\right\} d \theta=-2 p \pi \tag{4.1}
\end{equation*}
$$

and
(4.2) $\limsup _{r \rightarrow 1^{-}} \int_{0}^{2 \pi}\left|\operatorname{Re}\left\{1+\frac{r e^{i \theta} f^{\prime \prime}\left(r e^{i \theta}\right)}{f^{\prime}\left(r e^{i \theta}\right)}\right\}\right| d \theta \leqq p k \pi$.

Since f is meromorphic, each pole of f^{\prime} must be of at least second order. We note that by the argument of Lemma 1.1,

$$
\lim _{r \rightarrow 1^{-}} \int_{0}^{2 \pi}\left|\operatorname{Re}\left\{1+\frac{r e^{i \theta} f^{\prime \prime}\left(r e e^{i \theta}\right)}{f^{\prime}\left(r e^{i \theta}\right)}\right\}\right| d \theta \text { exists, }
$$

and that $V_{2}{ }^{*}(p)=C(p)$, the class of p-valent meromorphic convex functions.
Pfaltzgraff and Pinchuk [13] defined the class Λ_{k} of meromorphic functions of bounded boundary rotation as the class of all functions

$$
f^{\prime}(z)=-\frac{1}{z^{2}} \exp \left[-\int_{0}^{2 \pi} \log \left(1-z e^{-i t}\right) d \mu(t)\right],
$$

where

$$
\int_{0}^{2 \pi} d \mu(t)=2, \int_{0}^{2 \pi}|d \mu(t)| \leqq k \text { and } \int_{0}^{2 \pi} e^{-i t} d \mu(t)=0 .
$$

(The last condition ensures that f^{\prime} does not have a simple pole at 0 .) Since a function in Λ_{k} has no non-zero critical points, in general Λ_{k} is a proper subclass of $V_{k}^{*}(p)$.
We note that (4.1) implies that for $\rho<r<1$, the argument of the vector tangent to $f(|z|=r)$ decreases by $2 p \pi$ as θ increases from 0 to $2 \pi\left(z=r e^{i \theta}\right)$ and hence the curve $f(|z|=r)$ has at least p loops.

Theorem 4.1. Let $f(z) \in V_{k}{ }^{*}(p)$. Then:

$$
p+1 \leqq N\left(\infty, f^{\prime}\right) \leqq(p k+2 p+4) / 4
$$

and

$$
0 \leqq N\left(0, f^{\prime}\right) \leqq p(k-2) / 4 .
$$

Proof. We will show the inequalities hold in $|z|<r$, where r is chosen so that (4.1) holds. From (4.1) and the argument principle we obtain

$$
N\left(0, f^{\prime}\right)-N(\infty, f)=-(p+1)
$$

and hence $f^{\prime}(z)$ has at least $p+1$ poles. Following Umezawa [16], we note that $N\left(w, f^{\prime}\right)$ is constant until w arrives at a value assumed by $f^{\prime}(z)$ on $|z|=r$ and the jump of $N\left(w, f^{\prime}\right)$ at such a value must be an integer. Now

$$
\int_{0}^{2 \pi}\left|\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}\right| d \theta \geqq \int_{0}^{2 \pi}\left|\operatorname{Re} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| d \theta-2 \pi
$$

and hence if $\epsilon>0$ is given we may choose $\rho<1$ so that if $\rho<|z|<1$,

$$
\begin{equation*}
2 \pi+(p k+\epsilon) \pi>\int_{0}^{2 \pi}\left|\operatorname{Re} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| d \theta \geqq\left[N\left(0, f^{\prime}\right)+N\left(\infty, f^{\prime}\right)\right] 2 \pi \tag{4.3}
\end{equation*}
$$

Since $N\left(0, f^{\prime}\right)-N\left(\infty, f^{\prime}\right)=-p+1$, (4.3) yields

$$
\begin{aligned}
& N\left(\infty, f^{\prime}\right) \leqq \frac{p k+2 p+4}{4}+\frac{\epsilon}{4} \\
& N\left(0, f^{\prime}\right) \leqq \frac{p(k-2)}{4}+\frac{\epsilon}{4}
\end{aligned}
$$

and the result follows.
The next Lemma, due to Umezawa [17] will be used in estimating the valency of functions in $V_{k}{ }^{*}(p)$.

Lemma 4.2. Let $f(z)$ be meromorphic for $|z|<R, f^{\prime}(z) \neq 0$ on $|z|=R$. If

$$
\int_{0}^{2 \pi}\left|\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}\right| d \theta<2 \pi[M-N(\infty, f)+1]
$$

where [] denotes the greatest integer function, then f is at most M valent and at least max $[2 N(\infty, f)-M, 1]$ valent for $\mid z 1 \leqq R$.

Corollary 4.3. Let $f(z) \in V^{*}(p)$ have q poles in U. Then $f(z)$ is at least $\max [q+1-p k / 2,1]$ valent and at most $p k / 2+q-1$ valent in U.

We note that if $k<2+2 / p$, then for r sufficiently near 1 ,

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\operatorname{Re}\left\{1+\frac{r e^{i \theta} f^{\prime \prime}\left(r e^{i \theta}\right)}{f^{\prime}\left(r e^{i \theta}\right)}\right\}\right| d \theta<p+1
$$

and hence $f(z)$ belongs to the class $K^{*}(p)$ of meromorphic close-to-convex functions of order p defined by Livingston [10].

The following result is similar to Theorem 1.5 and its proof will be omitted.
Theorem 4.4. Let $f(z) \in V_{k}^{*}(p)$ and suppose $f^{\prime}(z)$ has zeros at $\alpha_{1} \ldots \alpha_{n}$ and poles at $\beta_{1}, \ldots \beta_{n+p+1}$, counting multiplicities. Then there are two univalent starlike functions $s_{1}(z)$ and $s_{2}(z)$ such that

$$
\frac{f^{\prime}(z)=\frac{1}{z^{p+1}}\left[\prod_{j=1}^{n+p+1} \psi\left(z, B_{j}\right)\right]^{-1} \prod_{j=1}^{n} \psi\left(z, \alpha_{j}\right)\left[\frac{s_{1}(z)}{z}\right]^{\frac{1}{1 p}(k-2)}}{\left[\frac{s_{2}(z)}{z}\right]^{\frac{1}{p}(k+2)}}
$$

We note that Theorem 4.4 gives distortion theorems analogous to Theorems 1.6 and 1.7 , but we do not state them here.

Theorem 4.5. Let $f(z) \in V_{k}^{*}(p)$. Then $\alpha=\lim _{r \rightarrow 1}(1-r)^{\frac{1}{2} p(k-2)} M\left(r, f^{\prime}\right)$ exists. For $k>2$, if $\alpha>0$, there is a unique θ_{0} such that

$$
\alpha=\lim _{r \rightarrow 1}(1-r)^{\frac{1}{2} p(k-2)}\left|f^{\prime}\left(r e^{i \theta_{0}}\right)\right| .
$$

Proof. The proof is similar to Theorem 3.1, using Theorem 4.4 instead of Theorem 1.5.

We now turn to the problem of estimating the coefficients of a function $f(z) \in V_{k}^{*}(p)$.

Theorem 4.6. Let $f(z)=\sum_{n=-q}^{\infty} a_{n} z^{n}$, with $k>2+2 / p$. Then if α denotes the constant of Theorem 4.5,

$$
\lim _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{n^{\frac{1}{p} p(k-2)-2}}=\frac{\alpha}{\Gamma\left[\frac{1}{2} p(k-2)\right]} .
$$

Proof. The proof in the case $\alpha>0$ follows by using the major-minor arc technique of Hayman [5, Theorem 5.7] as modified by Noonan [12]. Suppose $\alpha=0$. Given $\epsilon>0$ we may choose $r_{0}<1$ so that if $r_{0}<r<1$, (4.1) holds and

$$
\int_{0}^{2 \pi}\left|\operatorname{Re}\left\{1+\frac{r e^{i \theta} f^{\prime \prime}\left(r e^{i \theta}\right)}{f^{\prime}\left(r e^{i \theta}\right)}\right\}\right| d \theta<(p k+\epsilon) \pi
$$

Using an argument similar to that of Brannan and Kirwan [2], there is a constant $C=C(p, k)$ such that

$$
\int_{0}^{2 \pi} r\left|f^{\prime}\left(r e^{i \theta}\right)\right| d \theta<C \cdot M(r, f)
$$

Now

$$
\begin{aligned}
\left|f\left(r e^{i \theta}\right)\right| & \leqq\left|\int_{r_{0}}^{r} f^{\prime}\left(\rho e^{i \theta}\right) e^{i \theta} d \rho\right|+\left|f\left(r_{0} e^{i \theta}\right)\right| \\
& \leqq \int_{r_{0}}^{r} M\left(\rho, f^{\prime}\right) d \rho+\left|f\left(r_{0} e^{i \theta}\right)\right| \\
& =o(1-r)^{-\frac{1}{2} p(k-2)+1}
\end{aligned}
$$

since $M\left(r, f^{\prime}\right)=o(1-r)^{-\frac{1}{2} p(k-2)}$. Therefore

$$
\begin{aligned}
r_{1} I\left(r, f^{\prime}\right) & =\int_{0}^{2 \pi} r\left|f^{\prime}\left(r e^{i \theta}\right)\right| d \theta \\
& =o(1-r)^{-\frac{1}{2} p(k-2)+1}
\end{aligned}
$$

and the result follows from the standard inequality

$$
\left|a_{n}\right|<\frac{e}{n} I_{1}\left(1-\frac{1}{n}, f^{\prime}\right)
$$

We mention that Livingston [10] has shown that if $f(\boldsymbol{z})=\sum_{n=-p}^{\infty} a_{n} z^{n}$ belongs to the class $K^{*}(p)$ and has all its poles at $z=0$, then $\left|a_{n}\right|=O(1 / n)$. Consequently if $f(z) \in V_{k}{ }^{*}(p)$ with $2<k<2+2 / p$, we have $\left|a_{n}\right|=O(1 / n)$. Since when $k=2, V_{k}^{*}(p)$ is precisely the class of p-valent meromorphically convex functions and hence $\left|a_{n}\right|=O\left(1 / n^{2}\right)$. To obtain an estimate on the
growth of $\left|a_{n}\right|$ when $k=2+2 / p$ we note that $f(z) \in V_{k}^{*}(p)$ implies $f(z) \in$ $V_{k}^{*}(p)$ for all $k^{\prime}>k$. Theorem 4.6 then yields that if $k=2+2 / p,\left|a_{n}\right|=$ $O\left(n^{-1+\epsilon}\right)$ for every $\epsilon>0$.

References

1. D. A. Brannan, On functions of bounded boundary rotation. I, Proc. Edinburgh Math. Soc. 16 (1969), 339-347.
2. D. A. Brannan and W. E. Kirwan, On some classes of bounded analytic functions, J. London Math. Soc. 2 (1969), 431-443.
3. G. M. Goluzin, Geometric theory of functions of a complex variable (Amer. Math. Soc., Providence, R.I., 1969).
4. A. W. Goodman, On the Schwarz-Christoffel transformation and p-valent functions, Trans. Amer. Math. Soc. 68 (1950), 204-223.
5. W. K. Hayman, Multivalent functions (Cambridge University Press, Cambridge, 19.78).
6. J. A. Hummel, Extremal properties of weakly starlike p-valent starlike functions, Trans. Amer. Math. Soc. 130 (1968), 544-551.
7. R. J. Leach, Odd functions of bounded boundary rotation, Can. J. Math. 26 (1974), 551-564.
8. O. Lehto, On the distortion of conformal mappings with bounded boundary rotation, Ann. Acad. Sci. Fenn. Ser. A, 1, 124 (1952), 14 pp.
9. A. E. Livingston, p-valent close-to-convex functions, Trans. Amer. Math. Soc. 115 (1965), 161-179.
10. - Meromorphic multivalent close-to-convex functions, Trans. Amer. Math. Soc. 119 (1965), 167-177.
11. - The coefficients of multivalent close-to-convex functions, Proc. Amer. Math. Soc. 21 (1969), 545-552.
12. J. Noonan, Asymptotic behavior of functions with bounded boundary rotation, Trans. Amer. Math. Soc. 164 (1972), 397-410.
13. J. A. Pfaltzgraff and B. Pinchuk, Constrained extremal problems for classes of meromorphic functions, Bull. Amer. Math. Soc. 75 (1969), 379-383.
14. C. Pommerenke, On convex and starlike functions, J. London Math. Soc. 37 (1962), 209-224.
15. M. Schiffer and O. Tammi, On the fourth coefficient of univalent functions with bounded boundary rotation, Ann. Acad. Sci. Fenn. Ser. A, 1, 396 (1967), 26 pp.
16. T. Umezawa, Analytic functions convex in one direction, J. Math. Soc. Japan 4 (1952), 194-202.
17. - On the theory of univalent functions, Tohoku Math. J. 7 (1955), 212-223.

Howard University, Washington, D.C.

[^0]: Received August 12, 1973. This research is part of a Ph.D. thesis written under the direction of Professor William E. Kirwan at the University of Maryland.

