REGULARIZERS OF CLOSED OPERATORS

BY
C.-S. LIN

Abstract

1. Introduction. Let X and Y be two Banach spaces and let $B(X, Y)$ denote the set of bounded linear operators with domain X and range in Y. For $\mathrm{T} \in B(X, Y)$, let $N(T)$ denote the null space and $R(T)$ the range of T. J. I. Nieto [5, p. 64] has proved the following two interesting results. An operator $T \in B(X, Y)$ has a left regularizer, i.e., there exists a $Q \in B(Y, X)$ such that $Q T=I+A$, where I is the identity on X and $A \in B(X, X)$ is a compact operator, if and only if $\operatorname{dim} N(T)<\infty$ and $R(T)$ has a closed complement. Also, T has a right regularizer, i.e., $T Q=I+A$, where $A \in B(Y, Y)$ is compact, if and only if $\operatorname{dim} Y \mid R(T)<\infty$ and $N(T)$ has a closed complement. Incidentally, we note that if $R(T)$ has a closed complement (in particular $\operatorname{dim} Y \mid R(T)<\infty$), then $R(T)$ is closed. This is true even if T is a closed operator with domain $D(T) \subseteq X$ [2, p. 100]. With a different approach the same assertions have been proved by B. Yood [6, p. 609]. In particular, he has shown the following characterizations:

$$
c^{-1}\left(G^{l}\right)=\{T \in B(X, X): T \text { has a left regularizer }\}
$$

and

$$
c^{-1}\left(G^{r}\right)=\{T \in B(X, X): T \text { has a right regularizer }\}
$$

where c is the canonical homomorphism of the Banach algebra $B(X, X)$ onto the Banach algebra $B(X, X) \mid K(X, X), K(X, X)$ is the closed two-sided ideal of compact operators on X and G^{l} (resp. G^{r}) denote the set of left (resp. right) invertible elements in $B(X, X) \mid K(X, X)$.

The purpose of this note is to consider different types of regularizations for an unbounded operator T with $D(T) \subseteq X$ and to characterize T in terms of its regularizers.
2. Regularizers of closed operators. Let $C(X, Y)$ denote the set of closed linear operators with domain contained in X and range in Y. For $T \in C(X, Y)$, if there exists an $S \in B(Y, X)$ such that

$$
S T=I-A \text { on } D(T) \text { with } R(S) \subseteq D(T)
$$

(resp. $T S=I-A$ on Y and $R(S)$ is closed),
where I is the identity on X (resp. Y) and A is a strictly singular operator on $D(A), X \supseteq D(A) \supseteq D(T)$, into $D(T)$ (resp. in $B(Y, Y)$). Then S is said to be a left (resp. right) s-regularizer of T. In particular, if $A \in B(X, X)($ resp. $B(Y, Y)$)
is compact, degenerate or degenerate projection (for definitions of these operators see, e.g., $[2,3,4]), S$ is said to be a left (resp. right) c-, d - or $d p$-regularizer of T respectively.

Theorem 1. For $T \in C(X, Y)$, the following statements are equivalent.
(1) $\operatorname{dim} N(T)=\alpha(T)<\infty$ and $R(T)$ has a closed complement.
(2) T has a left dp-regularizer.
(3) T has a left d-regularizer.
(4) T has a left c-regularizer.
(5) T has a left s-regularizer and $R(T)$ has a closed complement.
(6) $T+K$ has a left s-regularizer for any strictly singular operator K from X into Y with $D(T) \subseteq D(K)$, and $R(T)$ has a closed complement.
(7) There exists an $S \in B(Y, X)$ with $R(S) \subseteq D(T)$ such that $\alpha(S T)=$ $\operatorname{dim} D(T) \mid R(S T)<\infty$.
(8) T is decomposible in the form $T=E+J$ on $D(T)$, where $E \in C(X, Y), D(E)=$ $D(T), R(T) \subseteq R(E), N(E) \subseteq N(T)$ and $J \in B(X, Y)$ is degenerate. Moreover, E has a left dp-regularizer.
(9) Same as (8), but where J is compact.

Proof. (1) $\Rightarrow(2)$. We have that $R(T)$ is closed, $X=N(T) \oplus X_{0}$ and $Y=R(T) \oplus Y_{0}$ where X_{0} and Y_{0} are some closed subspaces of X and Y respectively. $D(T)=$ $N(T) \oplus\left(X_{0} \cap D(T)\right)$. Let $T_{0}=T \mid\left(X_{0} \cap D(T)\right)$, then $T_{0} \in C(X, Y)$ which is one-toone with the closed range $R(T)$ or, equivalently, T_{0} has a bounded inverse T_{0}^{-1} by the closed-graph theorem. Let Q be the projection of Y onto $R(T)$ and $S=T_{0}^{-1} Q$. Also let A be the projection of X onto $N(T)$. Then A is degenerate and $S T=I-A$ on both $N(T)$ and $X_{0} \cap D(T)$, and hence on $D(T)$.
$(2) \Rightarrow(3) \Rightarrow(4)$ trivially.
(4) $\Rightarrow(5)$: The first part is clear. Now, $S T=I-A$ on $D(T)$ and A is compact, hence $\alpha(S T)$ and $\operatorname{dim} D(T) / R(S T)$ are finite by the theory of F . Riesz [1, p. 315]. $N(S)$ is closed since $S \in B(Y, X), \operatorname{dim} T(N(S T))<\infty$ and $T(N(S T)) \subseteq N(S)$, so we may let Y_{1} be a closed subspace of $N(S)$ such that $N(S)=T(N(S T)) \oplus Y_{1}$. Also let M be a closed subspace of X such that $X=N(S T) \oplus M$. That $T(N(S T)) \cap$ $T(M \cap D(T))=\{0\}=Y_{1} \cap T(M \cap D(T))$ is easily verified. Let

$$
Y_{0}=(T(N(S T)) \oplus T(M \cap D(T))) \oplus Y_{1}=R(T) \oplus Y_{1}
$$

and Y_{2} be a subspace of Y such that $Y=Y_{0} \oplus Y_{2}$. Since $N(S) \subseteq Y_{0}$,

$$
D(T) \supseteq R(S)=S\left(Y_{0}\right) \oplus S\left(Y_{2}\right)=R(S T) \oplus S\left(Y_{2}\right)
$$

On Y_{2} the operator S is one-to-one, and $\operatorname{dim} S\left(Y_{2}\right)<\infty$ since $\operatorname{dim} D(T) / R(S T)<\infty$, it follows that $\operatorname{dim} Y_{2}<\infty$ and hence $Y_{1} \oplus Y_{2}$ is closed in Y. The relation $Y=$ $R(T) \oplus\left(Y_{1} \oplus Y_{2}\right)$ implies the result.
(5) \Rightarrow (6): That $T+K \in C(X, Y)$ is easily verified. Since $S T=I-A$ on $D(T)$, $S(T+K)=I-(A-S K)$ on $D(T)$ and $A-S K$ is strictly singular [3, p. 286].
(6) $\Rightarrow(1)$: Take $K=0$, then $S T=I-A$ on $D(T) . N(S T)=\{x \in D(T): A x=x\}$, hence $\|A x\|=\|x\|$ for $x \in N(S T)$, i.e., the strictly singular operator A has a bounded inverse on $N(S T)$ and thus $\alpha(S T)<\infty, \alpha(T)<\infty$ since $N(T) \subseteq N(S T)$.
$(1) \Rightarrow(7)$: We see from "(1) $\Rightarrow(2)$ " that $R(S T)=T_{0}^{-1} Q(R(T))=X_{0} \cap D(T)$ and $N(S T)=N\left(T_{0}^{-1} T\right)=N(T)$. Hence $\alpha(S T)=\alpha(T)=\operatorname{dim} D(T) / R(S T)$ which is finite.
(7) $\Rightarrow(1)$: It remains to show that $R(T)$ has a closed complement, but this follows exactly the same as $(4) \Rightarrow(5)$.
$(1) \Rightarrow(8)$: Notation as in " $(1) \Rightarrow(2)$ ". By using a known method we may construct a bounded linear operator G on the finite dimensional space $N(T)$ into Y_{0}. Say,

$$
G(x)=\sum_{i=1}^{n} f_{i}(x) y_{i},
$$

where f_{i} is a bounded linear functional on X such that $f_{i}\left(x_{j}\right)=\delta_{i j}$ and $\left\{x_{1}, \ldots, x_{n}\right\}$ is a basis of $N(T)$, and $\left\{y_{1}, \ldots, y_{n}\right\}$ is a linearly independent subset (resp. a set of n arbitrary elements) of Y_{0} if $\operatorname{dim} Y_{0} \geq n=\operatorname{dim} N(T)$ (resp. $\operatorname{dim} Y_{0}<n$). On $D(T)$ let $E=T-J$ and $J=G A$, then $R(T)=T\left|\left(X_{0} \cap D(T)\right)=E\right|\left(X_{0} \cap D(T)\right) \subseteq R(E)$, and if $x \in N(E), T x=G A x \in Y_{0}, T x=0$ and hence $N(E) \subseteq N(T)$. Since $S E=S T-$ $S J=S T-T_{0}^{-1} Q G A=S T=I-A$ on $D(T)$, the last part follows.
(8) \Rightarrow (4): If $S \in B(Y, X)$ is a left $d p$-regularizer of $E, S E=I-A$, then $S T=$ $S E-S J=I-(S J+A)$ on $D(T)$.

Now, that $(1) \Rightarrow(9) \Rightarrow(4)$ is clear. Q.E.D.

Theorem 2. For $T \in C(X, Y)$, the following statements are equivalent.
(1) $\operatorname{dim} Y \mid R(T)=\beta(T)<\infty$ and $D(T)$ is a direct sum of $N(T)$ and a closed subspace of X.
(2) T has a right dp-regularizer.
(3) T has a right d-regularizer.
(4) Thas a right c-regularizer.
(5) Thas a right s-regularizer.
(6) $T+K$ has a right s-regularizer for any strictly singular operator K from X into Y with $D(T) \subseteq D(K)$.
(7) There exists an $S \in B(Y, X)$ with the closed range $R(S) \subseteq D(T)$ such that $\beta(T S)=\alpha(T S)<\infty$.
(8) T is decomposible in the form $T=E+J$ on $D(T)$, where $E \in C(X, Y), D(E)=$ $D(T), R(T) \subseteq R(E), N(E) \subseteq N(T)$ and $J \in B(X, Y)$ is degenerate. Moreover, E has a right dp-regularizer.
(9) Same as (8), but where J is strictly singular.

Proof. (1) \Rightarrow (2). $D(T)=N(T) \oplus X_{0}$ and $Y=R(T) \oplus Y_{0}$, where X_{0} is some closed subspace of X and $\operatorname{dim} Y_{0}<\infty$ by assumption. Note that $R(T)$ is closed. If $T_{0}=$ $T \mid X_{0}$, then $T_{0} \in C(X, Y)$ which is bounded as well, and it has a bounded inverse
T_{0}^{-1}. Let Q and S be as in Theorem 1 " $(1) \Rightarrow(2)$ " and A be the projection of Y onto Y_{0}, then $R(S)=X_{0}$ and $T S=I-A$ on Y.
(2) $\Rightarrow(3) \Rightarrow(4) \Rightarrow(5)$ trivially.
$(5) \Rightarrow(6)$ similarly as in Theorem 1.
(6) \Rightarrow (7): Take $K=0$, then $T S=I-A$ on Y, and $\beta(T S)=\alpha(T S)<\infty$ by either the Riesz-Schauder theorem for a strictly singular operator [3, p. 321] or a stability theorem perturbed by a strictly singular operator [2, p. 117].
(7) $\Rightarrow(1)$: Since $R(T S) \subseteq R(T), \beta(T) \subseteq \beta(T S)<\infty$. Let $Y=N(T S) \oplus M$, where M is some closed subspace of Y, then $R(S)=S(N(T S)) \oplus S(M)$ since $N(S) \subseteq$ $N(T S)$. Since $R(S)$ is closed and $\operatorname{dim} S(N(T S))<\infty, S(M)$ is closed by a remark in the section 1. Obviously $N(T) \cap S(M)=\{0\}$, so let $X_{0}=N(T) \oplus S(M) \subseteq D(T)$ and X_{1} be a subspace of X such that $X=X_{0} \oplus X_{1}$. Then $D(T)=N(T) \oplus S(M) \oplus$ $\left(X_{1} \cap D(T)\right)$ and hence

$$
Y \supseteq R(T)=T S(M) \oplus T\left(X_{1} \cap D(T)\right)=R(T S) \oplus T\left(X_{1} \cap D(T)\right)
$$

But on $X_{1} \cap D(T)$ the operator T is one-to-one and $\beta(T S)<\infty$, so $\operatorname{dim}\left(X_{1} \cap\right.$ $D(T))<\infty$ and hence $S(M) \oplus\left(X_{1} \cap D(T)\right)$ is closed in X.
$(1) \Rightarrow(8)$: Let X_{1} be a finite dimensional subspace of $N(T)$ and let $X=X_{1} \oplus X_{2}$, where X_{2} is some closed subspace. Let P be the projection of X onto X_{1}. Notation as in " 1) $\Rightarrow(2)$ ", as before we may construct a bounded linear operator G on X_{1} into Y_{0}. On $D(T)$ let $E=T-J$ and $J=G P$. Then the desired result follows as in Theorem 1 .
$(8) \Rightarrow(5)$ as in Theorem 1 " $(8) \Rightarrow(4)$ " and that $(1) \Rightarrow(9) \Rightarrow(5)$ is easily seen. Q.E.D.
3. Remarks. Let us consider operators in $B(X, Y)$, now, the condition that $R(T)$ has a closed complement in Y in (5) and (6) of Theorem 1 may be omitted, because in this case $\alpha(S T)=\beta(S T)<\infty$ by a remark in the proof (6) $\Rightarrow(7)$ of Theorem 2. Accordingly, the operator J in (9) of Theorem 1 may be strictly singular. The closedness of $R(S)$ in the definition of a right regularizer may also be omitted, since we may regard T as a left regularizer of S and hence $R(S)$ is closed. In the proof $(7) \Rightarrow(1)$ of Theorem 2 we need the closedness condition of $R(S)$, however, from (7) we see that S has a left regularizer and hence $R(S)$ is automatically closed.

Finally, we note that if both X and Y are Hilbert spaces and $T \in B(X, Y)$, the statement (5) of Theorem 1 and 2 is superfluous, since T is compact if and only if T is strictly singular [3, p. 287]. Also, the second condition in (1) of Theorem 1 is equivalent to the closedness of $R(T)$, and that of Theorem 2 is superfluous.

The author is grateful for referee's suggestions.

References

1. J. Dieudonné, Foundations of modern analysis, Academic Press, New York (1960).
2. S. Goldberg, Unbounded linear operators, McGraw-Hill, New York (1966).
3. T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Analyse Math. 6, 261-322 (1958).
4. T. Kato, Perturbation theory for linear operators, Berlin-Heidelberg-New York, SpringerVerlag, New York (1966).
5. J. I. Keito, On Fredholm operators and the essential spectrum of singular integral operators, Math. Ann. 178, 62-77 (1968).
6. B. Yood, Properties of linear transformations preserved under addition of a completely continuous transformation, Duke Math. J. 18, 599-612 (1951).

University of New Brunswick, Fredericton, N.B.

