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The CREAM conjecture for the

subvarieties of certain
abelian-by-nilpotent varieties

Y.K. Leong

It is proved that the subvarieties of the variety A (jUAB ]

are CREAM in the sense of Higman when m, n are coprime and n

is an odd integer not divisible by q for any prime q .

Brady, Bryce and Cossey [2] have made a claim (now withdrawn) that the

subvarieties of A (N_AB ) , where m, n are coprime, are CREAM in the

sense of Higman [4]. The work in [6] confirms this in the case when n is

an odd integer not divisible by q for any prime q . Our solution is

essentially an application of the methods of Higman [4] to the case when

H = L A B . As the calculations are both tedious and technical, we shall= =2 =n

omit some of the details which can be found in [6]. We refer to [4] and

[S] for the relevant terminology and concepts.

In view of results ([4], [6]) on the irreducible linear groups

belonging to N» A B , we only need to show that for each closed class X_

of irreducible linear groups belonging to N^ A 13 , where q is an odd

prime, the following function is CREAM:

n i-»- C M ( X ) , n = 1, 2, ... .
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430 Y.K. Leong

Here c (x) = \ a (X) , and o (X) = (deg*)2fc U)/|lin aut*| , where

degX is the degree of the irreducible linear group X over a splitting

field, k (X) is the eulerian function of X and lin &\xtX is the group

of linear automorphisms of X .

1. Symplectic modules and linear automorphisms

The calculation of lin aatX is reduced to a calculation of a certain

subgroup QSp(U) of the group of isometries Sp(U) of a symplectic module

U over Z , the ring of integers modulo q for a prime q . Although
<?a

the structure of symplectic spaces over a field is well-known (see, for

example, [7], [5]), that of symplectic modules over Z , a ring with zero
q

divisors, is, to my knowledge, not explicitly mentioned anywhere in the

literature. However, the latter is found (in [6]) to be very similar to

the former, and we shall merely state the relevant results.

A finitely-generated Z -module U is a sympleatia module (over
q

Z ) if there is an alternating Z -bilinear form / defined on U . U
q qa

is said to be non-degenerate if / is non-degenerate. We write

V = V± j_V to mean that V = V © V and f [v , v ) = 0 for all

v. 6 V. , i = 1, 2 , and < u., ..., u > to denote the submodule generated

by u , . . ., up . Two non-degenerate symplectic modules U, V are

isomorphic if there is a module isomorphism from V onto V which

preserves their bilinear forms.

THEOREM 1.1. Let U be a non-degenerate sympleatio module over

Z a . Then

where for 1 S t < a j £/. = o or

U i = < u i l ' vil} 1 ••• l( u i * . > vin.) > n i > ° '
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w i t h / ( « i < 7 - » « i < 70 = ^ ~ 1 ' 0 = 1 , - . . , « £ •

1/ is determined up to isomorphism by the sequence of non-negative

integers (^ nj .

An isometry of £/ is an automorphism of V which preserves the

bilinear form / on U . We denote the group of isometries of V by

Sp(U) or Sp[n "-,) where n , , n are the invariants of U

given by Theorem 1.1. Without loss of generality, we shall assume that

n > 0 so that there exist elements u and v in V such that

f(u, v) = 1 . An ordered pair (u, v) of elements of V is called a

hyperbolic pair of U if f(u, v) = 1 . We denote the set of hyperbolic

pairs of V by Sl{U) and write o)(na w j = |n(£/)| . The order of

Sp(U) is calculated by an enumeration of hyperbolic pairs (of. II.9.13 in

[5]).

LEMMA 1.2. Sp(U) acts transitively on Q(U) .

a ni
LEMMA 1.3. \Sp(U)\ = T T T T w ( n , ..., n. , j) , where

i=l d=l

I 1 Ilog w[tnn, ..., m. ] = [2m,—1)3 + 2m,($-l) + h ) m.(3-i+l) + log \q -1 .

LEMMA 1.4. Jfe fezue

log |Sp(n , ..., n,)| = | <(2a-2i+l)n.+(a-i)n.>
q a i ^=1 ^ ^ Ĵ

a-1 a-1 a ni

Kovacs has shown (see Lemma It.2.1 in [6]) that if X is an

irreducible linear group in N^ A B , then the group of linear

automorphisms, lin autAT , of X is the group aut,Z of automorphisms of

X which act trivially on the centre Z(X) of X . Now if X € N^ A 15 ,

<7

where <? is an odd prime, then it is shown in [7] that X is uniquely

determined by an abstract group of the form (see [2] for the definition of
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the Q{n, r) ) :

G = Q[nv r±) ... Q[na, r^QU, 1) l ..

w h e r e n > . . . . > n > I , n > * * > . . . > r - 0 ,

0 < nx-rx < ... < na-ra , a > o , e^ > 0 , i = 1, 2, ..., I .

By factoring off by the centre Z(G) of G , we can consider U = G/Z(G)

as a non-degenerate symplectic module over Z , where q = |Z(G)| , with

the alternating bilinear form / given by:

for all x, y € G , f(x, y~) = X ,

where x, y are the corresponding cosets in U , [x, y] = s and s is

a fixed generator of Z(G) .

Let a., b., a.,, fc ., , i = 1, ..., a , fc = l, ..., e. , 1 2 j £ Z ,

be canonic generators (see [7]) of G . Define the following sets of

elements of U :

r. r.

A, = \x € V : xH = a) } , i = l, .... a ,i. = ix e u -. x* V = S.
% \ ^

r.

R _ / r e r, . <7 t _ -,1
r.

| = 1, . . . , a

Then the set of isometries <P of U such that

Ai '

forms a subgroup QSp(U) of Sp{U) . If innff denotes the group of inner

automorphisms of G , it is not difficult to show that

THEOREM 1.5. Qsp(U) S? aut,G/innG .

A detailed analysis of QSp(U) enables us to calculate its order.
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The calculations are found in [6] and we merely state

THEOREM 1.6. Let n = n , r = I, « a + 1 = m = max{Z, r , n -v }',

r a +l =
 X >

if i Z 1^ , 0 £ B 5 a ,

m-na*r if i d Ja ,
p P

23 if i d IR , 0 5 B 5 a ,

*. =
I2B-1 if i Z JR , 1 5 6 5 a .

Then

a a a a Z
log |«S^(y)| = 2ora + U I I r . - j r . - 2 I n + 2 j [e.Ht.)z.

q i di ° i % i V i % V 1

+ loSq\Sp(U)\ ,

where

log \Sp(U)\ = [ |(2i-l)e>(i-l)e.f

Z E i

2 . T h e c l o s e d c l a s s e s o f i r r e d u c i b l e l i n e a r g r o u p s

We refer to [4] for the meaning of linear factors and closed classes.

We summarize the following elementary observations (see [6]) on the

relation -i of being a linear factor. In this section A, B, C, D will

denote irreducible linear groups (over a splitting field) belonging to

L A B . Thus A -<B means that A is a linear factor of B .

LEMMA 2.1. C -<S and B -<A implies that C-(A .

LEMMA 2.2. C -<A and D -<B implies that CD-<AB , where AB, CD
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denote central products with cyclic centres.

LEMMA 2.3. Let A 5 A such that A has cyclic centre. Then A

is an irreducible linear group and A -(A .

LEMMA 2.4. (i) Q(n, 0) -<Q{n, l) -< ... -(Q(n, n-l) -<Q(n, n) .

(ii) Q{n-1, r-1) -<Q(n, r) , 0 < r < n .

Henceforth q will denote an odd prime. In this section, we

introduce a convenient way of partitioning the infinite closed classes of

irreducible linear groups of a fixed exponent. This will be useful in

Section 4. We denote the closed class of all irreducible linear groups in

M& A 1 i t>y £. . We write Q(k) = Q(k, k) . Let n > 1 be a fixed

integer. Suppose X_ c Q is a closed class not contained in 0 .

Define the following (not necessarily closed) classes of linear groups:

S^ = X n Q(n, i)^^ , i = 0, 1, •.., n-l ,

S*7' = X n QM0'^^ , j = 0, 1, ... ,

where XQ denotes the set of central products with cyclic centres of X

and Y for each J U and X = Q(n, i) or Q(n)*1 . We call the

S., £r the derived classes of X. . Note that S. is closed.
—'U —
S., £r
—'U —

We classify the derived classes as follows. We say that the rank of

S. is 0 if S. is finite (or empty); that the rank of g^ is 1 if

£-, e?

Q{n, i)Q(l) € S. for all e, = 0, 1, ... , but Q{n, i)Q{2) ^ S. for

some e > 0 ; and in general, that the rank of S. is k , where
2 =Z'

1 £ k < n , if Q(n, i)Q(k) K ... Q(l) e S. for all
'I
S.

'Is

cx efe = 0, 1, ... , but Q{n, i)Q(k+\) + 1 \ S^ for some e ^ > 0 .

Likewise, for each j > 0 , we say that the rank of S^ is 0 if £ is

finite (or empty); and that the rank of S_" is k , where 1 £ k < n , if
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Q{n)3Q{k) K ... Q(l) x € g for all e ^ ..., Efe = 0, 1, ... , but

QM^Qik+1) £ £J for some e, > 0 . Note that S° consists of

linear groups in Q and we do not define the rank of Ŝ

We shall need the following observations.

LEMMA 2.5. (i) If rank of JL = k > 0 , then rank of S. = k for

i = 0, 1, ..., k .

(ii) The following chain of inequalities holds:

rank of |L 2 rank of S > ... > rank of S >

2: rawfc of S1 2 rank of §2 > ... .

Proof, ("ij Since £L has rank k > 0 ,

fl(n, 0)«(fc) k ... «(1) X € SQ

for all e , ..., e, = 0, 1, ... . It is clear from Corollary 2.3 of [2]

and Lemmas 2.1, 2.2, 2.3 that if 0 S i 5 k , Q(n, i)Q{k) ... Q(l) € X

for all E , ..., e, = 0, 1, ... and hence are in S. . Moreover if

Q(n, i)Q(k+l) € S. for all e, = 0, 1, ... , then

Q(n, O)Q(k+l) € SQ for all E.+ = 0, 1, ... , which is not so. Hence

S. has rank k .

(ii) Let 0 5 i < n-1 . Suppose rank of S. = k. . Then rank of

S. cannot exceed k. . Otherwise Q(n, i+l)Q(l) € S. for all

e7 = 0, 1, ... , where I = k. + 1 , and since Q(n, i) -<6(n, i+l) by

E7
Lemma 2.U fij, it follows from Lemma 2.2 that Q(n, i)Q(l) € S. for all

e, = 0, 1, ... , which is a contradiction. Similarly, we can easily prove:
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rank of S > rank of £ 2 .... //

The next lemma is immediate.

LEMMA 2.6. 2 L =
n-X

s-
i=0

u

VV .]
U S . , where the union is disjoint and

~ )3=0

v = sup{j : Q(n)3' € x} .

We call V in the above lemma the index of X . For our purposes, we

need a detailed description of the derived classes in some simple cases.

LEMMA 2.7. Suppose X c 0 is a closed class not contained in 0 .

The derived classes of 3C of rank 1 are of the forms

J^ = {Q{2, O)Q(xf : r = 0, 1, ...} ,

S1 = {Q(2, l)Q(lf : r = 0, 1, ...} ,

Sd = {Q(2)JQ(lf : r = 0, 1, ...} , j > 0 .

Proof. From [7], the irreducible linear groups of exponent q are

C(2, O)Q(lf, Q(2, l)Q(lf, Q(2)JQ(lf, j > 0 , r 2 0 . //

LEMMA 2.8. Suppose | c | is a closed class not contained in g^ .

The derived classes of )C of rank 1 are o/ the forms

a.
^

S. = U R. . o < a. < » , i = 0, 1,2,

sf = u R ( < 7 ' > S )
 J o s y . < « > J j > 0 ,

s=0

where

: r = 0, 1, ...} , 1 = 0 , 1 , 2 ,

R. q = {G(3, i)Q(2)
sQ(lf : r = 0, 1, ..., p. < »} ,

0 < s £ a . , i = 0, 1, 2 ,
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( < 7 ' 0 ) = {Q(3)dQ{lf : r = 0, 1, . . . } , j > 0 ,

(<7''S) = {Q(3)dQ(2)SQ(lf : r = 0, 1, . . . . X. < » } ,

0 < s 5 u . , j > 0 .
u

The derived classes of )C of rank 2 are of the forms

S. = {«(3, i)6(2)SQ(l)r : r, s = 0, 1, ...} , i = 0, 1, 2 ,

if = {Q(3fQ(2)sQ(lf : r, s = 0, 1, ...} t j > 0 .

2
Proof. From [7], the irreducible linear groups of exponent q are

«(3, i)«(2)SQ(l)r, Q(3)ijQ(2)SQ(l)r , i = 0, 1, 2 , «/ > 0 , r, s > 0 .

If the derived class S. has rank 1 , then by definition, there is a
=1.

ai
unique largest integer a. 2 0 for which Q(3, i)Q(2) € S. . If

a. > 0 , we define p. for each 0 < s 5 a. , to be the largest integer

for which Q(3, i)Q(2)sQ(l) VB € S. . Note that p. may be infinite.

—x* 'Z'S

Similarly for £^ , j > 0 , or rank 1 . The forms of the derived classes

of rank 2 are obvious. //

LEMMA 2.9. Suppose J c £^ is a closed class not contained in 0 .

X/ the derived class S. has rank 1 ., then S u S. u S is the class of

all irreducible linear groups in A v (JLAB ) .

P r o o f . j T = £ x , S^ = { $ ( 2 , i ) Q ( l ) : r = 0 , 1 , . . . } , i = 0, 1 .//

LEMMA 2.10. Suppose X c o is a closed class not contained in £^ .

f 2If the derived class |L has rank 2 } then S^ u U S. is the class

of all irreducible linear groups in 4 v JL,Aj| A •

Proof. £ = £p and S. , i = 0, 1, 2 , are given by Lemma 2.8.
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Evidently the union of these classes gives all the irreducible linear

groups in the stated variety. //

3. Some calculations of a {x)

n

In this section, we carry out some calculations of c (X) for the

relevant linear group X . We shall denote the c/̂ -cycle by C. and write
C.C . = C. x C. , C* = C.C*"1 , k > 2 .
t- 0 i 3 i ^ tC.C

LEMMA 3.1. (i) For n > v > 0 , degQ(n, r) = qr .

(ii) Suppose XY is a central product with cyclic centre of X ,

H ^ . Then degUr) = degX • degY .

Proof. (i) Since we are working in a splitting field, the result is

trivial if r = 0 . So suppose r > 0 . We may assume that the field

contains a primitive q -th root of unity, E, say. Then it is easily

checked that

a =
1
0.

•yl

gives a matrix representation of Q(r, r) so that degQ(r, r) = q

Since Q(n, 0)Q(n, r) = Q{n, 0)Q(r, r) by [Z, Corollary 2.3], it follows

that deg6(w, r) = qV .

(ii) If XY = X , then Y is cyclic, and so the assertion follows

from (i). Now suppose XY t X or Y . Let U and V be the vector

spaces on which X and Y act respectively. Then the outer tensor

product U # V is the space on which XY acts, and so

= dim£/

The next lemma is a special case of a theorem of Gaschutz (Satz 1 in

[3]) and reduces the calculation of k {X) to that of k
-n---. -- -- nv v

LEMMA 3.2. Let G be a finite group and H <J G , H < Then
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*n(G) = \H\\(G/H) .

We can calculate k Ĉ J using another theorem of Gaschutz [3].

LEMMA 3.3. For m > 1 , * M = fa"-*""1)\f^"1) .

Proof. Consider C7 as a vector space V of dimension m over

GF(c?) , generated by i> , ..., v . Then by Satz 2 of [3],

where e is the number of complements of < v > in 7 . Let

4 = {a C autK : v^a = Xv for some 0 t X €

Then A is a subgroup consisting of linear transformations of V of the

form

Wla = V l ' Xl * ° ' Uia = XtUi + " i ' i = 2 m '

where Â ,̂ ..., Xm € GP(q) , Mg, ..., «m € U = < U2 u^) . It is

easily checked that u , ..., w^ are linearly independent. Hence

q) | . Let £2 = {V 5 V : V = < v > © W] . For every

a € i4 , V € fi , we have 7 = Va = < V > © 1/ . For any two W, W € fi ,

t h e r e e x i s t s a € i4 such t h a t Wa = W . We may def ine a by

v a- v , u . a = u ' . i = 2 , . . . " i ,1 I t i '

where {Up, ..., u^} , {w', ..., u^} are bases of W, W respectively.

Hence A acts transitively on fl and so \A\ = |A | • |fi| , where

A = {a € i4 : V a = W and W = ̂ u
2' '"•'

 u ^ ' Plainly ^0 consists

of all those a (. A for which Xp, ..., X are all zero. Hence

\AQ\ = (q~X)\Gh{m-X, q)\ , and so |fi| = q7""1 . //

COROLLARY 3 .4 . For m •> X ,
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i=l

In the next four technical lemmas, we shall assume that n, > Z > 0 ,

Z Z
e, > 0 , and write X = 2 5" e. , p = 2 j (i-l)e. . In Lemmas 3.6 and

i=l ^ '=1 t

3.8, 6? is the Kronecker delta.

LEMMA 3.5. We have

e , i

= q

(Hi)

fn.-l+uln
r n i+A-i

W -<7 J

(n -l+w)n 1 + x ,
W 7 J W 7 J

V5+y)n , , , o

Proof. As an example, we prove (ii). The others are similarly

e7 e 7

proved. Put X = S ^ , o)«(Z) 6 . .. «(l) , so that \X' | = g and

_ 2e7 2e 7 _
X = X/X' ^ C 7C7

 L . . . Cn -1 . By Lemma 3 . 2 , fc U ) = q k (X) . Now put

_ _ _ _ _ _ _ « -Z-l+y ,
N = (HP : x € #> < * U ) , so t ha t |̂ V| = q and AT/̂  S c\ .

Hence by Lemmas 3 .2 , 3 -3 , k^U) = |^ | n fa M -g X )kJC^J • / /

In the following lemma, Sp(e , . . . , e7) i s the group in Section 1

and i t s order i s given in Lemma l.U. The next lemma i s a direct

application of the resu l t s in Section 1.

LEMMA 3.6. We have
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(i) lin autf«U) l ... «(1) A

lin aut [«(>!.,_, 0)9(1) l ... «(1) X

(ii)

(iii)

lin aut[e(«l5 l)Q(l) l ...

3+2X
7

l i n

5n

The following two formulae are obtained by direct substitution into

the formula for o (X) using Lemmas 3.1, 3.5, 3-6.

LEMMA 3.7. We have

••• ed)
(n -l)n-l ,

LEMMA 3.8. Let y = [3n-l-5)n - 3nn + 5 + 2E,67 , .

Henceforth we shall use the following notation:

o +\ - 2n(s+2t)+r(r-l)-{s+t)(s+3t)-2s-3t

2 ( TT + t ) ^ + 1 - i ) T T -1 rr
where x, r, e, t are non-negative integers. For given f, s, t ,

ni—• a (P, s, t) defines a function on the non-negative integers. In the
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next section, we reduce the study of the relevant CREAM problem to a study

of some properties of c (r, s, t) . But first a straightforward

observation.

LEMMA 3.9. (i) For r > 1 , cn[Q(l)
r) = qHon(r, 0, 0) .

(ii) For r > 0 , s 2 1 , c [Q(l)rQ{2)S] = q2nc (r, s, 0) .

( H i ) F o r r , s > 0 , t 2 1 j

cn[Q(l)rQ{2)SQ(3)t) = q3non{r, s, t) .

4. The CREAM problem

In considering the CREAM problem for subvarieties of AW where

V = 1 AB with r, s coprime, we only need to consider those sub-

varieties satisfying V 5T S AW where p is a prime and s is a prime

power qa wi th p # q . This follows from §§1 .1 , 1 .3 , 2 . 2 , 2 .7 of [4 ] and

Lemma it.lt below. Thus Theorem lt.1 follows from Theorem It .2.

THEOREM 4 . 1 . Let r, s be coprime positive integers where s is

odd and not divisible by q for any prime q . Then the subvarieties of

A Q^AIS ) are CREAM.

THEOREM 4.2 . Let p, q be distinct primes with q odd. Then the

subvarieties of A |LAB are CREAM.

We shall use the notations and concepts of Section 2. We say that a

non-empty (not necessarily closed) class £ of irreducible linear groups

is CREAM if the following function is CREAM:

« K C (£) , n = 1, 2, . . . .

Theorem k.2 then follows from the next theorem.

THEOREM 4.3. Every non-empty closed class X c £ is CREAM.

Proof. (i) X c £ If X = £ , then X is CREAM by Lemma U.5.
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I f X t g , then X i s c l e a r l y f i n i t e and so i s CREAM.

( i i ) Xcg^, X±gx . Suppose S^, g±, £ J , j > 0 , a re t h e

der ived c l a s s e s of X. . We may assume t h a t the index of X_ = \) < °° .

Otherwise X = £^ and so i s CREAM by Lemma It. 5; Also £ c £ i s

closed and hence CREAM by ( i ) .

I f JL, has rank 0 , then so do S= , £ J , j > 0 , by Lemma 2.5 (ii).

Hence S. u S, u S u . . . u SV i s f i n i t e and CREAM. Thus, by Lemma 2 . 6 ,= u —x — —

X i s CREAM.

If £L has rank 1 , then £° u R u £ is CREAM by §2.U of [4] and

7 V 7

Lemma 2.9. If £ has rank 0 for 3 = 1, . . . , V , then U S"7 is

finite and hence CREAM. So suppose g. has rank 1 for some 1 5 j 5 V .

Let 1 S A 5 V be the largest integer for which £ has rank 1 . Then

£J = {Q(2)3Q(l)r : r = 0, 1, ...} , 1 < j < A , and so is CREAM by Lemma

V • V .

It.12. Since U £ is finite (or empty), it follows that U £^ is
J=A+1 3=1

CREAM. Hence X is CREAM.

(iii) X C £ 3 , X t ^ . Suppose SQ, S^, £g, £
J , j > 0 , are the

derived classes of X_ . Again we may assume that the index of X_ = v < °° .

Since £° c g^ ±s closed, £° is CREAM by (i) and (ii).

By Lemma 2.5 (ii), we may assume rank of S. > 0 . If £. has rank

1 , then so has £ by Lemma 2.5 d)• We have from Lemma 2.8,

S. = U {Q(3, 0)Q(2)
SQ(lf : r = 0, 1, ..., p },

^ s=0 0 S

1
S = U {fl(3, l)Q(2)8Q(lf : r = 0 , 1 , . . . , p } ,
- 1 s=0 1 S
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where 0,0 < <=° . Clearly p.,, = °° if and only if p = °° . Let
U 1 US j_S

0 5 T 5 max{a , a } be the largest integer for which p = °° . Then

Ŝ  = U {«(3, Q)Q(2)SQ(lf : r = 0, 1, . . .} u Si ,
s=0

S = U («(3, l)«(2)W:r=0,l, ...)uS
s=0

where the unions are disjoint and Sj, SJ are finite (or empty). By Lenma

It.lit, {6(3, 0)6(2)S«(l)r, 6(3, l)6(2)S6(l)r : r = 0, 1, ...} is CREAM for

every 0 < s 5 T . Hence S^ u £ is CREAM.

Without loss of generality, suppose rank of £L > 0 . If it is 1 ,

then by Lemma 2.8,

°2
S^ = U {6(3, 2)6(2)S6(Dr : r = 0, 1, ..., p } , a < . .

Let 0 £ T ' — O_ be the largest integer for which p , = °° . Then

T'

|g = U {6(3, 2)6(2)S6(Dr : r = 0, 1, ...} u s»
s=0

where the union is disjoint and Bl is finite (or empty). By Lemma It.15,
—d.

each of the infinite classes in the above union is CREAM. Hence S^ is

2
CREAM, and so is U S^ .

i=0

If S^ has rank 2 , then by Lemma 2.10 and [4, i2. l t ] , £ u U
i-0

i s CREAM. Thus i t remains to prove that £3J , 1 < j < v , i s CREAM for

S^ of rank 1 or 2 . F i r s t ly i f S^ has rank 1 , then from Lemma 2.8,

d
SJ = U { 6 ( 3 ) t 7 6 ( 2 ) S 6 ( D r : r = 0 , 1 , . . . , A. } , v. < » .

s=0 3S 3
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Let 0 < 6 . 5 u • be the largest integer for which A ._ = °° . Then
0 0 JO .

0

6.

SJ = U {Q(3)°Q(2)SQ(lf : r = 0, 1, ...} u T>
s=0

where the union is disjoint and T7 is finite (or empty). Each of the

infinite classes in this union is CREAM by Lemma 1».13. Hence S^ is

CREAM.

Finally if £J has rank 2 , then by Lemma 2.8,

Sd = {Q(3)jQ(2)SQ(lf : r, s = 0, 1, ...}

and so is CREAM by Lemma It.l6. //

We now prove the lemmas used above.

LEMMA 4.4. I ^ ^ A ^ ) | = s%n(n+l) .

Proof. We have

G = F (N-AB ) = (xn, ..., x : Xs! = [x., x .Is =
n «*=£ =s; \ 1 n i L v JA

= [C^' ^-J' xfe] = 1, ^ / J, i. j , fe, = 1, ..., n

Since C is of class 2 , [x.x., x,] = [x., x,][x., x,l and so

G' = < [x., x .1 : i, j = 1, . .. , n) . Now G1 is a direct product of

) s-cycles and G /G' is a direct product of n s-cycles. Hence

LEMMA 4.5. g^ is CREAM for i > 1 .

Proof. From [4, §2.U], e (ĝ .) = F {MQ% Al > and hence £^ is

CREAM by Lemma lt.lt. //

We say that /(«) is CREAM if the function n i—• f(n) ,

n = 0, 1, ... , is CREAM. Note that there is no difficulty in adding

n = 0 to the domain. This is done to facilitate the proofs of the

following lemmas. Note also that in each of the following (apparently)

https://doi.org/10.1017/S0004972700041113 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700041113


446 Y .K . Leong

in f in i t e sums there are only f ini tely many terms for each fixed non-

negative integer n so that these sums are f i n i t e .

LEMMA 4.6. £ a (r, 0, 0) is CREAM.
r=l n

Proof. For n > 0 , we have

00

n n n p_1 ,.

00

= 1 + {qn-\) + qn I c (r, 0, 0)
r=\ n

using Lemma 3.9 (i)• Hence from the proof of Lemma U.5,

I a (r, 0, 0) = q&W-1' _ x s „ > 0 .
r=l

Clearly c (r, 0, 0) = 0 for r > 0 . So the above relation holds for

n 2 0 . Hence the result. //

If we use the explicit expression for a (r, 0, 0) in the above

proof, we obtain the following polynomial identity.

LEMMA 4.7. For any real nvariber x and positive integer n 3

[£?n] , •. 2T . r . ,/ \

00 00

LEMMA 4.8. I I a (r, s, 0) is CREAM.
r=0 s=l n

Proof. From Lemma 2.9, we have

CL = X u {Q(l)rQ(2)S : r = 0, 1, ... , 8 = 1, 2, ...} ,

where Ŷ  is the class of all irreducible linear groups in

>L = A v (i,A^ ) . It is not difficult to deduce from §2.1* of [4] that

Since A P
 A (lpAB ) = A , §2.2 of [4] gives
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• l F n ^ l = \Fn[\2)\ ' K%>%^ •

Hence by Lemmas 3.9 (ii) , k.h and the proof of h.5,

n ̂

CO CO

^ J cnlr, a, 0) = ̂ {^(^^(Y)} = qn^' - q™™' , » > 0 .

Clearly the above relation is also true for n = 0 . Hence the result. //

oo

LEMMA 4 . 9 . I q~ a (r, s, 0) is CREAM for s , k 5 0 .
r = l n

Proof. Write b Ar, s, 0) = q o (r, s, 0) , s, k 2 0 and

oo

A.(n) = I ^ T,(*S 0, 0) . We use induction on k to show that fv(n)

is CREAM for fe 2 0 . Clearly / n ( w ) i s CREAM by Lemma h.6. Suppose now

k > 0 and / . An) is CREAM. I t is easily verified that for n > 2 ,
/ C — 1

r> > 1

(q -l)i> Ar, 0, 0) = <?~ (<?W-l) (c? ~ -l)fc „ k Ar-1, 0, 0) ,

or

b Ar, 0, o) = b , ( r , 0, 0) - q~ [q -l) [qn~ -l)b , ( r - l , 0, 0) .

Slimming from r = 1 to r = <» , we have for n > 2 ,

(1) /k(n) = / ^ ( n ) - /(nXl+f^tn-a)} ,

where f(n) = q~ [qn-l] (qn~ -l) is obviously CREAM. By hypothesis,

f, ̂ (n) is CREAM and hence so is /, (rc-2) . Since

fi.(0) = /j,(l) = 0 , k > 0 , relation (l) also holds for n = 0, 1 . Hence

fAn) is CREAM.

For a f i x e d k > 0 , w r i t e g o ( n ) = 7 fc , ( r , s , 0 ) , s > 0 . We
S r=l n'li

use induction on s to show that g (n) is CREAM for s 2 0 . Clearly
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gQW = ffrW i s CREAM. So suppose s > 0 and g An) i s CREAM. I t

can be checked that for r, s > 1 , n 5 2 ,

bn,k{r' S ' 0 ) = 9Mbn-2,k{r' e - 1 ' 0 ) '

where g(n) = c?2""28"5 (^-l) fa""1-!) (q^-l)"1 . Hence for n > 2 ,

(2) <? (n) = #(rc)ff («-2) .
o S — J_

Now a (0) = a (l) = 0 for e > 0 . Hence relation (2) also holds fors s

n = 0, 1 . Since g(n) is obviously CREAM, g (n) is CREAM. //
s

LEMMA 4 .10 . I a (r, s, t) is CREAM for s, t 2 0 .
r = l "

Proof. For a fixed s 2 0 , write h.(n) = I a (r, s, t) , t > 0

r=l

Since the proof by induction on t is similar to the second part of the

proof of Lemma U.9> we omit the details. We merely note that hAn) is

CREAM by the preceding lemma and that for t > 0 , n > 0 ,

ht(n) = cWh^in-2)

where o{n) is CREAM. //

LEMMA 4.11. I I a (r, s, t) is CREAM for t > 0 .
n
a

r=0 s=0 n

Proof. Write uAn) = I a (r, 0, t) + J £ e (r, s, t) ,
C r=0 n r=0 s=l w

t 2 0 . It is clear that "0(") is CREAM by Lemma h.6 and U.8. Also

u,(0) = uAl) = 0 , t > 0 . As in the proof of Lemma l*.10, we have

uA.n) = c(n)wt_1(n-2) , t > 0 , n 2 0 ,

where c(n) i s CREAM. We then induct on t . II

We shall now relate the above CREAM results to the classes of

irreducible linear groups in £ .
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LEMMA 4.12. {Q(2)sQ(l)r : r = 0, 1, . . . } i s CREAM for s > 0 .

Proof. By Lemma 3.9 (ii), we have for n = 1, 2, . . . ,

I c (Q(2)sQ(lf) = qHcJO, s, 0) + [ e (r, s, 0)} ,
r=Q n <• « r=l " '

which is CREAM by Lemma U.9 (with fe = 0 ). //

LEMMA 4.13. {Q[3)tQ{2)SQ{lf : r = 0, 1, ...} is CREAM for s 2: 0 ,

t > 0 .

Proof. From Lemma 3.9 (Hi), we have for n = 1, 2, ... ,

I o[Q(3)tQ(2)sQ{l)r) = c73"(e (0, s, t) + f c (r, a, *)} .
r=0 " *• n r=l " -1

The result then follows from Lemma lt.10. //

LEMMA 4.14. {<2(3, 0)Q(2)SQ(l)r, Q(3, l)Q(2)SQ(lf : r = 0, 1, ...}

is CTSJW /or s > 0 .

Proof. It is sufficient to show that

, 0)Q(2)SQ(lf, «(3, l)e(2)Se(l)r : r = 1, 2, ...}

is CREAM. Considering the cases s = 0 and s > 0 separately, we have

from Lemmas 3-7 and 3 . 9 J

r = l
[o [Q(3, 0)e(2)SQ(l)r)+e (6(3,

1 I I'^olr, 8, 0) - q3""1 I e (r, a, 0)
n

lr, 8, 0) q I e (
r=l r=l n

for n = 1, 2, ... . The result then follows from Lemma k.9. II

LEMMA 4.15. {6(3, 2)«(2)s«(l)r : r = 0, 1, ...} is CREAM for
8 2 0.

Proof. It is sufficient to show that

{«(3, 2)<2(2)86(l)r : r = 1, 2, ...}

i s CREAM. C o n s i d e r i n g t h e c a s e s 8 = 0 and e > 0 s e p a r a t e l y , we h a v e

from Lemmas 3 . 8 and 3 . 9 ,
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00 OO

I e («(3, 2)«(2)sQ(l)r) = 46""68-1* £ , - ^ e (r> s , 0)
r=l r=l n

- (q+l)q ~ I q a ( r , s, 0) + q ~ S~ J e ( r , s , 0)
r=l n r=l n

for n = 1 , 2 , . . . . The r e s u l t then follows from Lemma k.9. II

LEMMA 4 .16 . {Q(3)tQ(.2)SQ{lf : r, s = 0 , 1 , . . . } is CREAM for

t > 0 .

Proof. By Lemma 3.9 (Hi),

OO OO 00 00

I I °n{Q(3)tQ(2)SQ(l)r) = q3n I I a [r, s, t)
r=0 s=Q r=0 s=0

for n = 1, 2, . Hence the result follows from Lemma h.U. II
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