REGULARIZERS OF CLOSED OPERATORS

BY

C.-S. LIN

1. Introduction. Let X and Y be two Banach spaces and let B(X, Y) denote the set of bounded linear operators with domain X and range in Y. For $T \in B(X, Y)$, let N(T) denote the null space and R(T) the range of T. J. I. Nieto [5, p. 64] has proved the following two interesting results. An operator $T \in B(X, Y)$ has a left regularizer, i.e., there exists a $Q \in B(Y, X)$ such that QT=I+A, where I is the identity on X and $A \in B(X, X)$ is a compact operator, if and only if dim $N(T) < \infty$ and R(T) has a closed complement. Also, T has a right regularizer, i.e., TQ=I+A, where $A \in B(Y, Y)$ is compact, if and only if dim $Y/R(T) < \infty$ and N(T) has a closed complement. Incidentally, we note that if R(T) has a closed complement (in particular dim $Y/R(T) < \infty$), then R(T) is closed. This is true even if T is a closed operator with domain $D(T) \subseteq X$ [2, p. 100]. With a different approach the same assertions have been proved by B. Yood [6, p. 609]. In particular, he has shown the following characterizations:

$$c^{-1}(G^{l}) = \{T \in B(X, X) : T \text{ has a left regularizer} \}$$

and

$$c^{-1}(G^r) = \{T \in B(X, X) : T \text{ has a right regularizer}\},\$$

where c is the canonical homomorphism of the Banach algebra B(X, X) onto the Banach algebra B(X, X)/K(X, X), K(X, X) is the closed two-sided ideal of compact operators on X and G^{l} (resp. G^{r}) denote the set of left (resp. right) invertible elements in B(X, X)/K(X, X).

The purpose of this note is to consider different types of regularizations for an unbounded operator T with $D(T) \subseteq X$ and to characterize T in terms of its regularizers.

2. Regularizers of closed operators. Let C(X, Y) denote the set of closed linear operators with domain contained in X and range in Y. For $T \in C(X, Y)$, if there exists an $S \in B(Y, X)$ such that

$$ST = I - A$$
 on $D(T)$ with $R(S) \subseteq D(T)$
(resp. $TS = I - A$ on Y and $R(S)$ is closed),

where I is the identity on X (resp. Y) and A is a strictly singular operator on D(A), $X \supseteq D(A) \supseteq D(T)$, into D(T) (resp. in B(Y, Y)). Then S is said to be a left (resp. right) s-regularizer of T. In particular, if $A \in B(X, X)$ (resp. B(Y, Y))

is compact, degenerate or degenerate projection (for definitions of these operators see, e.g., [2, 3, 4]), S is said to be a left (resp. right) c-, d- or dp-regularizer of T respectively.

THEOREM 1. For $T \in C(X, Y)$, the following statements are equivalent.

(1) dim $N(T) = \alpha(T) < \infty$ and R(T) has a closed complement.

(2) T has a left dp-regularizer.

(3) T has a left d-regularizer.

(4) T has a left c-regularizer.

(5) T has a left s-regularizer and R(T) has a closed complement.

(6) T+K has a left s-regularizer for any strictly singular operator K from X into Y with $D(T) \subseteq D(K)$, and R(T) has a closed complement.

(7) There exists an $S \in B(Y, X)$ with $R(S) \subseteq D(T)$ such that $\alpha(ST) = \dim D(T)/R(ST) < \infty$.

(8) T is decomposible in the form T=E+J on D(T), where $E \in C(X, Y)$, D(E)=D(T), $R(T)\subseteq R(E)$, $N(E)\subseteq N(T)$ and $J \in B(X, Y)$ is degenerate. Moreover, E has a left dp-regularizer.

(9) Same as (8), but where J is compact.

Proof. (1) \Rightarrow (2). We have that R(T) is closed, $X = N(T) \oplus X_0$ and $Y = R(T) \oplus Y_0$ where X_0 and Y_0 are some closed subspaces of X and Y respectively. $D(T) = N(T) \oplus (X_0 \cap D(T))$. Let $T_0 = T \mid (X_0 \cap D(T))$, then $T_0 \in C(X, Y)$ which is one-toone with the closed range R(T) or, equivalently, T_0 has a bounded inverse T_0^{-1} by the closed-graph theorem. Let Q be the projection of Y onto R(T) and $S = T_0^{-1}Q$. Also let A be the projection of X onto N(T). Then A is degenerate and ST = I - Aon both N(T) and $X_0 \cap D(T)$, and hence on D(T).

 $(2) \Rightarrow (3) \Rightarrow (4)$ trivially.

 $(4) \Rightarrow (5)$: The first part is clear. Now, ST=I-A on D(T) and A is compact, hence $\alpha(ST)$ and dim D(T)/R(ST) are finite by the theory of F. Riesz [1, p. 315]. N(S) is closed since $S \in B(Y, X)$, dim $T(N(ST)) < \infty$ and $T(N(ST)) \subseteq N(S)$, so we may let Y_1 be a closed subspace of N(S) such that $N(S)=T(N(ST)) \oplus Y_1$. Also let M be a closed subspace of X such that $X=N(ST) \oplus M$. That $T(N(ST)) \cap$ $T(M \cap D(T))=\{0\}=Y_1 \cap T(M \cap D(T))$ is easily verified. Let

$$Y_0 = (T(N(ST)) \oplus T(M \cap D(T))) \oplus Y_1 = R(T) \oplus Y_1,$$

and Y_2 be a subspace of Y such that $Y = Y_0 \oplus Y_2$. Since $N(S) \subseteq Y_0$,

$$D(T) \supseteq R(S) = S(Y_0) \oplus S(Y_2) = R(ST) \oplus S(Y_2).$$

On Y_2 the operator S is one-to-one, and dim $S(Y_2) < \infty$ since dim $D(T)/R(ST) < \infty$, it follows that dim $Y_2 < \infty$ and hence $Y_1 \oplus Y_2$ is closed in Y. The relation $Y = R(T) \oplus (Y_1 \oplus Y_2)$ implies the result.

(5) \Rightarrow (6): That $T+K \in C(X, Y)$ is easily verified. Since ST=I-A on D(T), S(T+K)=I-(A-SK) on D(T) and A-SK is strictly singular [3, p. 286].

(6) \Rightarrow (1): Take K=0, then ST=I-A on D(T). $N(ST)=\{x \in D(T): Ax=x\}$, hence ||Ax|| = ||x|| for $x \in N(ST)$, i.e., the strictly singular operator A has a bounded inverse on N(ST) and thus $\alpha(ST) < \infty$. $\alpha(T) < \infty$ since $N(T) \subseteq N(ST)$.

(1) \Rightarrow (7): We see from "(1) \Rightarrow (2)" that $R(ST) = T_0^{-1}Q(R(T)) = X_0 \cap D(T)$ and $N(ST) = N(T_0^{-1}T) = N(T)$. Hence $\alpha(ST) = \alpha(T) = \dim D(T)/R(ST)$ which is finite.

(7) \Rightarrow (1): It remains to show that R(T) has a closed complement, but this follows exactly the same as (4) \Rightarrow (5).

(1) \Rightarrow (8): Notation as in "(1) \Rightarrow (2)". By using a known method we may construct a bounded linear operator G on the finite dimensional space N(T) into Y_0 . Say,

$$G(x) = \sum_{i=1}^{n} f_i(x) y_i,$$

where f_i is a bounded linear functional on X such that $f_i(x_j) = \delta_{ij}$ and $\{x_1, \ldots, x_n\}$ is a basis of N(T), and $\{y_1, \ldots, y_n\}$ is a linearly independent subset (resp. a set of *n* arbitrary elements) of Y_0 if dim $Y_0 \ge n = \dim N(T)$ (resp. dim $Y_0 < n$). On D(T)let E = T - J and J = GA, then $R(T) = T | (X_0 \cap D(T)) = E | (X_0 \cap D(T)) \subseteq R(E)$, and if $x \in N(E)$, $Tx = GAx \in Y_0$, Tx = 0 and hence $N(E) \subseteq N(T)$. Since $SE = ST - SJ = ST - T_0^{-1}QGA = ST = I - A$ on D(T), the last part follows.

(8) \Rightarrow (4): If $S \in B(Y, X)$ is a left *dp*-regularizer of *E*, SE=I-A, then ST=SE-SJ=I-(SJ+A) on D(T).

Now, that $(1) \Rightarrow (9) \Rightarrow (4)$ is clear. Q.E.D.

THEOREM 2. For $T \in C(X, Y)$, the following statements are equivalent.

(1) dim $Y/R(T) = \beta(T) < \infty$ and D(T) is a direct sum of N(T) and a closed subspace of X.

(2) T has a right dp-regularizer.

- (3) T has a right d-regularizer.
- (4) T has a right c-regularizer.
- (5) T has a right s-regularizer.

(6) T+K has a right s-regularizer for any strictly singular operator K from X into Y with $D(T) \subseteq D(K)$.

(7) There exists an $S \in B(Y, X)$ with the closed range $R(S) \subseteq D(T)$ such that $\beta(TS) = \alpha(TS) < \infty$.

(8) T is decomposible in the form T=E+J on D(T), where $E \in C(X, Y)$, D(E)=D(T), $R(T)\subseteq R(E)$, $N(E)\subseteq N(T)$ and $J \in B(X, Y)$ is degenerate. Moreover, E has a right dp-regularizer.

(9) Same as (8), but where J is strictly singular.

Proof. (1) \Rightarrow (2). $D(T)=N(T)\oplus X_0$ and $Y=R(T)\oplus Y_0$, where X_0 is some closed subspace of X and dim $Y_0 < \infty$ by assumption. Note that R(T) is closed. If $T_0 = T | X_0$, then $T_0 \in C(X, Y)$ which is bounded as well, and it has a bounded inverse

1974]

[March

 T_0^{-1} . Let Q and S be as in Theorem 1 "(1) \Rightarrow (2)" and A be the projection of Y onto Y_0 , then $R(S) = X_0$ and TS = I - A on Y.

 $(2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5)$ trivially.

 $(5) \Rightarrow (6)$ similarly as in Theorem 1.

(6) \Rightarrow (7): Take K=0, then TS=I-A on Y, and $\beta(TS)=\alpha(TS)<\infty$ by either the Riesz-Schauder theorem for a strictly singular operator [3, p. 321] or a stability theorem perturbed by a strictly singular operator [2, p. 117].

 $(7) \Rightarrow (1)$: Since $R(TS) \subseteq R(T)$, $\beta(T) \subseteq \beta(TS) < \infty$. Let $Y = N(TS) \oplus M$, where M is some closed subspace of Y, then $R(S) = S(N(TS)) \oplus S(M)$ since $N(S) \subseteq N(TS)$. Since R(S) is closed and dim $S(N(TS)) < \infty$, S(M) is closed by a remark in the section 1. Obviously $N(T) \cap S(M) = \{0\}$, so let $X_0 = N(T) \oplus S(M) \subseteq D(T)$ and X_1 be a subspace of X such that $X = X_0 \oplus X_1$. Then $D(T) = N(T) \oplus S(M) \oplus (X_1 \cap D(T))$ and hence

 $Y \supseteq R(T) = TS(M) \oplus T(X_1 \cap D(T)) = R(TS) \oplus T(X_1 \cap D(T)).$

But on $X_1 \cap D(T)$ the operator T is one-to-one and $\beta(TS) < \infty$, so dim $(X_1 \cap D(T)) < \infty$ and hence $S(M) \oplus (X_1 \cap D(T))$ is closed in X.

 $(1) \Rightarrow (8)$: Let X_1 be a finite dimensional subspace of N(T) and let $X = X_1 \oplus X_2$, where X_2 is some closed subspace. Let P be the projection of X onto X_1 . Notation as in "(1) \Rightarrow (2)", as before we may construct a bounded linear operator G on X_1 into Y_0 . On D(T) let E = T - J and J = GP. Then the desired result follows as in Theorem 1.

 $(8) \Rightarrow (5)$ as in Theorem 1 "(8) $\Rightarrow (4)$ " and that $(1) \Rightarrow (9) \Rightarrow (5)$ is easily seen. Q.E.D.

3. REMARKS. Let us consider operators in B(X, Y), now, the condition that R(T) has a closed complement in Y in (5) and (6) of Theorem 1 may be omitted, because in this case $\alpha(ST) = \beta(ST) < \infty$ by a remark in the proof $(6) \Rightarrow (7)$ of Theorem 2. Accordingly, the operator J in (9) of Theorem 1 may be strictly singular. The closedness of R(S) in the definition of a right regularizer may also be omitted, since we may regard T as a left regularizer of S and hence R(S) is closed. In the proof $(7) \Rightarrow (1)$ of Theorem 2 we need the closedness condition of R(S), however, from (7) we see that S has a left regularizer and hence R(S) is automatically closed.

Finally, we note that if both X and Y are Hilbert spaces and $T \in B(X, Y)$, the statement (5) of Theorem 1 and 2 is superfluous, since T is compact if and only if T is strictly singular [3, p. 287]. Also, the second condition in (1) of Theorem 1 is equivalent to the closedness of R(T), and that of Theorem 2 is superfluous.

The author is grateful for referee's suggestions.

References

1. J. Dieudonné, Foundations of modern analysis, Academic Press, New York (1960).

2. S. Goldberg, Unbounded linear operators, McGraw-Hill, New York (1966).

3. T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Analyse Math. 6, 261–322 (1958).

70

1974]

4. T. Kato, *Perturbation theory for linear operators*, Berlin-Heidelberg-New York, Springer-Verlag, New York (1966).

5. J. I. Keito, On Fredholm operators and the essential spectrum of singular integral operators, Math. Ann. 178, 62-77 (1968).

6. B. Yood, Properties of linear transformations preserved under addition of a completely continuous transformation, Duke Math. J. 18, 599–612 (1951).

UNIVERSITY OF NEW BRUNSWICK, FREDERICTON, N.B.