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THE TOPOLOGICAL CONFIGURATION OF A
REAL ALGEBRAIC CURVE

TAKIS SAKKALIS

This paper presents an algorithm, motivated by Morse Theory, for the topological
configuration of the components of a real algebraic curve {f(x, y) = 0}. The run-
ning time of the algorithm is 0{n12(d+ logn) log n j , where n, d are the degree
and maximum coefficient size of f(x, y).

1. INTRODUCTION

Let f(x, y) be a polynomial with integer coefficients, of degree n, n > 2. Let C
be the real affine curve defined by C = {(x, y) g R2 | f(x, y) = 0 } .

It is known that C consists of at most finitely many connected components.
More precisely, when the curve is real non-singular (Section 2) each unbounded

component of it is homeomorphic to a line and each bounded component is homeomor-
phic to a circle. We will call a bounded component an oval. An oval has a definite
interior, homeomorphic to an open disk, and an exterior, homeomorphic to R2 minus
a closed disk. On the other hand, if C is real singular and K is the set of its real
singular points (Section 2), then C — K is a differentiable 1-manifold. Therefore, each
component of C — K is homeomorphic to a line or a circle. Furthermore, a component
of C is either a component of C — K or a disjoint union of components of C — K and
a subset of K.

In this paper we present a method for the topological configuration of the compo-
nents of C. More precisely, in Section 2 we will first decide whether C is non-singular.
When this is the case our procedure does the following:

1. It counts the number of components of C, and triangulates each compo-
nent.

2. It finds the configuration of the components. In particular, given two
ovals A and B, we will find their relative position.

The main idea of our method is based on an efficient way of locating the critical
points of the projection map h: (x, y) —* x; that is, the real solutions of the system
/(*) y) = 9f/dy(x, y) = 0. For each critical point (XQ, J/Q) w e construct an isolating
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rational rectangle F and moreover we compute (3.3.4) an integer I(x0 , j/o), called the
index of (x0, y0). Then Proposition 3.3.3 enables us to determine the shape of the curve
near (XQ, J/O) • We wiU see that the above local analysis is sufficient for the determination
of the configuration of C.

On the other hand, if C is real singular we first locate its real singular points in
addition to the regular critical points of h. Then if (xo, J/o) is a singular point and
F an isolating rational rectangle of it, we find the local topology of the curve near
(so, yo)- In particular we decide on the number of components of C — K which go
through (xo» Vo)-

In Section 3 we present a brief review of our previous work [11, 12], which provides
the necessary geometric and algebraic tools pertinent to this work. In addition we
include a procedure for finding a linear and a quadratic Morse function on a real non-
singular curve. (A Morse function M is a real function which has only non-degenerate
critical points.) Although the latter procedure seems to have no resemblance to the main
algorithm, it is in fact Morse Theory (in particular Proposition 3.3.2) which inspired
our method.

In Section 5 we calculate the computing time of our method. We note that it is
polynomial in the degree n and the coefficient size d of / .

We conclude with some illustrative examples of both singular and non-singular
curves.

The problem of the configuration of an algebraic curve is not new. It has been
considered by several authors, along with similar problems, such as curve tracing and
the topological type of a curve. Arnon and McCallum [3] described how one can use
the cylindrical algebraic decomposition (cad) algorithm to find the topological type of
a curve. Arnborg and Feng [1], using a different method, were able to decompose a
non-singular curve. In addition, Gianni and Traverso [7] have a procedure for shape
determination of real curves.

It is interesting to note that most of the above procedures use symbolic manip-
ulation methods and exact arithmetic. Our approach however is quite different. It
has been motivated by Morse Theory, and all of our computations are done over the
ring Q[xi, . . . , xjt], k ^ 1, using only the basic operations of that ring. This has the
advantage that the computing time is of the order 0 (n12(d + log n) log nj , and more-
over our procedure can be implemented using any low level language with full rational
arithmetic capabilities.

2. DECISION PROCEDURE FOR A CURVE TO BE SINGULAR

In this section we present a procedure which decides whether a curve is singular.
It is based on a convenient linear change of coordinates (Lemma 2.2). Most of the key
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results mentioned below appear in [13], and therefore we state them without proof.

We begin with some preliminaries. For polynomials p(x), q(x) with coefficients in
a unique factorisation domain / , we denote by R = Resz (p, q), their resultant with
respect to the variable x [13]. Note that R G / . Let s(x, y) be a polynomial over
R[x, y], and let k be its degree. We say that s is regular in y whenever the coefficient
of y in s is a non-zero constant.

Now consider our polynomial f(x, y). We may suppose that / is square factor
free; that is for every g G Q[s, y] of positive degree, g2 does not divide / . Let E be
the following system of equations:

We observe that £ has at most finitely many solutions over C2 .

DEFINITION 2.1: We say that C is non-singular over R2 (respectively over C2) if
there is no point in R2 (respectively in C2) which satisfies S. C is singular over R2

(C2) if such a point can be found.

Let now u, v be new coordinates so that x = u + mv, y = v, and consider
g(u, v) = f(u + mv, v). We have:

LEMMA 2 . 2 . We can pick an integer m so that the following two conditions are
satisfied:

1. g(u, v) is regular in v;
2. whenever t ie points (uoivo)> (uo> «i) satisfy the equations

g = dg/du — 0, then VQ = v\.

PROOF: See [13].

NOTATION. Denote by /„ = df/dx, fy = df/dy, gu = dg/du, gv = dg/dv.
Let now t be an indeterminate. Consider the polynomial q{u, v, t) = tgu — gv,

and let a(u, t) = Rese(<7, q). Also, without confusion we will call the set {(it, v) G
R2 \g(u,v) = 0}C. We have:

PROPOSITION 2 . 3 . Let a be as above. Write a(u, t) = EiO^w)^, and consider
A(u) = gcd(a,i(u)). Then

i

1. C is singular over R2 if and only if A(u) = 0 is solvable in R.
2. C is singular over C2 if and only if A(u) = 0 is solvable in C.

PROOF: 1. Suppose (u0, v0) G R2 is a singular point of C. Then g(u0, v0) =
q(uo, v0, t) = 0 for all t. Therefore a(u0, t) = Q, which implies that u0 is a real root of
A(u). Conversely, let u0 E R be a root of A(u). In that case o(«0, t) = 0, and for each
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t we can find a corresponding v\ G C such that 0 = g(u0, uj) = tgu(u0, vl)—gu(u0, v$).
But since g is regular in v, there can be only finitely many values vj G C such that
g(uo, vl) — 0. One of these, «o say, must therefore satisfy <7(uo> t>o) = *<7u(t*0) vo) —
gu(y-o, VQ) — 0 for at least two distinct i's. This implies that (uo, Vo) is a singular point
of C. Moreover if Vo G C — R, then («o> ̂ o) ls also a singular point. But condition 2
of the above lemma implies that vo = Vo; that is VQ must be real.

2. The proof of this case is similar to Case 1. D

REMARK 2.4. The proof indicates that the singular points of C are in one-to-one
correspondence with the distinct roots of A[u). Moreover, the real (complex) singular
points are in one-to-one correspondence with the distinct real (complex) roots of A[u).

Furthermore, we note that by invoking a Sturm-type algorithm we can decide whether
A(u) has any real roots and therefore whether C is real singular.

A similar procedure can be applied directly to the original polynomial f{x, y) for
testing whether C is singular over C2. We caution that this test fails to give us a
definite answer as to whether C is real singular.

By supposing that f(x, y) is regular in y and keeping the same notation as before
let q(x, y, t) = tfx - fy and a(x, t) = Resy (/, q) - E<ai(a;)i', A(x) = gcd(ai(x)).

i
Then a similar argument shows

REMARK 2.5. C is singular over C2 if and only if A(x) = 0 is solvable over C.

3. PRELIMINARIES

3 .1 A BRIEF REVIEW.

In this section we state some of the key results taken from [11, 12], which are

essential to this work. In addition we include a procedure for finding a linear and a

quadratic Morse function on a real non-singular curve. We conclude with Proposition

3.3.3 which is one of the basic ingredients of our algorithm. We begin with a definition.

DEFINITION 3.1.1: Let R(x) be a rational function, and [a, b], a < b a closed
interval such that R(a) and R(b) are finite. The Cauchy index I*R of R(x) over [a, 6]
is defined as I*R = N ± — N^f, where JV± and N^ denote the number of points in
(a, 6) at which R{x) jumps from —oo to +oo and from +oo to —oo respectively, as
x increases from a to b. By convention I*R = —I%R.

EXAMPLE. Let P(x) be a real polynomial and [a, b] a closed interval so that

P(a)P(b) ^ 0. TAen I^P'/P is simply the number of distinct real roots of P{x) in

(a, b). In particular / f ^ P ' / P is the number of distinct real roots of P(x).

REMARK. We note that if R(x) = a(x)/r(x), where a(x), r(x) e Q[«] and a, b G Q,
then I^R can algorithmically be computed via the modified Euclidean Algorithm [6,
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11].

Now consider polynomials p(x, y), q{x, y) over Q[se, y], with no common factors.

Let F — (p, q) and consider a rational rectangle T = [a, b] x [c, d], a < b, c < d so that

no zero of F lies on its boundary dT, and p • q ̂  0 at its vertices. Set

R gC*'c) p 9{b, y) g(x, d) g{a, y)
p(x,c)' p(b,y) p(x,d) p{a,y)

Also, consider the Gauss Map G = F/ \\F\\, G : dT -> S1 , where S1 is the unit circle
and both dT and S1 carry the counterclockwise orientation. Finally, let d be the
degree of G. We have:

P R O P O S I T I O N 3 . 1 . 2 . [11]. For G, F, T, d as adove, d= -ITF/2.

Let J = dp/dx dq/dy — dq/dx dp/dy be the Jacobian determinant of F, and
z0 = (z0, yo) € R2 be a zero of F . We say that ZQ is non-degenerate if J(ZQ) ^ 0.
Suppose that all zeros of F, which lie in the interior, Int T, of T, are non-degenerate.
Then the above proposition yields the following:

COROLLARY 3 . 1 . 3 . Under the above considerations,

sign(J(z0)) = - \
F(*o)=(0,0)

zo€Intr

We now proceed with a result concerning signs of algebraic numbers. Let g(x),
^(a;) € Q[x], [a, b], a < b a rational interval isolating a real root x0 of g(x). We may
assume that x0 is a simple root of g(x) and G(a)G(b) =fi 0. Our aim is to determine
the sign (G(x0)). First, consider D = gcd(g, G). Then for x £ R set

I if5(x)<0 (1 i{g(x)G(x)>0
, V0{x) = ̂

0 otherwise ^ 0 otherwise

and let I be the following integer,

/ = Ko(a) - V0(a) - J * | + V0(b) - V^b).

We have:

COROLLARY 3 . 1 . 4 .

(i) G(x0) = 0 if and only if D{a)D{b) < 0.
(ii) If D(a)-D(b) > 0 tiien G(x0) > 0 (G{x0) < 0) if and only if I ^ 0 (/ = 0)

respectively.
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PROOF: (ii) Let F be the vector field defined by F - (g(x), y - G(x)), and let'
M be a positive integer so that sup |G(x)| < M. Also, consider the rectangle T =

[a, b] x [0, M]. First, we observe that ZQ = (zo> G(xo)) is the only zero of F within
the region a < x < b. Further, ZQ is non-degenerate since XQ is a simple root of g[x).
It is now easy to see that I — —I?F. Therefore, as Corollary 3.1.3 shows, ZQ G IntF if
and only if / ^ 0. D

We close this paragraph with the following. Let p(x, y), q(x, y) be as before and
assume that p and q are regular in y. Consider a rational polynomial g{x) and let
(a, b) be a rational interval isolating a real root xo of g(x). By invoking the idea
of negative polynomial remainder sequences [12], a notion similar to the Euclidean
Algorithm, and using Corollary 3.1.4 we can do the following:

1. We can locate and count the real roots of p(xo, y).
2. We can count and locate the common real roots of p(x0, y) and q(xo, y) •

3.2. THE CONSTRUCTION OF TWO MORSE FUNCTIONS.

For this paragraph only, we shall assume that we are given a real non-singular curve
C defined by C = {/(x, y) = 0}, with the polynomial f(x, y) satisfying conditions 1,
2 of Lemma 2.1.2. That is / is regular in y, and every vertical line x = xo contains at
most one solution of the system f = fx = 0.

Denote by fxx = d2f/dx2, fxy = d2f/dxdy, fyy = &*f/dy2. Let t be an
indeterminate and consider q = tfx— fy, a= Resy (/, q) and C = x + ty. We will first
give a sufficient polynomial condition on t so that h = C \ C has only non-degenerate
critical points.

Let then (x, y) be a critical point of h. Then at (x, y) we have: 1 = Xfx , t = Xfy,
/ = 0, A G R. Further, (x, y) is non-degenerate if and only if Q(x, y) ^ 0, where
Q = fxfyy + fyfxx — 2fxfyfxy [10]- Therefore, if we can eliminate x and y from the
system f = Q = tfx — fy = 0, that will be our condition. A first step in this direction
is the following fact:

PROPOSITION 3 . 2 . 1 . The polynomials f(x,y) and Q(x, y) iave no common
factors of positive degree if and only if f(x, y) is linear factor free over C[x, y].

PROOF: For a real polynomial <f>(x, y), let us denote by B$ the determinant of
the bordered Hessian matrix of <}>,

. . . 0
•tfA =

Now let l(x, y) be a linear factor of /(x, y). Write / = £• g, g G C[x, y]. Then a
computation shows that Bf = g3 - Bi + t • go , where (70 £ C[x, y]. But since 2?/ = 0
we get that £ is a common factor of / and Q (note that Q = —Bf ) .
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Conversely, let l{x, y) be an irreducible factor of / and Q over C[x, y]. Since /
is square free, we can find a point (x0, Jfo) so that l(x0, yQ) = 0 and dl/dy(x0, J/o) ^
0. Using the Implicit Function Theorem we find that {i(z, y) = 0} is the graph of
y — Tp(x) near (x0, y0). But the fact that / is a common factor of / and Q implies
that if>"(x) = 0, near x0. Hence {/ = 0} is a straight line near (x0, y0). The latter
fact implies that £ is linear, using the principle of analytic continuation. U

Now let b(x,y) = gcd(/, Q), and consider /* = f/b, Q* = Q/b, B*(x) =
Res» (/%<?*), a*(x, i) = Resv(/*, q, y), where q = tfT - fy. Let also d(x) =
gcd(a*(x, t), B*(x)). Then d(x) has no real roots as Proposition 2.3 shows. In ad-
dition, consider a. = a*/d, 2?» = B*/d and finally 7(<) = Res,. (o», Bt). We have:

PROPOSITION 3 . 2 . 2 . For all real t satisfying y(t) ^ 0, a(x, t) £ 0, h has
only non-degenerate critical points.

PROOF: First we note that y(t) ^ 0, since a, and B* have no common factors.
Further we observe that no critical point of h lies on a real line factor of / . Indeed, if
L is such a line factor, and (Ai, A2) a non-zero normal vector of L, then h has critical
points on / if and only if t\\ — A2 = 0 on L. Equivalently tfz — fv = 0. But the
latter is a contradiction to a(x, t) being non-zero. Let now (zo, Vo) be a critical point
of A. If Q(xo, j/o) = 0, that would imply a,(zo, t) = B»{xo) = 0, a contradiction to
7(0^0. D

We now proceed with the construction of a quadratic Morse function. Let a be
another indeterminant and consider the distance function T(x, y, a, t) = (x — a) +
(y — t) . We shal give a sufficient polynomial condition on a and t so that A = T \ C
has only non-degenerate critical points. First, we recall a well-known result of Morse
which, roughly speaking, says that there are many A's which are Morse functions.

THEOREM 3 . 2 . 3 . [8]. For almost all points (a, t) 6 R2, A is a Morse function.

In fact, the following proposition, also due to Morse, gives an explicit characteri-
sation of points (a, t) so that A has degenerate critical points.

PROPOSITION 3 . 2 . 4 . [8] For (a, t) A as above A is not a Morse function if
and only if (s, t) is a focal point of C.

Let now (z, y) be a critical point of A. Then we note that (x, y) is non-degenerate
if and only if

p(x, y, a, t) = (x- a)fy - {y - t)ft = 0, f(x, y) = 0, and

S(x, y, a,t) = - ||V/||2 - 2(x - a)fyfxy + (x - * ) / . / „ + (y - « ) / , / „ ^

Define M{x, y, a) = - | |V/ | | 2 fx + (» - fi)Q(x, y) and let N(x, a) = Res, ( / , M). The
following is one of the key results in constructing a Morse function A .
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LEMMA 3 . 2 . 5 . N{x, « ) ^ 0 .

PROOF: We argue by contradiction. Let then d(x, y) be a common factor of /
and M of positive degree. Using Proposition 3.2.1 we establish that d consists of linear
factors of / and also that

(1) d | | |V/ | | 2 .

We consider the following two cases:
(i) £(x, y) = ax + by + c, a, b, c E R is a real linear factor of d. We then write / =

£.F and observe ||V/||2 = F2 • \\Vl\\2 , whenever I = 0. But since ||V£||2 = a2+b2 ^ 0,
we get a contradiction to (1).

(ii) Suppose £ = a + ib is a complex linear factor of d, a = a.\x + ajy + aj, b =
bix + b2y + b3 , a,-, 6< G R. Consider ||V£||2 = a? + a§ - b\ - b\ + 2i(ai&i + 0262)- If
||V£||2 is not zero then again this contradicts (1). Now assume ||V£||2 = 0. The latter
implies that the vectors aj +ibi and a2+ib2 are perpendicular and have equal lengths.
In particular, we get 0162 — 0261 ^ 0. Since d is a real polynomial, then £ = a — ib
is also a factor of d. Further, since £ and £ have no common factors, we conclude
that £ • £ divides d. But the latter implies that C must have a singular point, namely
the common point of the real lines a = 0 and 6 = 0, a contradiction to C being real
non-singular. D

Consider now r(x) = Resy (/, fx) and K(x, a, t) = Resy (/, p). Using Lemma 2.2
one can easily show the following:

REMARK 3.2.6. If s0 e R so that r(s0) ^ 0 and N(x, s0) ^ 0, then there is no real
x0 such that K(xo, 80, t) = Q.

Finally if c{x) = gcd(K(x, a, t), N{x, a)), k = K/c, 77 = N/c and T(a, t) =
Resr (fc, T/) we have:

PROPOSITION 3 . 2 . 7 . Let r(x), N(x, a), T(a, t) be as above. Then tor any
pair (so) *o) of reals satisfying r(so) ^ 0, N(x, SQ) ^ 0 and T(ao, to) ^ 0, A =
(a; — so) 4- (3/ — <o) \ C has only non-degenerate critical points.

PROOF: First we note that F(s, t) ^ 0. Secondly, let (x0, yo) be a critical point
of A. We observe that f(x0, y0) = p(x0, yo, a0, to) = 0 and M(x0, j/o> «o) ^ 0, since
K(x0, So, t) ^ 0. Now since r(so) ^ 0, we note that fx(x0, j/o) ^ 0. Finally we have
M(x0, yo, s0) = (l/fz{x0, yo)) • S(x0, ya, a0, to) which in turn says that (x0, y0) is
non-degenerate. D

3.3. AN APPLICATION.

Throughout this paragraph we assume that we are given a real non-singular curve
C = {f(x, y) = 0}. Let A = (x - a)2 + (y - t)2 be a Morse function on C, a, t £ Q.
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Consider p(x, y) = (y — t)fx — (z — s)fv and denote ( / , p) by G. Let F be a rational
rectangle so that all zeros of G are inside F . Then we have:

PROPOSITION 3 . 3 . 1 . The number of unbounded components of C is equal
to -IrG/2. In particular, if ITG — 0, then the curve is either empty or consists only
of ovals.

PROOF: Let ZQ = (x0, yo) be a real zero of G. Then zo is also a critical point of
A, and conversely. Let t(z0) denote the Morse index of A at ZQ , and let J be the Jaco-
bian determinant of G. Then a calculation shows that sign(J(z0)) = (—1) . Recall
(Morse's Lemma) that EZo(-l)*(z°) = x(C), where x(C) denotes the Euler character-
istic of C. The proof now follows since -IrG/2 = E^ sign (J(z0)) = Sz o ( - l ) i ( ' o ) =
x(C) = the number of unbounded components of C. D

Next, let us denote by h the restriction of the projection map (x, y) —* x on the
curve. Suppose that z0 = (zo, J/o) is a non-degenerate critical point of h. Consider the
vector field F = (/, fy) and let F be a proper rational rectangle isolating zo. Further
let Gi , (?2 denote the graphs of x — x0 — (y — y0) , x — XQ = —(y — yo) respectively.
We have:

PROPOSITION 3 . 3 . 2 . Let F, T, d , G2 be as above. Then IrF = - 2 , 2 if
and only if near ZQ , C looks like G\, G2 •

PROOF: Using the Implicit Function Theorem we can find a difFerentiable function
x — <f>{y) s o that f(4>(y), y) — 0 and 0'(yo) = 0, <f>"(yo) ^ 0 near (x0, J/o)- Therefore
(̂ Oi 2/o) is a local minimum (maximum) of h if ^"(j/o) > 0 (4>"(yo) < 0) respectively,
and thus the curve looks like either G\ or G2. Moreover, if i(zo) denotes the Morse
index of h at zo we see that t(zo) = 0 or 1 according to whether ZQ is a local minimum
or maximum. The proof now follows since — IrF/2 = (—lp*0', D

Finally, let us consider a critical point z0 = (xo,yo), not necessarily non-
degenerate, of h and let G1, G2, G3 denote the graphs of

x-x0 = (y - yo)
2kl, x-x0 --(y - yo)

2ki, x-xo±(y - y o ) " 3 + \ *i, *2, fcs € Z+.

The following proposition provides the basis for the local topology of the curve near ZQ .

P R O P O S I T I O N 3 . 3 . 3 . Let F, T, G1, G2, Gs he as above. Then ITF =
—2, 2, 0 if and only if near ZQ , C looks like G1, G2, G3 respectively.

PROOF: Let x = <f>(y) be as in Proposition 3.3.2. Then since / is regular in y
there exists an integer Jfc, Jfe > 0 so that <£(i)(y0) = 0 for 1 < j < k and t^k\y0) ^ 0.
Therefore if k is even, C looks like G1 or G2 according to whether <j>^k\yo) is positive or
negative, while if k is odd, it looks like G3 . Now we note that df/dy = —df/dx d<f>/dy
near zQ. Let PQ be a rectangle containing ZQ SO that df/dx ^ 0 on FQ and FQ is
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contained in T. Consider the vector field Fo = (<f> — x, d(f>/dy). It is easy to see that
ITF = ITQFQ • A direct calculation shows that Ir0Fo = —2, 2, 0 according to whether
the graph of x = <f>(y) looks like G1, G2, G* . That completes the proof. D

We close this section with a definition.

DEFINITION 3.3.4: Let z e C. We define an integer I(z), called the index of z,
as follows:

{ 0 if z is a regular point of h

^IF if z is a critical point of h.

4. THE ALGORITHM

4.1 T H E NON-SINGULAR CASE.

Let a < /? be two consecutive critical values of h, and let k be the number of real
roots of f(-y, y), where a < 7 < fi. We first have:

PROPOSITION 4 . 1 . 1 . [9]. There exist reaJ continuous functions ri(x), r2{x),

..., T-jt(x) over [a, /?] so that if 7 G (a, /?), r ^ ) < ^ (7 ) < . . . < rk(-y) and TJ(I) are

the real roots of f(-y, y), for j = 1, . . . , k.

It is apparent from the above proposition that h~i [a, {3] is the union of the graphs
of rj(x) over [a, /3]. Now let z G h~1(a). According to whether I(z) = 1, —1, 0 the
point z is the left endpoint of 2, 0, 1 of the graphs of the rj(x)'s. The same holds for
each z € h~1((3) with the numbers 1, —1 interchanged. Therefore, in order to find the
configuration of C it is enough to do the following:

(1) Determine the number of common points, along with their order, of a
critical line x = 8 with C and decide which points have index 1, —1 or
0.

(2) Decide how the graphs of rj(z)'s are glued together at a critical point of
non-zero index.

Consider p(x) = Resy (/, / „ ) , q{y) — Resx(f, /„) , v(x) = Resy (/, f x ) . We observe
that a critical value S of h is a real root of p(x). Let then XQ be a real root of p(x)
and let (a, b) be a rational isolating interval of xo so that xo is the only real root of
p(x) • v(x) in [a, b]. Moreover, let [c, d] be a rational isolating interval of a real root
2/o of q(y), and let T = [a, b]x[c, d], F = (/, /„) . We now compute ITF. If ITF = 0,
we note that either (xo, Jfo) (5 C or (xo, yo) is a point of index 0. If Jr-F ^ 0, we
consider the following two cases:

A. Jr-F — —2. Then (xo, yo) is a critical point of h of index 1. Let yi < ya < •.. < yit
be the real roots of /(&, y). Let the unique t , l < i < J b — l , b e such that
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?N+i(3o) = 2/0 • Observe, from the choice of 6, that rj(se) is a decreasing function over
[x0, b], while r;+i(z) is increasing. Thus y,- < y0 < Jft+i.

Conversely, let i, 1 < i ^ k — 1, be such that yi <yo < IK+i •

Consider J"j(x), ri+i(x). Then r<(6) = y<, r,-+i(6) = yi+i, and the above argument

shows Ti(x0) = ri+1(x0) = Vo •

B. / p F = 2. In this case, using a similar argument, we conclude that (XQ, J/o) is the
right endpoint of the graphs of rj(x), r j + 1 (x ) , where Tj[a), Tj+i(a) are real roots of
f(a, y) and r , (a) < y0 < ri+1(a), for a unique j .

Let iVj, Na denote the number of real roots of f(b, y), / ( a , y). Further, let JV*Q ,
N~* be the number of critical points of the form (xo» y) of index 1, —1 respectively.
Then we observe that the number of common points of the line x = XQ with C is equal
to Nf, — NlQ = Na — N~^ . Moreover, we may order those points from the respective
order of the roots of f(b, y) and / ( o , y) .

We are now ready to triangulate C . Let a , 0, k, r;-(z) be as in Proposition
4.1.1. Define continuous functions Si(x) < 82(2) < . . . < St(x) over [a,/?] so that
Sjia) = r,-(o), Sjtf) - Ttf) and Sj(j) = ^ ( 7 ) , 7 e Q , a < 7 < ^ a n d dSj/dx = 0
on (a, 7) U (7, /?), j = 1, . . . , fc. Evidently the graphs of Sj 's triangulate h-1 [a, /3].
Let now xj < x% < • • • < xm be the real roots of p(x) and consider integers WQ < Xi,

w-m+i > 3m- If rn ^ 1, we triangulate C by repeating the above procedure over the
intervals [v>o, x\], [xi, Zt+ili [xm, '"m+i], * = 1, . . . , m — 1. On the other hand, if
m — 0, we triangulate C using the intervals [—1, 0], [0, 1]. We summarise in the
following:

PROPOSITION 4 . 1 . 2 . Using the above procedure C has been triangulated.

Every oval becomes a closed Unite polygon and every unbounded component a "broken"

line.

Finally, let A be an oval of C, which is identified with a simple closed polygon.

Consider q £ R2 and let L'q be a semi-line starting at q and intersecting A transversely.

Further, let Aq be the number of common points of A and L'q. We observe:

(i) q is inside A •& A\ = l(mod 2);

(ii) q is outside A <& A\ = 0(mod 2).

Noting that there is always a vertical rational line which intersects A transversely, it is

now apparent how to decide the relative position of two ovals.

4.2. T H E SINGULAR CASE.

Let xQ be a real root of p(x) and let (a, b) be a rational isolating interval of x0.

Then by invoking Remark 3.1.5 we can isolate the common points of C and the line

x = x0. Let then (x0,3/0) be such a point and T = [a, b] x [c, d] an isolating rectangle

of (z0 , 3/0)• Since / is regular in y we may shrink the integval [a, b] if necessary, so
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that C has no common points with the line segments c x [a, 6] and d X [a, b]. Now we
consder the polynomial /(6, y) and let kb be the number of its real roots inside (c, d).
Then we observe that (x0, yo) is the left endpoint of exactly kt, graphs of the rj(x)'s.
Similarly, if ka is the number of real roots of /(o, y), (xo, yo) is the right endpoint
of ka graphs of the r,(x)'s. Finally, we note that if ka = kf, = 0 then (x0, yo) »s a n

isolated singular point of C.

5. THE COMPUTING TIME

In this section we calculate the computation time of our method in the case of a
non-singular curve. We begin with some well-known notions and results.

Let k 6 Z, p/q G Q, (p, q) = 1. We define the size of As, p/q to be log Jb and
logp -f logg respectively. Let d be the maximum coefficient size of f(x, y) and n
its degree. Then fx, fy have degree n — 1 and coefficient size O(logn + d). If 7
is a rational number of size dlf f(x, 7), f{f, y) have degree n and coefficient size
ndi + d. Resultants of / , fy, fx with respect to x or y have degree O(n2) and
coefficient size O(n(d + log n)). Evaluating a univariate polynomial of degree m and
coefficient size $ at a point of size 6\ takes time O(m(6+6i)). Evaluation of its
Sturm Sequence takes time O(m2(6 + logm + £1)) and its roots can be isolated in time
CMm4(logTn + 6) logmj . The total size of the endpoints of the separation intervals
for the roots is O(m(logm + 6)). [4, 5, 9].

Recall that p{x) = Resv (/, /„) , q(y) - Res, (/, /„) , v(x) = Resv (/, fx). Note
that p(x) •«(«), q(y) have degree 0(n2) and coefficient size O(n(logn -f d)). Hence,
the time required to find rational isolating intervals [a, 6], [c, d] for the roots of
p(x).v(x), q(y) is O[(n2)4(log (n2) + n(logn + d))2logn] = ()(nlo(d + logn)2 logn) .

The total size of the endpoints of these intervals is O(ns(logn + d)) . Now let Sa be

the size of a, and consider the polynomial /(a, y). It has degree n and coefficient size

0(n6a + d). Therefore its roots can be isolated in time O(n4(logn + n6a + d)2 lognj .

Since So£o = O(ns(d + logn)) we observe that the roots of all /(a, y) can be iso-

lated in time 0[E (n* (log n + n6a + df logn)] = o(n12(d + logn)2 log n ) . Finally if

r = [a, b] x [c, d], F = (/, / y ) , IrF can be computed in time 0(n8(d + logn)). We
summarise in the following:

PROPOSITION 5 . 1 . Let n, d be the degree and the maximum coefficient size
of a. polynomial f(x, y), defining a reai non-singular curve C — {/ = 0}. We can find
the configuration of the components of C in time O(n12(d + logn) lognj .

6. ILLUSTRATIVE EXAMPLES

The SCRATCHPAD II computer algebra system was used for the following exam-
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EXAMPLE 1: Consider the degree four curve defined by

/ ( * , y) = -V* + 4*ys + ( -6z 2 + 8)y2 + (4xs - 16x)y + 7 = 0.

49

It is verified that f(x, y) satisfies conditions 1, 2 of Lemma 2.2 and moreover, the
curve is real non-singular. Furthermore, it consists of two ovals exterior to each other,
and two unbounded components. Its triangulation is shown in Figure 1.

- 6

Figure 1

Figure 2
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EXAMPLE 2: Let the degree six curve C be defined by

C = {3(xsy + xys) + 10*V - 2(x* + y*) - 12*V

- 23(xsy + xy3) + l l ( z 2 + y2) + 34zy + 6 = 0 } .

A calculation shows that C is real singular, and its configuration is shown in Figure 2.
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