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EXAMPLES AND QUESTIONS IN THE THEORY 
OF FIXED POINT SETS 

JOHN R. MARTIN AND SAM B. NADLER, JR. 

1. Introduction. All spaces considered in this paper will be metric spaces. 
A subset A of a space X is called a fixed point set of X if there is a map (i.e., 
continuous function) / : X —» X such tha t / (x ) = x if and only if x G A In 
[22] L. E. Ward, Jr. defines a space X to have the complete invariance property 
(CIP) provided that each of the nonempty closed subsets of X is a fixed point 
set of X. The problem of determining fixed point sets of spaces has been 
investigated in [14] through [20] and [22]. Some spaces known to have CIP 
are n-ce\\s [15], dendrites [20], convex subsets of Banach spaces [22], compact 
manifolds without boundary [16], and a class of polyhedra which includes all 
compact triangulable manifolds with or without boundary [18]. In [22, p. 553] 
it was asked if every locally connected continuum has CIP. This question was 
answered negatively in [14] where it was shown that, for each n = 1 , 2 , . . . , 
there exist (n + 1)-dimensional acyclic \JZn~l continua which do not have 
CIP. 

The purpose of this paper is to give examples which show that the opera
tions of taking products, cones, and wedges do not preserve CIP. Also, we 
show that retractions do not preserve CIP even for locally connected continua, 
and that strong deformation retracts of contractible continua with CIP need 
not have CIP. The motivation for considering each of the examples will be 
discussed as the paper progresses. We mention that some of our examples have 
stronger properties than is indicated above. For instance, when we show that 
CIP is not preserved by products, one of our factors is a 1-dimensional poly
hedron. 

2. Notation and lemmas. By a compactum we mean a compact metric 
space, and by a continuum we mean a connected compactum containing more 
than one point. A subcontinuum is a nonempty compact connected subset of 
a given continuum. The symbol Sn will be used to denote the boundary of the 
closed unit ball in Euclidean (n + 1)-dimensional space Rn+1. 

Let Y and Z be metric spaces, and let y G Y and x G Z. By the wedge 
Y \/y„z Z of Y and Z we mean the space obtained by taking the disjoint union 
of Y and Z, and then identifying the point y with z. 
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T h e symbols cl and X will denote the closure and (cartesian) product 
respectively. T h e symbol LCW is as defined in [5, p . 30]. For sets A and B, 

A — B denotes the complement of B in A. If p is a metric for Z, if z £ Z, and 
if A is a nonempty closed subset of Z, then we define 

p[z, A] = inf {p(z, a ) : a £ T4}. 

The cone over a compactum M, denoted by Cone (M), will be regarded as the 
geometric cone over M as follows: Assume, wi thout loss of generality, t ha t 
M C L} L being some Euclidean space or Hilber t space, such t h a t the closed 
linear span, [M], of M is a proper subspace of L. Let v G L — [M]. Then , 

Cone (M) = U {mv: m G M) 

where mv denotes the convex arc in L from m to v. By a convex arc in Cone (Af) 

we mean a subarc of mvïor some m £ M. Henceforth, the letter v will only be used 

as above, i.e., to denote the vertex of Cone (M). We will t rea t the points of 

Cone (M) as ordered pairs (m, t) where m Ç M and / is a real number . T h e 

points in B = Cone ( i f ) H [M], called the ease of Cone(M) , will be considered 

to have second coordinate = 0. The symbol -K denotes the projection from 

Cone(Af) onto [0, TT(V)] given by 7r(m, i) = t for each (m, t) Ç C o n e ( M ) . For 

any m £ M, (w, 7r(^)) denotes, wi thout confusion, the vertex v. T h e symbol 

PB denotes the projection of Cone ( i f ) — {v} onto the base B. T h e following 

technical lemma will be used several t imes in Sections 3 and 4. I ts proof is 

related to the proof of Theorem 1 of [22]. 

(2.1) LEMMA. Let M be a compactum. Let K be a closed subset of Cone (M) such 

that 7T_1(.s) C K(Z 7T_1([0, s]) for some s G [0, w(v)]. Then: There is a mapping 

f:ir-i([0,s))-+ir-i([0,s]) 

such that f has fixed point set equal to K and such that if 

(m,r) € [x-HtO.s]) - K], 

thenf(m, r) = (m, c) for some c > r. 

Proof. Let h: ^ - ^ [ 0 , s]) X [0, 1] —> ^ ( [ O , s]) be the homotopy given by 

h((mf t), u) = (m, [1 — u] • t + u - s) 

for each (m, t) Ç 7r -1([0, s]) and each u Ç [0, 1]. Assuming t ha t the metric p 
for Cone(M) has all its values ^ 1, we de f ine / by 

f(z) = h(z,P[z,K}) 

for each z G 7r_1([0, S]). I t is easy to verify t h a t / has the desired properties. 
Therefore, we have proved (2.1). 

T h e following lemma will be used in Sections 3-5 . I ts hypothesis and con
clusion are stronger than those of Theorem 1 of [22]. 
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(2.2) LEMMA. Let M be a metric space such that there is a homotopy h: 
M X [0, 1] —» M satisfying: h(m, 0) = m and him, t) ^ m for each m £ M 
and each t > 0. Then, for any metric space Z, M X Z has CI P. 

Proof. Assume that the metric p for M X Z has all its values S 1. Let A be 
a nonempty closed subset of M X Z. Define 

f: M X Z -+ M X Z 

by /(ra, z) = (fe(m, p[(w, 2), ^4]), 2) for each (m, z) £ M X Z. Then / is a 
mapping having fixed point set equal to A. 

We mention that in cases where the reader is left to verify that a particular 
space has CIP, the following lemma may be useful. 

(2.3) LEMMA. A nonempty closed subset A of a space Z is a fixed point set of 
Z if A is contained in a retract B of Z such that B has CIP. 

3. Wedges. The wedge of two spaces was defined in Section 2. The fixed 
point property and the property of being an absolute retract or an absolute 
neighborhood retract are each preserved by taking wedges (see [4, p. 121] and 
[5, p. 90] respectively). The main purpose of this section is to give an example 
in (3.1) of a locally connected continuum having CIP whose wedge with itself 
at a specified point does not have CIP. This shows that a locally connected 
continuum can fail to have CIP and yet be the union of two locally connected 
continua having CIP. Thus, we have a different type of answer to the question 
in [22, p. 553] than the one mentioned in Section 1. 

(3.1) Example. Let H be the Hawaiian Earring, i.e., H = U7=i Sj where 

Sj = {(x, y) e R2: (x - 2-j)2 + y2 = 2~2j} 

for each j = 1, 2, . . . . Let C = H X [0, 1]; we call C the Hawaiian Can. 
Let 6 = ((0, 0), 0) G C and let W = C \Ze~e C (see Figure 1). We will prove: 

(1) C has CIP; 
(2) Wdoes not have CIP. 

To prove (1), let A be a nonempty closed subset of C. Let 

L = {(0,0)) X [0,1] C C. 

First assume that A P\ L = 0. Then there is a natural number / such that 
A r\ (Sj X [0, 1]) = 0 for each j ^ / . Let 

K = UU (Sj X [0, 1]). 

By [18, 3.1], there is a mapping/ from K into K with A = A P\ K as its fixed 
point set. Note that there is a retraction r from C onto K. Clearly, / o r is a 
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W 

FIGURE 1 

mapping from C into C having fixed point set equal to A. Next assume that 
A r\ L 7± 0. Let 

a = ((0,0), s) G [A r\L\. 

It is easy to see that there is a homotopy h: H X [0, 1] —» H such that 
h(x, 0) = x for each x ^ H and fe(#, t) 9e x for each # G [77 — {(0, 0)}] and 
t > 0. Let 

*: [0, 1] X [0, 1] -> [0, 1] 

be defined by k(tu t2) = [1 — t2] - h + t2 - s for each tu h € [0, 1]. Let p 
denote the metric for C and assume, without loss of generality, that p has all 
its values ^ 1 . Define/: C —» C by 

/ (* , /) = (ft(x, p[(x, /), A]), k(t, P[(x, 0 , 4])) 
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for each (x, t) Ç. C. I t follows easily t h a t / is continuous and t h a t / has fixed 

point set equal to A. This completes the proof of (1). 

To prove (2), let C C W and C" C W denote the two copies of C which 
have been wedged at d to produce W = C U C" (see Figure 1). Let V 
denote the top of C, V = j (x, 1) € C'}, and let T" denote the top of C", 
T" = {(x, 1) G C"}. Let r = r U r " . We will prove tha t T is not the fixed 
point set of any mapping from W into W. To prove this, suppose t h a t there is a 
m a p p i n g / : W —•> W such t h a t / has fixed point set equal to T. Since f(6) ^ 6, 

we assume without loss of generality tha t f(0) (E [C" — C}. Then, by the 
continuity of / , there exists an open subset V of W such tha t 6 £ V and 
f[V] C C" - C. Let B' denote the bot tom of the Can C, B ' = {(x, 0) G C'}. 
Then, there exists a circle S' C [ 7 H 5 ' ] . Note t h a t / [ S ' ] C C" - C". Let 

F ' = {(y, 0 G C : y Ç S ' and 0 g / ^ 1}. 

Geometrically, F ' is the cylinder in C above S'. Let Q' denote the top of the 
cylinder F ' , Q' = {(y, 1) G F } . Let ^ : Qf X [0, 1] - » Y' be a homotopy such 
tha t $(q', 0) = g' for each q' G Ç' and such tha t xP[Q' X {1}] = S'. Then, 
since Q' G T and T is the fixed point set of / , / o ^ : Q' X [0, 1] —> W is a 
homotopy such tha t 

(a) / o $(q'} 0) = q' for each q' £ (?' 

and, since *[Q' X {1}] = S ' and / [S'] C C" - C, 

( b ) / o * [ Ç ' X ( 1 ) ] C C - C*. 

I t is easy to see tha t there is a retraction r from W onto F ' such tha t 
r\C"\ — {6}. By using (a) and (b) above, it follows easily t ha t rofo\p: 
Qr X [0, 1] —> Y' is a homotopy contracting Q' to 0 in Y'. This is not possible. 
Therefore, T i s not the fixed point set of any mapping from W into Wand, thus , 
we have proved (2). 

In the following example we modify (3.1) so as to obtain examples which 
possess higher orders of local connectedness than the example in (3.1). 

(3.2) Example. Let Hn = U?=i S/1 where 

S? = {(*i, x2, • • • , *„+i) 6 ^ w + 1 : (*i - 2 - 0 2 + x2
2 + . . . + xre+1

2 

for each j = 1 , 2 , . . . . Let Cn = i7w X [0, 1] and let 8n denote the origin in 
Rn+2. Then : Cn is an (n + 1)-dimensional LCW _ 1 cont inuum having C I P , 
while Wn = Cn \/en~en Cn does not have C I P . The proof is analogous to the 
one in (3.1). 

Next we give an example to show tha t wedging does not preserve C I P 
for 1-dimensional unicoherent continua. Our example is not locally connected, 
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as must be the case since 1-dimensional unicoherent locally connected continua 
are dendrites; thus, their wedge has CIP by [20, 3.1]. 

(3.3) Example. Let X be a circle with a spiral and let Y denote the wedge 
of X with itself as indicated in Figure 2. Note that X is a unicoherent 1-
dimensional continuum. It follows using (2.2) that X has CIP. However, the 
reader may readily check that the set {e\, e2} consisting of the two end points 
of the spirals is not a fixed point set of Y. 

Y 

FIGURE 2 

In comparing the examples in (3.1) through (3.3), the following questions 
come to mind. 

(3.4) Questions. Are there two 1-dimensional locally connected continua 
having CIP whose wedge does not have CIP? In fact, does every 1-dimen
sional locally connected continuum have CIP? Note that these two questions 
have affirmative answers for 1-dimensional absolute retracts (i.e., dendrites) 
by using [20, 3.1]. 

(3.5) Questions. Are there two acyclic continua having CIP whose wedge 
does not have CIP? What if the two continua are also 1-dimensional (note 
that the continuum X of (3.3) is unicoherent but not acyclic) ? Are there two 
contractible continua having CIP whose wedge does not have CIP ? 

The following result about wedges will be used in the proof of (4.3). 

(3.6) PROPOSITION. Let M be any given compactum and let N be an arcwise 
connected continuum having CIP such that N does not have the fixed point 
property. Then, for any point q £ TV, Cone(Af) V » ^ N has CIP. 

Proof. Let W = Cone (if) V v„q N and let p denote the wedge point of W. 
To prove that W has CIP, let A be a nonempty closed subset of W. Let Ai = 
A H Cone (AT) and let A2 = A H N. We take two cases. 

Case 1. Ai = 0. Then A = A2 C N. Thus, since N has CIP, there is a 
mapping/: N —• N with fixed point set equal to A. Ex t end / to a mapping 
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/ : W -> W by letting 

/(*), if* 6 N 
^X) *f(p), if x ÇCone(M). 

Clearly, / has fixed point set equal to A. 

Case 2. A i ^ 0. Whether A2 ^ 0 or A2 = 0, the hypotheses on iV imply 
there exists a mapping/: TV —> TV whose fixed point set is equal to A2. By (2.1) 
with 5 = w(v), we have that there is a mapping 

g: Cone(M) —> Cone (If) 

with fixed point set equal to ^4i U {£>} = ^4i U {̂ } such that if z G [Cone(M) 
- (A.Ulp})], then 

(#) s moves under g towards p on the convex arc in Cone(Af) from z to p. 

lip £ A, then jfei: W-> W defined by 

_ if(x), if x e N 
klM {g(x), if * G Cone (M) 

is a mapping whose fixed point set is equal to A. For the rest of the proof, 
assume p g A. Then there exists /0 < 7r(v) such that (#) occurs for each 
z = (m, s) G Cone (if) such that /0 ^ s ^ 7r(s/). Since /(/?) ^ £ and since TV 
is arcwise connected, there is an arc 7 in TV from p to f(p). By using 7 and the 
convex arcs in T~1([to, T(V)]), it is easy to see how to modify g so as to obtain 
a mapping 

g': Cone(M) -» Cone(M) U 7 

such that g'(£) = / (£) and g' has fixed point set equal to Ai. Then k2: W —> W 
defined by 

W \g(x), if* G Cone(M) 

is a mapping whose fixed point set is equal to A. 
By Cases 1 and 2, we have proved that T^has CIP. This completes the proof 

of (3.6). 

4. Retracts. In [14] it was asked if every compact absolute retract has CIP. 
Since the Hilbert cube Iœ has CIP [22, 1.1, p. 554], this question would have 
an affirmative answer if CIP were a retract invariant for Iœ. The result in 
(4.1) shows that CIP is not in general a retract invariant. Though we do not 
know if CIP is a retract invariant for Iœ, the proof of (4.1) will be used in 
(4.2) to show that CIP is not a retract invariant even for spaces with nice 
local properties. 
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(4.1) THEOREM. Any metric space can be embedded as a retract in a metric 
space having CI P. 

Proof. Let Z be a given metric space. Then Z is embedded in Sl X Z as 
a retract and Sl X Z has CIP by (2.2). 

(4.2) Examples. Let 1F„ be as in (3.2). Then Sl X Wn is an (n + 2)-dimen-
sional LCW_1 continuum. Hence (see the proof of (4.1)), CIP is not a retract 
invariant for the class of (n + 2)-dimensional LCn _ 1 continua. By taking Xn 

to be as in [14] and using the proof of (4.1), we obtain the acyclic continuum 
Xn, which does not have CIP [14], as a retract of the (n + 2)-dimensional 
LCW-1 continuum Sl X Xn which has CIP. 

We have seen that CIP is not preserved by retractions. Next we give an 
example of a contractible continuum X with CIP which has, as a strong 
deformation retract, a subcontinuum not having CIP. 

(4.3) Example. Let F = S1 U y be the circle S1 with the spiral y given by 

y = {[1 + (1 / / ) ] -^ : /^ +1}. 

Let N = Cone( F). Let M denote the Cantor set. Let 

X = Cone(M) VVM2 N 

where V\ denotes the vertex of Cone(M) and v2 denotes the vertex of N. By 
[22, p. 556], Cone(JW) does not have CIP. Clearly, Cone(M) is a strong 
deformation retract of X. It remains to show that X has CIP. Note that N 
does not have the fixed point property ([4, pp. 129-130] or [13]). Hence, once 
we show that N has CIP, we will know from (3.6) that X has CIP. To prove 
that N has CIP, let A be a nonempty closed subset of N. By (2.1), we may 
assume v2 Q N. Then, letting 

m = max {71-(a): a G A}, 

there exist r, s, and / such that 

m < r < s < t < 7T(ZJ2). 

Let B = A U T-^S). Le t / : ^ ( [ O , s]) -> ^ ( [ 0 , s]) be as in (2.1) with fixed 
point set equal to B. Let T = 7r_1([/, 7r(^2)]). Since T is homeomorphic to N, 
there is a fixed point free mapping g: T —> T such that g[Tr~1(t)] = {z/2j 
[4, pp. 129-130]. For any y Ç F, let a (y) denote the convex arc from (y, r) to 
(y, t). By (2.1), f(y, r) = (y, c) for some c such that r < c < s. Define ky 

on a(y) by: For any X such that 0 ^ X ^ 1, 

kv(y, [1 - X]r + X0 = (y, [1 - X]c + Xir(v2)). 

Observe that fey(y, r) = (y, c) = f(y, r) and that ky(y, t) = v2 = g(y, t). It 
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follows that j : N —> N defined by 

(f(y,u), if 0 S u ^ r 
j(y, u) = lky(y, u), if r ^ u ^ t 

\g{y, u), if t S u ^ TT(Z;2) 

is a continuous function with fixed point set equal to A. Therefore, we have 
proven that N has CIP. This completes the verifications for (4.3). 

5. Products. By a polyhedron we mean a compact connected polyhedron. 
By using the proof of Corollary 3 in [6, p. 145], one can apply [18, 3.1] to show 
that: (1) if X is a polyhedron, then X X [0, 1] has CIP and (2) the product 
of any two 1-dimensional polyhedra has CIP. The main purpose of this section 
is to show in (5.1) that CIP is not preserved by products of 1-dimensional 
continua even when one of the factors is a 1-dimensional polyhedron. We also 
obtain some results about topological groups and indecomposable continua. 

(5.1) Example. Let X be the 1-dimensional planar continuum drawn in 
Figure 3. In the nth row we have a null sequence of circles CY\ C2

W, . . . con
verging to the point pn such that, for each i, C" is ''connected to" Ci+in by a 
line, half of which spirals in on dn and the other half of which spirals in on 
Ci+in. As n —> 00 , the rows converge to the point p. The rows are connected by 
the arc from p to q. It is not difficult to verify that X has CIP (we leave the 
proof to the reader, who will find (2.3) helpful). We will use the following fact 
about X: 

(1) If L is a locally connected subcontinuum of X such that pn £ L, then 

L = {Pn}-

Let Y = Yi VJ F2 VJ F3, drawn in Figure 4, where Yx = S1 and 

F2 = {(x,y) G R2:x*+ (y - 2)2 = 1}, 

Y* = {(O,?) G R2: 3 g y S 4}. 

It is easy to verify that Y has CIP (we omit the proof). Let e = (0, 4) £ P. 
We will use the following fact (whose proof we will briefly indicate) : 

(2) There exists e > 0 such that if/: Y —> Y is within e of the identity map 
on F, then/does not have fixed point set equal to {e}. 

Sketch of proof of (2). Take e = 1. Suppose tha t / : F —> F is within e of the 
identity map on F and t h a t / has fixed point set equal to {e}. If / (0, 3) G F3, 
then it follows t h a t / is not single-valued at (0, 1). Hence / (0 , 3) € F2. Then, 
by first considering the images of points near (0, 3), it follows that / (0, 1) G F2. 
This implies t h a t / has a fixed point in Y\. This completes our proof of (2). 
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X 

FIGURE 3 

We now show, using (1) and (2), that X X F does not have CIP. The points 
pni p, and e are as in Figures 3 and 4. Let 

A = {(pn,e) G X X Y:n = 1,2, . . .} KJ {(p,y) £ X X Y: y £ F). 

Suppose that there is a mapping g: X X Y —> X X Y such that g has fixed 
point set equal to A. Let irx denote the projection of X X Y onto X given by 
TTX(X> y) = x for each (x, y) £ X X F. Since F is a locally connected con
tinuum and since g(pn, e) = (£n, e) for each w = 1 , 2 , . . . , it follows easily 
using (1) that Trx(g[{pn} X F]) = {pn} for each w = 1, 2, . . . . Hence, 

(3) g[{£n} X F] C {/>„}] X Ffor each n = 1, 2, . . . . 
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F 
FIGURE 4 

For each n — 1 , 2 , . . . , define 

j n : {p} X Y-+[pn\ X Y 

byjn(P, y) = (pn, j) for each (p, y) G {p} X F. Then, by (3), j n
_ 1 o g o j n = 

fen is a mapping from {p} X Y into {̂ } X F for each n = 1, 2, . . . . Also, for 
each w = 1, 2, . . . , kn has fixed point set equal to {(p, e)}. Finally, since the 
sequence {pn}™=i converges to p and since g leaves each point of {p} X F 
fixed, it follows easily tha t the sequence {kn)™=i converges to the identi ty map 
on {p) X F. Thus , we have a contradiction to (2). Therefore, there is no 
mapping from X X Y into X X Y with fixed point set equal to A. This com
pletes our presentation of (5.1). 

(5.2) Questions. Is there a continuum X having C I P such tha t X X [0, 1] 
does not have C I P ? Are there two locally connected continua X and F, each 
of which has C I P , such tha t X X Y does not have CIP? 

In (2.2) we gave a sufficient condition in order t ha t a product have C I P . 
We gave an application of (2.2) in (4.1). We now give an application of (2.2) 
to topological groups. 
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(5.3) THEOREM. Let (G, • ) be a metrizable topological group which contains 
an arc. Then, for any metric space Z, G X Z has CIP. 

Proof. Let e denote the identity element of G. Since G contains an arc, we 
have by translation that e belongs to an arc in G. Let 7 be an arc in G having 
e as one of its end points. Let a: [0, 1] —» 7 be a homeomorphism onto 7 such 
that a(0) = e. Define h: G X [0, 1] -> G by h(x, t) = a{t) • x for each 
(x, t) £ G X [0, 1]. Note that h(x, 0) = x for each x £ G and that fe(x, t) 9^ x 
for all x £ G and / > 0. Hence, by (2.2), G X Z has CIP. 

(5.4) THEOREM. yl?z;y locally compact metrizable topological group (G, • ) 
has CIP. 

Proof. If G is not totally-disconnected, then G contains an arc [8, p. 663] 
and hence, by (5.3), G has CIP. Next, assume G is totally-disconnected. Then, 
since G is locally compact, there is an open compact subgroup H of G by 
[24, 29E5, p. 215]. Note that A = {x • H: x £ G| is a cover of G by mutually 
disjoint open compact subsets of G. Let 4̂ be a nonempty closed subset of G 
and let a0 G A We define a retraction r from G onto 4̂ as follows: Let i f A. 
If L H 4̂ = 0 , let r(z) = a0 for each z £ L. U L C\ A ^ 0 then, since L is 
compact and totally-disconnected, we may let r on L be a retraction from L 
onto L C\ A by using [12, 0(c), p. 165]. Defining r in the above manner for 
each L G A, we see from the properties of A that r is a continuous function on 
G. Therefore, since r has fixed point set equal to A, we have proved that G 
has CIP. 

We now use (5.4) to give an example of an indecomposable continuum 
which has CIP. A continuum is said to be indecomposable [10, p. 139] provided 
that it is not the union of any two proper subcontinua. 

(5.5) Example. Let D be the dyadic solenoid, i.e., D is the inverse limit of 
the inverse sequence {Dnyfn}™=i where, for each n = 1, 2, . . . , Dn, = S1 and 
fn(z) = z2 for each z G S1. Since D is a continuum which admits the structure 
of a topological group [10, p. 145], D has CIP by (5.4). Also, D is indecom
posable [10, p. 145]. 

In relation to (5.3) and (5.4), we ask the following question. 

(5.6) Question. Does every metrizable topological group have CIP? 

In (5.5) we gave an example of an indecomposable continuum having CIP. 
A continuum is said to be hereditarily indecomposable provided that each of its 
subcontinua is indecomposable. 

(5.7) Question. Is there an hereditarily indecomposable continuum having 
CIP [comp., (6.2)]? We do not know if the pseudo-arc has CIP. It follows 
from [7] that each subcontinuum of the pseudo-arc is a fixed point set of the 
pseudo-arc. Also, it can be shown using [7], [9] to obtain a shift, and [3, 
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Theorem 14] tha t any two-point subset of the pseudo-arc is a fixed point set 

of the pseudo-arc. 

6. C o n e s . In [22, p. 556] it was shown tha t the cone over the Cantor set 
does not have CI P. Note tha t the Cantor set has C I P since every nonempty 
closed subset of the Cantor set is a retract of the Cantor set [12, p. 165]. 
Hence, C I P is not preserved by taking cones over compacta. In the following 
example we show tha t C I P is not preserved by taking cones over continua. 

(6.1) Example. Let X be any continuum which contains no arc ( = arcless) 
and let Y = X X S1. By (2.2), F has C I P . We show tha t C o n e ( F ) does not 
have C I P . Let B denote the base of C o n e ( F ) . Suppose tha t there is a mapping 
/ : C o n e ( F ) —>Cone(F) such tha t / has fixed point set equal to B. Since 
f(v) 9e v, there exists a unique simple closed curve S (Z B such tha t 
f(v) G Cone(S) , i.e., f(v) = ((x, s),t) for some ((x, s),t) ^v and, thus, 
5 = {x} X S1 C B. For future use, let us note t ha t since X is arcless, 

(1) 5 is an arc component of B. 

Let E = f -'(v) H Cone (5). We prove tha t 

(2) E separates v from S in Cone (5). 

Suppose (2) is false. Then, since Cone (S) is a locally connected cont inuum (in 
fact, a 2-cell), there exists an arc a C [Cone(S) — E] from a point p £ S to 
v. Hence, using the compactness of/ _ 1 (y), there exists an arc fi C [Cone ( F) — 
/ _ 1(^)] from a point q £ [B — S] to v. Let y = a U fi. Since f(p) = p and 
fiq) = <li w e have tha t p, q G / [7]. Also, note tha t v (I f [7] and tha t / [7] is a 
locally connected continuum. Thus , Pn(f[y]) is a locally connected sub-
cont inuum of B such tha t p, q G PB(Î [7])- This gives a contradiction to (1) 
since p G S and q Ç [B — S]. Hence, we have proved (2). I t follows from (2) 
and well-known properties of 2-cells (see, for example, [21, 3.2]) t ha t some 
subcontinuum K of E separates v from 5 in Cone (S). Choose and fix a number 
to such tha t 

sup (T[K]) < to < TT(V). 

Then , s i n c e / is continuous a n d / [K] = {v}, there is a simple closed curve C, 

(3) CC [ConeCSjni r -KCO, / , , ) ) ] , 

such tha t C separates v from S in Cone (S) and 

(4) / [ q C r > ( « . , T W D . 

Since C is a simple closed curve in the manifold interior of the 2-cell Cone (5), 
it follows from the Jordan Curve Theorem [23, p . 104] t ha t Cone(S) — C has 
exactly two components V and W, with v G V and S C ^ , and tha t C is the 
boundary in Cone (S) of each of F and W. Fur thermore, it is easy to see using 
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basic facts about the topology of the plane t ha t D = V U C is a 2-cell and 

Q = W7 U C is an annulus with manifold boundary equal to C U 5 . Hence, 

since C is a re t ract of Q, there is a retraction fi from Cone (5) onto D such tha t 
ri[(?] = C. Define r from 

M = C o n e ( S ) U / [ £ > ] 

onto D by 

( \ = tri(z)> if z ^ Cone(5) 
n z ) \v, iîz £[M- Cone(S) ] . 

We show tha t r is continuous. Since 

M - Cone (S) = f [D] - Cone (S), 

we have t ha t cl[M — Cone(5)] df[D]. Hence, since / [D] is a locally con

nected cont inuum and since each arc from M — Cone (S) to Cone (5) must go 

through v (by (1)) , it follows easily t ha t 

(5) cl[M - Cone(S)] H Cone(S) C {»}. 

By (5), r is continuous. Thus , r is retraction from M onto D. Let g denote the 
restriction of / to D. Since r o g maps D into Z> and D is a 2-cell, there exists 
p e D such tha t r o g(£) = p [23, 3.3, p. 243], i.e., r(f(p)) = p. First suppose 
t h a t / ( £ ) G -D. Then , since r is the identi ty on D, r(f(p)) = f(p). Thus., since 
r(f(P)) — P, we have tha t f(p) = p. Hence, p £ B. However, p Ç D and 
D C\ B = 0. Thus , we have a contradiction. Therefore, 

(6) f(p) d D. 

Next, suppose that f(p) g Q. Then , since ri[Q] = C, r1(f(p)) G C. Thus , since 
P = r(f (p)) = r i ( / (^)) , we have t ha t p G C. Hence, by (4), TT( / (p)) > /0. 
Therefore, since Ç C 7r_1([0, /0)) by (3), it follows t ha t 

(7) f(p) d Q. 

Since Cone (S) = D \J Q, we have by (6) and (7) that f(p) (f Cone (S). Since 
p £ D, f(p) e M. Hence, f(p) G [ M - Cone (5)1 which implies t ha t 
r ( / (P)) = -̂ Thus , since r(f(p)) = p, p = v. Hence, f(p) = f(v) G Cone(5) 
by definition of S. Thus , we have a contradict ion. Therefore, there is no mapping 
/ : C o n e ( F ) —-> C o n e ( F ) such t h a t / has fixed point set equal to B. Therefore, 
C o n e ( F ) does not have CI P. 

In connection with (6.1), let us note the following comments and questions. 
The a rgument in [22, p. 556], which shows t ha t the cone over the Cantor 

set does not have C I P , can be applied to show tha t the cone over any arcless 
cont inuum X does not have C I P . We used Y = Y X S1 in (6.1) in order to 
assure t ha t the cont inuum F, over which we took the cone, has C I P . This 
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leads to the following question which was asked for a more restrictive class of 
continua in (5.7). 

(6.2) Question. Is there an arcless continuum Z such that Z has CIP? If 
the answer is nyes"> then Y in (6.1) can be replaced by such a Z and the 
proof in (6.1) can be replaced by the one in [22, p. 556]. 

With respect to the next question, note that Y in (6.1) is of dimension ^ 2 . 

(6.3) Question. Is there a 1-dimensional continuum having CIP whose cone 
does not have CIP? 

It may be possible to answer (6.2) affirmatively with a rational Z (for 
constructions of rational arcless continua, see [1], [2], or [11]). This would give 
an affirmative answer to (6.3) since rational continua are 1-dimensional 
[23, p. 99]. 

The most basic question related to this section would seem to be the following 
one: 

(6.4) Question. Is there a locally connected continuum having CIP whose 
cone does not have CIP? 

Added in proof. Questions (3.4) and (3.5) have been answered. In a paper 
to appear in the Canadian Mathematical Bulletin entitled A note on fixed 
point sets and wedges, the authors have shown that a wedge of two 1-dimen
sional contractible planar continua having CIP need not have CIP. In a paper 
to appear in the Pacific Journal of Mathematics entitled Fixed point sets of 
1-dimensional Peano continua, the first author and E. D. Tymchatyn have 
shown that every 1-dimensional continuum has CIP. 
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