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NATURAL DUALITY VIA A FINITE SET OP RELATIONS

LASZL6 ZADORI

We present a duality theorem. We give a necessary and sufficient condition for
any set of algebraic relations to entail the set of all algebraic relations in Davey
and Werner's sense. The main result of the paper states that for a finite algebra a
finite set of algebraic relations yields a duality if and only if the set of all algebraic
relations can be obtained from it by using four types of relational constructs.
Finally, we prove that a finite algebra admits a natural duality if and only if the
algebra has a near unanimity term operation, provided that the algebra possesses
certain 2ib-ary term operations for some k. This is a generalisation of a theorem
of Davey, Heindorf and McKenzie.

l. INTRODUCTION

Let £ be a finite algebra on the underlying set P. We define P to be the relational
topological structure P equipped with all subalgebras of finite powers (algebraic rela-
tions) of P_ and the discrete topology. For an arbitrary power Ps any subset X C P
inherits a structure from P via restricting the product structure to X. This struc-
tured subset is denoted by X and called a substructure. If X is a closed subset in the
product topology on Ps then we call it a closed substructure. A morphism between
two closed substructures means a structure preserving map, that is, a continuous map
which preserves the given relations on its domain. For an arbitrary set X C P let
->X denote the subalgebra of £ X generated by ir, |x , s G 5 , where n, : Ps —> P is
the a-th projection for each a £ S. A subset X of Ps is called horn-closed, if every
homomorphism / : ->X —> P_ is the x-th projection for some x G X. This definition
of hom-closed sets is equivalent to the usual one given in [2] and [3, Theorem 2.1]. A
subset X of Ps is term-closed if for every element a G Ps \X there exist two 5-ary
P-term operations agreeing on every element of X and differing on a. It is easy to
show, see [2, Lemma 2.15], that X C Ps is hom-closed if and only if it is term-closed.
Moreover, every term-closed set X C Ps is closed in the product topology on Ps. For
every set X C Ps the smallest term-closed subset containing X in Ps is called the
term-closure of X and is denoted by X'.
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470 L. Zadori [2]

We are interested in answering the question: Which finite algebras admit a natural

duality (are dualisable)? For the definition of admitting a natural duality see [6], or for
more details, [4]. It is easy to see that if a finite algebra P_ admits a natural duality
then the dualising object can always be chosen to be the above structure P . The
following claim which may stand as an alternative definition of dualisable algebras has
been proven by Clark and Krauss [2, Theorem 2.25].

THEOREM 1 . 1 . A Unite algebra P_ admits a natural duality if and only if for

every term-closed set X C Ps every morphism a : X —» P extends to an S-ary term

operation of P_.

In Section 2, by using Theorem 1.1, we shall present a theorem which gives a
better insight into the nature of dualisable algebras. In Section 3, Problem 1 of Davey
[6] is partly answered by exhibiting a set of constructs by which the set of all algebraic
relations is obtained from any of its entailment-dense subsets. With the help of these
constructs we characterise when a finite set of algebraic relations yields a duality for
a finite algebra. A familiar theorem in [4] states that P_ admits a natural duality
whenever it has a near unanimity term operation. In Section 4 we shall describe a
broad class of finite algebras such that in this class each algebra that admits a natural
duality necessarily has a near unanimity term operation.

2. A DUALITY THEOREM

In quite a few papers dealing with duality theory we find a so called duality theorem
that characterises when a finite algebra admits a natural duality. See for example [2,
4, 7, 8]. All those theorems are just paraphrasing Theorem 1.1. Nevertheless, Theorem
1.1 somehow is not satisfying when we would like to decide whether a particular finite
algebra is dualisable or not. In this section we are going to prove our duality theorem.
From this theorem it follows, for example, that in Theorem 1.1, 5" can be assumed to
be countable.

We call a map /3 : X —> P, X C PT, nonextendible if it does not extend to a
T-ary term operation of P_. For H C T, TVH denotes the projection map from PT to
PH. There is some ambiguity in this notation when T varies. This will not cause any
problem. From the context it will always be clear what T we consider. We also use TZH

instead of TTH \X where X C PT.

THEOREM 2 . 1 . For a finite algebra P_ the following are equivalent.

(1) P_ admits no natural duality.

(2) There exist an increasing sequence of finite sets Si, subsets Xi C Ps«
with Xi = Ks^Xi+i) = iis{(X'i+1), 0 ^ i < u, and a map a0 : Xo —» P

such that for each i the map oii+1 = a j O TT^ : Xi+i —• P preserves all

(i + l)-ary algebraic relations and is nonextendible.
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(3) There exist an increasing sequence of finite sets Ti, term-closed sets Yi C

PTi with 7rT.(Yi+1) C Yi} 0 ^ i < u, and a map (30 : Yo -> P such that

for each i the map /?i+i = fli o TT^ : Yi+i —> P preserves all (i + l )-ary

algebraic relations and is nonextendible.

PROOF: (1) implies (2): Let £ be a non-dualisable finite algebra. By Theorem
1.1 there exist a term-closed set X C Ps and a morphism a : X —» P that does not
extend to Ps as an 5-ary term operation. Since a is continuous and X is compact
there is a finite subset So C 5 such that a = «oo irs0 for some ao : Xo —> P, where
XQ = nso(X). Starting with So,Xo and ao we give a recursive definition of Si,X{

and a,-, 0 ^ i < w. The (i + l)-th step of this is as follows.

Assume that we have already defined Si,Xi and c*j satisfying the properties in the
claim such that Si C. S and Xi = irsi(X). We are going to define Si+i,Xi+i and aj+i
such that S,-+i C 5 and Xi = nsi+l(X). Let us take an arbitrary (i +-T)-ary algebraic
relation r. For every XQ, ..., z,- E X with (a(xo)> • • • > a(xi)) £ r there is an s G S such
that (zo(«) , . . . , Xi(s)) £ r. To each x0,... ,Xi and s of this type we assign an open set
of ( P s ) * + 1 of the form {(a o , . . . , a j ) : a;- e Ps and a.j(s) = x,(s) for each 0 ^ j ^ i} .
These open sets cover the compact set ( a i + 1 )~ 1 (P* + 1 \ r) where ai+1 : X ' + 1 -+ Pi+1

is the continuous map defined by al+1(xo,... ,x,-) = (a(xo),-• • ,a(xi)). So some finitely
many of them also do it. Choose such a finite cover for every algebraic relation. Let
Hi+i be the union of the sets of elements which occur in the definition of the finite
cover related to some [i + l)-ary algebraic relation. So .ff,-+i C 5 is finite. Observe
that for every H with So U .ffj+i C H, the map ao o TTS0 : ITH{X) —> P preserves all
(i + l)-ary algebraic relations.

The set A = ^ ( X ? \ Xi) is closed in Ps and A D X = 0. So for every a £ A

there are 5-ary terms aa and ra agreeing on X and differing on a. The open sets
{b : 1 6 Ps and <ro(6) ^ T O (6)} cover A. Again, some finitely many of them do
it. The finitely many term operations occurring in the definition of this finite cover
depend on only finitely many variables determining a finite subset Ki+1 of 5 . Let
Si+i - Si U Hi+1 U Ki+1, Xt+i = 7rSi+1 {X) and a<+1 = a; o 7rSi : Xi+1 -> P.

Let us check the properties mentioned in (2). We have that

Xi = nSi(X) = TTS, (7TSi+l (X)) = 7rSi(Xi+1).

So Xi C 7TS. (X'i+1) . But nSi (Xl+l) C X! and iT,+1 C Si+1. Hence ^ = 7rs,. (X'i+1) .

The map at- is not extendible as a is not and it preserves all (i + l)-ary relations since

So U Si+i C Si+i.

(2) implies (3): Now, suppose that there is a sequence of 5,- with Si C S i + 1 ,

X, C Psi, 0 ^ i < u and a0 : Xo -» P as in (2). Let T, = 5 i + 1 and Yt = X'i+1,
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0 < i < w. Moreover let /?o = a0 o irs0 : Yo —> P . Clearly, 7P7;(Y,+i) C Yi, 0 < i < u.

Let /?,•+! = Pi o nT. : Yi+1 -> P . So 0i+i - ai+1 o nSi+l : Xt?+2 -> P . Since a,+ 1

and Tsi+l preserve the i + 1-ary algebraic relations so does /?j+i. Finally, /?,-+i is not

extendible since a,-_f.2 is not.

(3) implies (1): Let us suppose that (3) holds. We define the countable set T —

( j Ti and Y = f] v£(Yi) C PT. Then 7rT<(Y) C Yi. Let 0 = 0o o TTTO : Y -* P.
i=o »=o '
First we show that Y is term-closed. Let a £ Y. Then there exists an t such that
T , ( a ) $• ¥<• Since T ^ Y i - n ) C Yi we have that nTi+[(a) ^ l^+i • The set Yi+i is
term-closed and hence there exist two terms a and T agreeing on Yi+i and differing
on 7Tf+i(a). Since TTi+1[Y) C Yi+i, by using the terms a o nTi+l and T o wxi+1 we
get a ^ Y'. Clearly, /3 is well defined, continuous and preserves all algebraic relations.
Next, we show that ft is nonextendible.

First, we prove that for every i there exists a j > i such that KTi(Y) = ifTi(Yj).

For an arbitrary i with 0 < i < w, PT' is finite and so there exists a j such that
for every integer k ^ j the 7^(1*) are the same. We claim that TTT^Y) — 7TT,(ij).
Without loss of generah'ty we can assume that the sets T,- and Tk, j ^ k < u, are
pairwise different. We define a graph on the set ^ . ( I j ) U ( [J Yj,) by connecting a

and 6 by an edge if and only if either o 6 Yife, 6 G Y*+i and 7prt(&) = a or a 6 TTi(lji)i
b E Yj and 7^(6) = o. By the definition of j , for every a £ TTj(ij) and A; with
j ^ k < (a there is a path between a and some element of 1*. Then, by Konig's
lemma, there is an infinite path starting from a in the graph. This path yields us an
element c 6 PT such that 7TTJ(C) G Yi for each Z with 0 ^ / < w, whence c € Y.
So for every a £ ^T^Y}) there exists a c £ Y such that o = nTi(c). This gives

Now, suppose that /3 is extendible. Then there exists an i such that j3i \KT.(Y)

is extendible and, as we saw in the preceding paragraph, there exists a. j > i such

that TTXj(Yj) = ir^Y), but this contradicts the fact that /3j = /?< o Tr̂ . : Y} —> P is

nonextendible. Hence /? is nonextendible. So by applying Theorem 1.1 we get (1). D

We mention that the argument for constructing Hi+i occurs in the proof of The-
orem 1.19 in [4].

3. ENTAILING ALGEBRAIC RELATIONS

In practice for a dualisable finite algebra P the structure P is rarely used as a
dualising object. Instead of the set of all algebraic relations a possibly small subset
R of it is taken with the property that for every term-closed X every R preserving
continuous map of the form a : X —* P preserves all algebraic relations, that is, a is
a morphism from X to P . For an R with this property we say that R entails the
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set of all algebraic relations, for short, R is an entailment-dense set. In this section
we give a characterisation of entailment-dense sets which is similar to the one given by
Bodnarcuk, Kaluznin, Kotov and Romov in [1] and by Geiger in [10]. The constructs
we need are the following:

diagonal relations,

(*) direct product of two relations,

intersection of two relations of the same arity, and

bijective projection to some variables of a relation.

We mention that with the help of the above set of constructs one can exhibit
permutation of variables of a relation, a useful construct that we need later in Theorem
3.3. Also, notice that if we left off the word bijective in (*) we would get the constructs
used in [1] and [10].

THEOREM 3 . 1 . For a finite algebra. P_ a set R of algebraic relations entails the
set of all algebraic relations if and only if every algebraic relation can be obtained from
R by using the constructs in (*) in a finite number of steps.

PROOF: Let P be a finite algebra and let R be a set of algebraic relations of P.
With the exception of bijective projections, in [4] it is mentioned that for every (term-
closed) set X every R preserving continuous map a : X —> P preserves all algebraic
relations obtained from R via the constructs in (*). Now let r £ R and let ir : r —> r0

be a bijective projection. Suppose that X is a term-closed subset of Ps for some S and
a : X —» P is an .R-preserving continuous map. We claim that a preserves TQ , as well.
Let xi,... ,xm be some elements of X such that (z i , . . . , z m ) £ ro. By composing
any projection to some variable of r with TT"1 we get a homomorphism from ro to P.
Moreover, the horn-closure of {x^,..., xm} is contained in X. Hence X contains some
elements j / i , . . . , yn with xi,..., xm among them such that (j/i,..., yn) £ r. Since o
preserves r we have (a(yi),. . . ,a(j/n)) £ r and so (a(xi), . . . ,a(zm)) £ r0 . This gives
the "if" part of the theorem.

To prove the "only if" part let us assume that R is an entailment-dense set. Let
H denote the set of relations that are obtained from R via (*). Let r be an arbi-
trary algebraic relation. We shall prove that r is in H. Let X C Pr be the set of
homomorphisms from r to P . Then

->X = {TTO \X'- 7ro is the a-th projection from P r to P, a £ r}.

Hence for every homomorphism h : ->X —» P we have h(na \x) = h o e(a) where
e : r —> -<X is the isomorphism given by e(a) = 7ra |x , that is, h is the h o e-
th projection. Since for every h, hoe £ X the set X is hom-closed. Thus X is
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term-closed. Clearly, r can be obtained from ->X by using a bijective projection and a
suitable permutation of variables. So it is sufficient to show that -<X 6 H. The set R is
entailment-dense, and X is finite and term-closed. Hence every iZ-preserving map from
X to P preserves the algebraic relation ->X. Therefore, the set of iZ-preserving maps
from X to P coincides with ->X. Let r\ be the smallest A"-ary relation in H containing
-<X. If there exists a (p € r\ \ ->X then there is a relation not preserved by <p in R. By
intersecting this relation by an appropriate diagonal relation, then by applying a suitable
bijective projection we can get an m-ary relation r2 £ H such that there exist pairwise
different elements yi,...,ym G X with (yx , . . . , ym) E r2 and (<p(yi),..., <p(ym)) & T* •
By taking the direct product of a full diagonal relation and r2, then permuting variables
we get an X-ary relation r^ — {ij) : (ip(yi),- - • ,il>(ym)) £ r2} £ H. Observe that
->X C 7-3 and so ->X C r j D r^ . Moreover, r\ D r3 £ H and because ip £ rs , rj D T3 is
smaller than r i . This contradiction gives ->X = Ti G B. D

Recently, in [9] Davey, Haviar and Priestly have got results similar to Theorem 3.1

in a more general context. In fact, in their paper they give a solution to Problem 1 in

[6]-
We say that a set R of algebraic relations yields a duality for P if P is dualisable

and R entails the set of algebraic relations of P . In other words, R yields a duality for
P_ if for every term-closed set X C Ps every iE-preserving continuous map a : X —* P

extends to an 5-ary term operation of P. Theorem 3.1 gives a necessary condition for
a set of algebraic relations to yield a duality for a finite algebra.

COROLLARY 3 . 2 . Let P be a finite algebra. If a set of algebraic relations R

yields a duality for P then all algebraic relations can be obtained from R via t ie
constructs in (*).

THEOREM 3 . 3 . Let P be a finite algebra and let R be a set of algebraic relations

of P . Suppose that r is a relation obtained from R via the constructs in (*). Then

(**) r = n[f)ni(riA X ••• x r < , m i ) 1
\iei /

for some finite set I where the r,i3- are elements in R or diagonal relations for all i e I,

1 ^ j ^ m<, 7r is a. bijective projection to some variables and the m are permutations

of variables for all i & I.

PROOF: Let H be the set of relations of the form given in (**). Since the elements
of R axe of this form we only have to show that H is closed under the constructs in
(*). The proof of this is a routine calculation. So we highlight only the closedness
under intersection. Suppose that we have an 5-ary relation T\ and a T-ary relation
T2 such that U — S fl T and itu{.ri) and 7T[/(r2) are in H where Try is a bijective
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projection in both cases. We define two (5 U T)-ary relations t\ and t2 as follows. Let
<! = {ip : <p \s£ n } and let t2 = {<p : <p |TG r2}. Then nu{ti n t 2 ) = iruin)C\iru[r2)•

Since i?u is bijective from t\ f\ t2 to its image, H is closed under intersection. U

The following interesting theorem holds.

THEOREM 3 . 4 . Let P. be a finite algebra and let R be a finite set of algebraic

relations. The following are equivalent.

(1) R yields a duality for P .

(2) R is an entaihnent-dense set.
(3) Every algebraic relation is built from R by using constructs in (*).

PROOF: By Theorem 3.1, we get that (2) and (3) are equivalent and (1) implies
(2) by definition. So it suffices to show only that (2) implies (1). Let R be a finite
entaihnent-dense set. We shall prove that P is dualisable. If P is not dualisable then

(3) of Theorem 2.1 holds. Since R is finite there exists a positive integer i that is an
upper bound for the arities of the relations in R. Let us take Y{ C PT» and /?,- as in (3)
of Theorem 2.1. Since R is an entailment-dense set and 1̂ - is term-closed all algebraic
relations are preserved by /3{. Hence /3,- preserves the finite algebraic relation -<Yi and
so it extends to a Tj-ary term operation. This contradicts (3) of Theorem 2.1. Thus R
yields a duality for P . D

In all known examples for dualisable algebras the duality is yielded by a finite set
of algebraic relations. The question whether there exist dualisable algebras of other
types remains open. We think that Theorem 2.1 can be a useful tool in answering this
question.

Finally, we state a recent result of Willard, [11], that can be obtained as an easy
consequence of Theorem 3.4 by using the proof of the "only if" part in Theorem 3.1.

COROLLARY 3 . 5 . Let P_ be a finite algebra. If a finite set of algebraic relations
R yields a duality on the class of the finite members of the quasi-variety generated by
P then R yields a duality on the quasi-variety generated by P .

4. NATURAL DUALITIES FORCING NEAR UNANIMITY

This section is separate from the others in the sense that instead of looking for a
duality criterion in the class of all finite algebras we examine a smaller class. It will
turn out that this class is broad enough to contain some familiar classes of algebras but
it is small enough not to have dualisable algebras other than the ones possessing a near
unanimity term operation.

For an arbitrary set S let

Ns = {«£ P : for some p £ P, o(a) = p for all a 6 5 with at most one exception}.
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For each Z ^ 2 let

Ci = {a € Pu : all but one block of the kernel of a has at most I — 1 elements}.

Let k be a positive integer. For p and 9 in P let tPl, denote the 2A:-tuple whose first
k components are p and the remaining ones are q.

LEMMA 4 . 1 . Let P_ be a finite algebra.. The following are equivalent.

(1) There is an integer k > 2 such <ha< for all p and q in P with
p ^ q there exist 2k-asy term operations a and T satisfying <r{tPtq) ^
T(tPiq) and a \Nlk= r |jvn -

(2) The term-closure of NM is a subset of Ci for some I ^ 2.

PROOF: Let a € N^,. First we show that, if a $ Cj, then (1) does not hold. If
a $ Cji, then there exist different p and g in P such that A; components of a equal
p and k components of a equal q. Since a is in the term closure of N^ it follows
that every pair of terms agreeing on Nu must agree on a. But by adding fictitious
variables to the terms guaranteed for p and q by (1) we get two terms agreeing on Nu

and differing on a. Hence (1) cannot hold.

Conversely, let us suppose there is some / with N'u C Ci. Let p and q be arbitrary
elements of P with p ^ q. Let us form the w-tuple a = (p,q,p,q, • • • ,p,q, • • •) ^ C\.
So a ^ N^. Then there exist two term operations agreeing on Nu and differing on
a. Now, there is a finite k such that both term operations depend on their first 2k
variables. This k is chosen to be the same for all p and q. The k so obtained clearly
satisfies the requirements of (1). D

The equivalent conditions of Lemma 4.1 hold in quite a large class of finite algebras.
In Theorem 4.1 of [7], condition (2) of Lemma 4.1, with 1 — 2 has been verified for every
finite algebra that generates a variety or a prevariety whose finite members have join
semi-distributive congruence or relative congruence lattices, respectively. The following
also holds.

THEOREM 4 . 2 . Let P be a Unite algebra which generates a variety V whose
finite members have join semi-distributive congruence lattices or a prevariety A whose
finite members have join semi-distributive A-congruence lattices. Then P_ satisfies (1)
in Lemma 4.1 for k = 2.

PROOF: Let P be a finite algebra generating a prevariety A whose finite members
have join semi-distributive i4-congruence lattices. Let p and q be two different elements
in P. We show that (p,p,q,q) <£ N4. By way of contradiction let us suppose that
{p,p,q,q) € N't- This implies that there exists a homomorphism / : -1N4 —* P. with
/(o) = /(&) = p and /(c) = f(d) = q, where a = ir0 |AT4 , b = m \N4, C = TT2 |AT4 and
d = 7T3 \ift.
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We now define some ^-congruences on the algebra -> JV4. Let fi be the least id-
congruence containing the pairs (a, b) and (c, d) and let v be the least .A-congruence
identifying o, 6, c and d. For each i with 1 ^ t ^ 4, we define 0,- to be the kernel of the
map given by restricting the elements of -1./V4 C Pf* to the subset of JV4 that consists

of the 4-tuples with the i-th coordinate possibly different from all the others.
4

Observe that f\ 6{ = 0 and j»Vfl< = 1/, 1 ^ i < 4, where the lattice operations

are taken in the ^-congruence lattice of -ii\T4. Since this lattice is join semi-distributive

we get fi V I f\ 0{ I = v, that is, n = v. This is impossible since fi is contained in

the kernel of / . The same argument, by obvious changes, gives the proof of the claim
related to V. D

It is worth while to mention the following partial converse of Theorem 4.2.

REMARK 4.3. Let P be a finite algebra and let A be the prevariety generated by P.
Let us suppose that for every finite S every subset of Ps is term-closed. Then the
j4-congruence lattice of every finite member of A is distributive.

PROOF: Let P be a finite algebra satisfying the condition of the claim. Theorem
4.2 in [3] guarantees us a strong duality between the class of the finite members of A
and the class of the finite isomorphic copies of the closed substructures of the powers
of P . By the proof of Proposition 1.12 in [5] the ^-congruence lattice of every finite
algebra in A is dually isomorphic to the lattice of closed substructures of its dual. This
dual must also be finite and in our case its lattice of closed substructures is Boolean.
So we have the claim. D

For example, by the remark, every finite algebra in a prevariety A generated by an
order primal algebra has a distributive ^-congruence lattice.

THEOREM 4 . 4 . Let P_ be a Unite algebra. Let us suppose that the equivalent
conditions of Lemma 4.1 hold. Then P_ admits a natural duality if and only if it has a
near unanimity term operation.

PROOF: Let us define a map a : iV̂ , —> P by assigning its dominating component
to each a G N'u. Now, a is well defined and continuous since N'u C Ci for some /.
Also, a preserves every relation on NJ, since a restricted to any finite subset of N^ is
a projection to some component. So if a does not extend to Pu via a term operation
then by Theorem 1.1, P_ admits no natural duality. If a extends, its extension gives a
near unanimity term operation on P . D

REFERENCES

[1] V.G. Bodnarcuk, L.A. Kaluznin, V.A. Kotov and V.A. Romov, 'Galois theory for Post
algebras I, IT, (in Russian), Kibernetika (Kiev) 5 (1969), no.3, 1-10, no.5, 1-9.

https://doi.org/10.1017/S0004972700014301 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700014301


478 L. Zadori [10]

[2] D.M. Clark and P.H. Krauss, 'Topological quasi varieties', Ada Sci. Math. 47 (1984),
3-39.

[3] D.M. Clark and B.A. Davey, 'The quest for strong dualities', J. Austral. Math. Soc. (to
appear).

[4] B.A. Davey and H. Werner, 'Dualities and equivalences for varieties of algebras', Colloq.
Math. Soc. Jdnos Bolyai 33 (1983), 101-275.

[5] B.A. Davey and H.A. Priestley, 'Generalized piggyback dualities and applications to Ock-
ham algebras', Houston J. Math. 13 (1987), 151-197.

[6] B.A. Davey, 'Duality theory on ten dollars a Day', in Algebras and orders, (I.G. Rosenberg
and G. Sabidussi, Editors), NATO Advanced Study Institute Series, Series C 398 (Kluwer
Academic Publishers, 1993), pp. 71-111.

[7] B.A. Davey, L. Heindorf and R. McKenzie, 'Near unanimity: an obstacle to general duality
theory', Algebra Universalis (to appear).

[8] B.A. Davey and I.G. Rosenberg, 'Algebraic duality', (preprint).
[9] B.A. Davey, M. Haviar and H.A. Priestley, 'The syntax and semantics of entailment in

duality theory', (preprint).
[10] D. Geiger, 'Closed systems of functions and predicates', Pacific J. Math. 27 (1968),

95-100.
[11] R.D. Willard, Personal communication.

JATE
Bolyai Intezet
Aradi Vertanuk Tere 1
H-6720 Szeged
Hungary

https://doi.org/10.1017/S0004972700014301 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700014301

