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LOCALIZATIONS OF LINKED 
QUATERNIONIC MAPPINGS 

JOSEPH YUCAS 

1. Introduction. Let G and B be abelian groups with G having 
exponent 2 and a distinguished element —1. In [7] we defined a linked 
quaternionic mapping to be a map q : G X G —» B satisfying the follow
ing properties: 

(A) q is symmetric and bilinear 
(B) q(a, a) = q(a, — 1) for every a £ G, and 
(L) g (a, 6) = g(c, d) implies there exists x G G such that g (a, 6) = 

g (a, x) and q(c, d) = q(c, x). 
A form (of dimension n over q) is a symbol <p — (ai, . . . , an) with 

ai, . . . , an G G. The determinant and Hasse invariant of such a form 
<p are 

det <p = Yiai £ G and s(<p) = J J <z(a<» a ; ) € -#• 

Isometry of one and two dimensional forms is defined by 

(1) (a) c^ (b) <=> a = 6 and 

(2) (a,b) o^ (c, d) <=$ ab = cd and g (a, fr) = g(c, d). 

For forms of dimension n ^ 3, isometry is defined inductively by 

(au . . . , an) — (6i, ...,&„)«=> there exist a, 6, c8, . . . , cn G G 

such that 

(a2, . . . , On) ~ (a, c8, • • • , cB), 
(62, . • • , K) ~ (6, c8f . . . , cn) and (ai, a) ~ (6i, 6). 

Equivalently, (ai, . . . , an) c^ (bu . . . , 6W) «=> there exists a finite chain 
from (ai, . . . , an) to (&i,. . . , 6n) each step of which consists of a change of 
two elements in accordance with (2). 

We say that a form <p represents x G G if there exist x2, . . . , xn G G 
such that <p ~ (x, ). D(<p) denotes the set of all elements of G 
represented by <p. li <p = (aïf . . . , an) and \p = (&i, . . . , 6W) their sum 
and product are 

<P + f = (ai, . . . , a», fei, . . . , bm) and 

^ = W>i, . . . , anbu . . . , an6m). 
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By cup we mean (a)<p and we denote by H the binary form (1, —1). 
Finally, we use the notation ((ai, . . . , an)) to denote the n-fold Pfister 
form IT^ i (l,at). 

For more details on linked quaternionic mappings, see [7]. There, this 
abstract theory of quadratic forms was developed and a ring theoretic 
description of the class of Witt rings W(q) was given. 

The main goal of this paper is to define and study localizations of linked 
quaternionic mappings in relationship to the classification of quadratic 
forms. Section 2 is preparatory in nature. The notion of signature is 
defined and it is shown that every signature a on q gives rise to a sur-
jective ring homomorphism a : W(q) —•» Z. The kernels of such maps 
correspond precisely to the prime ideals P of W(q) with W(q)/P = Z. 
A signature is then a generalization of the notion of an ordering on a 
field. For other generalizations see for example [5] or [6]. We close Section 
2 with a generalization of some of the work done in [3]. In particular, 
we classify linked quaternionic mappings q : G X G —> {±1} with trivial 
radical. 

In Section 3 the notion of strong signature is defined and we investigate 
the relationship between strong signatures and signatures. For a linked 
quaternionic mapping q and a character / on B we notice that the map 
qf : G X G -+ {±1} defined qf = / o q is also a linked quaternionic 
mapping. After studying forms over qf and forms over the linked quater
nionic mapping 

q:GX G-+B(G = G/rad q) 

we prove Theorem 3.8, the main theorem of this paper. 
We wish to thank Roger Ware, Alex Rosenberg and Murray Marshall 

for their helpful comments concerning this paper. 

2. Signatures and the local theory. Throughout this paper q:G X 
G —» B will be a linked quaternionic mapping and without loss of gener
ality we assume that the subgroup generated by the image of q = B. 
A signature on q will be a group homomorphism a : G —> {± 1} which 
satisfies the following conditions: 

( i ) « r ( - l ) = - 1 ; 
(ii) if a (a) = 1 then a(b) = 1 whenever q(b, ab) = 1. 

PROPOSITION 2.1. Let a be a signature on q. a gives rise to a surjective ring 
homomorphism a : W(q) —> Z defined by 

n 

a((ah . . . , a»» = E ^ W -
i=i 

Proof. To show a is well defined suppose 

(au . . . . O - <*ii • • • ,bs) + mU. 
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We induct on n. If n = 2 we must show 

(au a2) ^ (bi, b2) impl ies <r(ai) + <r(a2) = <r(b\) + <r(b2). 

Since d\a2 = b\b2l <r(aia2) = a(bib2). Assume first that a(axa2) = 1. 
Here <r(ai) = cr(a2) and cr(6i) = <r(&2). Since #i&i Ç J9((l, #1^2)) it 
follows that cr(ai) = o-(6i), thus 

o-(ai) + <r(a2) = o-(6i) + a(b2). 

If o-(aia2) = —1 then cr(ai) = — a(a2). Thus <r(&i) = —<r(b2) and 
consequently 

<r(ai) + ^ 2 ) = <r(bi) + <r(62) = 0. 

In general, if (au . . . , an) ~ (bly . . . , bs) + mH there exist a, b, c3, . • . , 
cn £ G such that 

(a2, . . . , an) c^ (a, cz, . . . , cn), 

(b2, . . . , 63) + mH ~ (b, cz, . . . , cn) and 

<ai, a ) ~ <6i, b). 

The desired result now follows by induction. It is easy to see that a is a 
ring homomorphism and since a(n(l)) = n, a is surjective. 

We will denote the collection of all signatures on q by X(q). 

PROPOSITION 2.2. The prime ideals P of W(q) with W{q)/P ~ Z cor
respond precisely to the kernels of a : W{q) —» Z, a £ X(q). 

Proof. Let o- Ç X(ç). By Proposition 2.1, a : PF(g) —> Z is a surjective 
ring homomorphism hence W(q)/Ker o- ~ Z. Conversely, suppose P is 
a prime ideal of W(q) with 7 : W(q)/P —» Z an isomorphism. Note that 
(a)(a) = (1) for every a £ G hence 7((a) + P) = ± 1 . Define a : G —+ 
{±1} by o-(a) = 7((a) + P). a is a group homomorphism. Since 
7 « 1 , - 1 > + P) = Owe have <r(l) + c r ( - l ) = 0 hence o-(- l ) = -c r ( l ) 
= — 1. Suppose cr(a) = 1 and q(b, ab) = 1. Then (1, a) o^ (b, ba), thus 

2 = (T(1) + a (a) = (7(e) + a(ba). 

Consequently <j(b) = 1 and a Ç X(g). Clearly 

Ker {0-: JF(ç)->Z} = P . 

We will denote the set 

{r Ç G| g(r, x) = 1 for all x 6 G} 

by rad g. If rad q = {1} we say g has a trivial radical. 

LEMMA 2.3. Suppose q: G X G-* {zkl} isa linked quaternionic mapping 
with a trivial radical. 
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(1) Any ^-dimensional anisotropic form over q which represents 1 must 
be a 2-fold Pfisterform. 

(2) 7 /D(«l , 1») ^ G then a: G -» {±1} defined by 

,x) = i 1 if* € 2?(«1, 1 
I — 1 otherwise 

) » 

is a signature on q. 

Proof. (1) Suppose <p = (1, a, 6, c) is an anisotropic form over G. 
We may assume q( — a, — 6) = q( — a, —c) = — 1 else <p is isotropic. 
Consequently, (6, ab) ~ (c, ac) and be Ç £>((1, a)) . Write c = bz for 
some s e D « l , a)) and let d Ç G. If d G £>((1, z » then 6d Ç Z>(<6, 62» 
hence — 6d g Z)((l, a)) else ^ is isotropic. Consequently 

q(d, -z) = 1 => g ( - a , — 6d) ^ 1 => g( —a, d) = 1. 

Now consider the form b<p = (1, z, 6, 6a). A similar argument shows that 

q{ — a,d) = 1 => g(d, — z) = 1. 

Therefore q( — a,d) = q(d, —z) hence az Ç rad g = {1} and thus a = z. 
Consequently <p = (1, a, 6, ab). 

(2) First note that g ( - l , - 1 ) ^ 1 else Z>(«1, 1))) = G hence J5 = 
{1, g ( - l , - 1 ) } . If s G G - £>«1, 1)) then g ( - l , z) = g ( - l , - 1 ) 
hence g( — 1, —z) = 1, that is, — z € -D((l, 1)). The result will follow 
quite easily if we can show Z)(((l, 1))) = D((lf 1)). Assume 

* e z ? ( « i , i » ) - 2 ? « i , i » 

and let y € G. Then —x Ç D({1, 1)) implies 

- 1 = * ( - * ) É f l ( ( ( l , l » ) . 

If y i D(((l, 1 » ) then -y <E D((l, 1» hence 

y= ( - i ) ( - y ) € Z ? ( « i , i » ) , 

a contradiction. Consequently Z>(((1, 1))) = G, a final contradiction. 

THEOREM 2.4. /<0r a linked quaternionic mapping q : G X G -+ B the 
following statements are equivalent: 

1. Either q has a unique signature and \G\ = 2 or q has a unique aniso
tropic ^-dimensional form <p and D(<p) = G. 

2. B = { ±1} and g has a trivial radical. 

Proof. 1 => 2. If g has a unique signature and G = { ±1} then 

, h. (-1 iia = b= - 1 
5 ( a ' 6 ) = l 1 otherwise 

hence B = { ± 1} and rad q = {1}. 
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Suppose now that q has a unique anisotropic 4-dimensional form <p with 
D(ip) — G. We may assume <p = (1, b, c, d). Consider the form \p — 
(1, b, c, be). If \p is isotropic then q( — b, — c) = 1 hence 

(6, c) o^ (—1, —be) and <p ~ (1, —1, —be, d), 

a contradiction. Consequently we may assume <p = yp. Suppose a Ç rad q. 
Since D(<p) = G we may write 

^ ~ ( — a, x, y, —axy) for some x j ^ G . 

Let <pi = (x, y, —axy). U <pi + ( — 1) is anisotropic then 

(Pi + < - l ) ~ ^ ! + ( -^>. 

Comparing determinants we obtain a = 1. Assume <pi + ( — 1) is iso
tropic. Write 

(pi + ( —1) ~ (1, —1, ai, — wa) for some w £ G. 

Since a £ rad #, (1, — a) c^ (w, — wa) C^L (X, —xa) hence 

(Pi + (-1) ~ (1, - 1 , xt -xa). 

Consequently 

(y, — axy)~ (1, —ax) and 

<p ~ ( — a, x, y, —axy) c^ ( — a, x, 1, —ax). 

But J9((l, —a)) = G hence (p is isotropic, a contradiction. This shows 
rad q = {1}. Since there is one and only one anisotropic 4-dimensional 
form (a 2-fold Pfister form) over q, B is clearly equal to {±1}. 

2 => 1. SiQce B = { ±1} there exists a unique anisotropic 2-fold Pfister 
form <p over q. Let us first assume that X(q) 7^ 0. Here <p ~ ((1, 1)). Let 
x 6 G, x p̂  1. Since rad g = {1}, there exists y Ç G such that ((—x, —y)) 
~ ((1, 1)). Comparing signatures we find o-(x) = —1 for every a 6 X(g). 
Consequently G = {±1} and clearly g has a unique signature. Now sup
pose X(q) = 0. By Lemma 2.3 (1) any 4-dimensional anisotropic form 
over q must be of the form op for some c 6 G. To prove 1 it suffices to 
show D((p) = G. Let x 6 G and write <p = (( — a, —b)). 

g( —ax, —6x) = q(a,b)q( — x, —ab). 

If g(—x, — ab) y* 1, then g( — ax, —6x) = 1 hence 

( — ax, —bx) ~ (1, a&). 

It follows that (—a, — b)c^. (x, xaô), thusx € D(<p). If g(—x, —aô) = 1, 
then (—x, — ab) C^L (1, xab), thus —x Ç -D((l, a&)). If q(x, —ab) = 1 
then (x, —ab)c¥. (1, —xab) hence x Ç -D((l, a&)) and x Ç D((p). Con-
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sequently we may assume g(x, — ab) ^ l. Now 

q( — 1, — ab) = q( — x, — ab)q(x, —ab) ^ 1, 

thus ( - a , -b)~ (1, a&) and ^ ~ (1, 1, aft, aft). If - 1 G D( ( l , 1)) then 
<p ~ (—1, — 1 , —ab, —ab) but — x Ç -D((l, a&)) hence x € Z)(<p). If 
- 1 g D « l , l ) ) t h e n g ( - 1 , - 1 ) = g(a, b) and <p~ ((1, 1)). If x $ D(<p) 
we can apply Lemma 2.3 (2) and obtain a contradiction. 

3. Localization and classification. Let g be a linked quaternionic 
mapping. By a strong signature on q we will mean a surjective group 
homomorphism â : B—> {±1} such that â{q(a, —b)) = l whenever 
ê{q{a,b)) — — 1. In the following proposition we prove that every strong 
signature on q gives rise to a signature on q. 

PROPOSITION 3.1. Suppose â is a strong signature on q. The mapping 
a : G —» {±1} defined by a (a) = â(q(a, — 1)) is a signature on q. 

Proof. Clearly a is a group homomorphism. Since â is surjective there 
exista, b £ G such that â(q (a, b)) = — 1. But then <r(q(a, —b)) = 1, thus 
à(q(a, —1)) = —1 and consequently cr(q( — a, —1)) = 1. It follows that 
â(q( — l,—l)) = — 1, that is, cr( —1) = — 1. Now suppose a(c) = l a n d 
g(d, cd) = 1. Since ( — 1, —c) ~ ( — d, — dc), q(— 1, —c) = <z( —c, —d). 
Now 

<?((z(-l, - c ) ) = <?($(-1, - l ) ) < 7 ( g ( - l , C)) = - 1 • 1 = - 1 

hence 

- 1 = â(q(-c, -d)) = <r(ç(- l , -d)g(c , - d ) ) . 

Notice that if <?(q(c, —d)) = — 1 , then cr(q( — c, —d)) = 1 hence 
â(q( — 1, d)) = — 1 . This would contradict the fact that 

- 1 = <?(g(-l, -d )g(c , -d)). 

Consequently 

â(q(c, —d)) = 1 and <r(q( — 1, — d)) = — 1 . 

In particular <7(<z( — 1, a7)) = 1, that is, a(d) = 1 as desired. 

If g is the quaternionic mapping associated with a field or a semi-local 
ring R with 1/2 Ç i? it is known that every signature on q gives rise to 
a strong signature on q. This is still an open problem for arbitrary linked 
quaternionic mappings. We do have the following: 

THEOREM 3.2. A homomorphism â : B —» {±1} is a strong signature on q 
if and only if there exist a signature a on q such that 

~( / rw / —1 if<r(a) = *(&) = — 1 <r(q(a, b)) = j x otherwise. 
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Proof. Suppose â is a strong signature on q. Consider a : G —» {±1} 
defined by a(a) = cr(q(a, —1)). By Proposition 3.1, a- is a signature on q. 
If <i{a) = <r(b) = - 1 then 

<r(<z(a , - l ) ) =<?(<z(&, - 1 ) ) = - 1 . 

Assume cr(q(a, b)) = 1. Then 

*b(-a,b)) = â(q(-l,b)q(a,b)) = - 1 . 

But on the other hand, 

â(q(-a, -b)) = <r(g(-l , -b)q(a, - l ) g ( a , 6)) = - 1 

and consequently â(q( — a,b)) = 1, a contradiction. If â(q(a, b)) = —1 
then 

1 = (?(g(a, -b)) = â(q(a, -l)q(a,b)) 

hence cr(q(a, —1)) = — 1. Similarly 

1 = â(q(b,-a)) = â(q(b, -l)q(a,b)) 

hence â(q(6, —1)) = —1. It follows that â{q(a, 6)) = — 1 if and only if 
<j(a) = (j(6) = — 1 as desired. The converse is clear. 

Let â be a strong signature on g. By Proposition 3.1, â induces a signa
ture a on g. Recall that a in turn induces a ring homomorphism a : W(g) 
—» Z. We will say that two forms <p, \p over g have the same total strong 
signature if <j(<p) = a(\l/) for all strong signatures â on g. 

Let G = G/rad g. Define q : G X G —> B by g(â, 5) = q{a, b). It is 
easy to see that q is also a linked quaternionic mapping. 

PROPOSITION 3.3. A homomorphism a : G —> {±1} is a signature on q if 
and only if â : G —» {± 1} is a signature on q. 

Proof. (=>) â is well-defined since rad q C D(( l , 1)). Clearly, â is a 
group homomorphism and <r( — 1) = a( — 1) = — 1 . If g (J, erf) = 1 and 
<T(J) = 1 then 1 = q(c, cd) = q(c, cd). Consequently à(c) = <r(c) = 1 
since a is a signature on q. 

(<=) is trivial. 

Remarks 3.4. (i) Since the subgroup generated by the image of q is 
the same as the subgroup generated by the image of g, a homomorphism â 
is a strong signature on q if and only if â is a strong signature on q. 

(ii) If (p is a form over q then s(<p) = s (<£>). 

Let g be a linked quaternionic mapping and suppose/ is a character on 
B. Define qf : G X G —> {±1} by g r = / o q. It is easy to see that qf is a 
quaternionic mapping. To see that qf is linked suppose q/(a, b) = g/(c, d). 
If g/(a, 6) = 1 take x = 1. If g/(a, 6) = — 1 then one of x = 6, x = rf or 
x = bd will work, (g/) will be called the localization of g to / . 
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Remark 3.5. It is easy to see that a character/ on B is a strong signature 
on q if and only if the identity map {±1} —> {±1} is a strong signature 
on? / . 

Let C be a subset of characters on B with the property that 
H/€c Kerf = {1} (for example C = x (5 ) ) . 

LEMMA 3.6. For a linked quaternionic mapping q 

rad q = P|/<EC rad qf. 

Proof. If r € rad g then g(r, x) = 1 for every x 6 G. Clearly,/(g(r, x)) 
= 1 for every/ G xC#) hence 

r 6 O/ec rad gr. 

If r G 0/€c rad g r then for every x Ç G a n d / 6 C, g/(r, x) = 1. Conse
quently, 

q(r,x) e f W K e r / = {1}, 

i.e., r G rad q. 

LEMMA 3.7. Suppose q has a trivial radical and let C be as in Lemma 3.6. 
For two forms <p and \p over q we have 

1. det (ip}) = det (^7) for every f £ C implies det p = det ^. 
2. s(7p~f) = s(\pr) for every f Ç C implies s (<p) = ^(^). 

Proof. 1. Fix a character / in C There exists 77 G rad #/ such that 
det <p = det ^ • rf. Now if/' is any other character in C there is also rf> Ç 
rad qf> such that det <p — det ^ • rr. Consequently, 

det \p - rf = det ^ • rr 

and hence r r = rf. This shows that 

*7 Ç H/€c rad g,. 

By Lemma 3.6, r r Ç rad q = {1} and we can conclude that det <p = det ^. 
2. Write ip = (ai, . . . , an) and \p = (6lf . . . , 6m). Since s(jp}) = sÇFr) 

we have 

Consequently, 

i<j t<j 

and hence 

4 ) - j ( * ) € E [ K e r / = {1}, 
/€C 

i.e., 5(9) = s(^). 
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The following main theorem was motivated by the following examples. 

Example 1. If <p and \p are forms over the rational field 0» then <p c^ \p 
over 0 if and only if <p ~ \p over all p-adic fields OP- Since there are only 2 
quaternion algebras over Op we can view the quadratic form structure of 
Op as the abstract structure (qf) = G X G - ^ j ± l ) where/ is induced by 
the map Br (0) -> Br (Op). 

Example 2. Let F be a formally real field with a real closure A. Here 
again there are only 2 quaternion algebras over A and the map Br (F) —> 
Br (A) induces/ : B —» {±1} where B is the subgroup of Br (F) generated 
by the quaternion algebras over F. Again we can view the quadratic form 
structure on A as the abstract structure (q}) : 5 x S - > j ± l ) . A similar 
situation prevails if F is a semilocal ring with 1/2 6 F. (See [4]). 

THEOREM 3.8. Let a be a linked quaternionic mapping with a trivial radical 
and let C be as in Lemma 3.6. If C contains all strong signatures then the 
following statements are equivalent. 

1. For any two forms <p and \p over q, <p ~ yp if and only if ($}) ^ (^7) 
for allf 6 C. 

2. Forms over q are classified by dimension, determinant, Has se invariant 
and total strong signature. 

Proof. 1 =» 2. Suppose </? and \p are forms over q with the same dimen
sion, determinant, Hasse invariant and total strong signature and let 
/ Ç C. By 1, to show <p ^ \p it suffices to show (jp}) C^L (fp~f). We first 
assume there is a signature on (q}). By Theorem 2.4, \G\ = 2 and since 
<p and \p have the same dimension and total strong signature over q it 
follows that {Tp}) ~ (^7). Now assume (q}) has no signatures. By Theorem 
2.4 we can write 

{7p}) - (Vf) ^ (P?) + *H 

for some s (E Z and some anisotropic form (p~f) with dim (p}) ^ 4 and 
dim (p7) even. If dim (~p}) = 4 then as in the proof of Theorem 2.4 
(1 => 2) we may write (p7) = (( — a, ~5 ) ) . But then by checking Hasse 
invariants we see that (p}) = (( — 1,1)), a contradiction. If dim (p^) = 2 
then a determinant comparison shows det (pj) = — 1 , a contradiction. 
Consequently, dim (pj) = 0 and (^7) — (^7) is hyperbolic. By cancella
tion, {Jp}) ~ ( ^ ) . _ 

2 =» 1. Suppose (f and \p are forms over g with (<p}) ~ (^7) for every 
/ € C. Clearly, <p and ^ have the same dimension. By Lemma 3.7, (p and yp 
have the same determinant and Hasse invariant also. Let «rbea strong 
signature on q. By Remarks 3.4 (i) and 3.5, the identity map {±1} —> 
{=b 1} is a strong signature on (q?). Now (^y) and (^?) have the same total 
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strong signature hence 

a(q(au - 1 ) ) + . . . + â(q(anj - 1 ) ) = â(q(bu - 1 ) ) + . . . 
+ cr(q(an, - 1 ) ) . 

Hence <p and \p have the same total strong signature. By 2, <p ~ yp. 

Notice that in the case when q arises from a field or semi-local ring, 
total strong signature may be replaced by total signature in the statement 
of Theorem 3.8 since every strong signature on q gives rise to a signature 
on q. 
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