DIOPHANTINE APPROXIMATION BY CONTINUED FRACTIONS

JINGCHENG TONG

(Received 29 November 1989; revised 3 May 1990)

Communicated by J. H. Loxton

Abstract

Let ξ be an irrational number with simple continued fraction expansion

$$\boldsymbol{\xi} = [\boldsymbol{a}_0; \boldsymbol{a}_1, \ldots, \boldsymbol{a}_i, \ldots],$$

 p_i/q_i be its *i*th convergent. Let $M_i = [a_{i+1}; a_i, \dots, a_1] + [0; a_{i+2}, a_{i+3}, \dots]$. In this paper we prove that $M_{n-1} < r$ and $M_n < R$ imply $M_{n+1} > 1/(r^{-1} + a_{n+1}\sqrt{1 - 4/(rR)} - a_{n+1}^2R^{-1})$, which generalizes a previous result of the author.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 11 J 04, 11 A 55.

1. Introduction

Let ξ be an irrational number with simple continued fraction expansion $\xi = [a_0; a_1, \ldots, a_i, \ldots]$, and p_i/q_i be its *i*th convergent. Let $M_i = [a_{i+1}; a_i, \ldots, a_1] + [0; a_{i+2}, a_{i+3}, \ldots]$. In a recent paper [9], the present author proved the following conjugate property of the triplet (M_{n-1}, M_n, M_{n+1}) , which implies the classical results of Borel and Segre [5] on a symmetric and a symmetric Diophantine approximations.

THEOREM 1. Let $r > a_{n+1}$. Then

- (i) $M_n > r$ implies $\min(M_{n-1}, M_{n+1}) < 4r/(r^2 a_{n+1}^2);$
- (ii) $M_n < r$ implies $\max(M_{n-1}, M_{n+1}) > 4r/(r^2 a_{n+1}^2)$;

^{© 1991} Australian Mathematical Society 0263-6115/91 \$A2.00 + 0.00

Diophantine Approximation by Continued Fractions

(iii) $M_n = r$ implies $\min(M_{n-1}, M_{n+1}) < 4r/(r^2 - a_{n+1}^2) < \max(M_{n-1}, M_{n+1}).$

The essence of Theorem 1 is using the magnitude of M_n to estimate the magnitudes of M_{n-1} and M_{n+1} . It is very natural to pose two related questions: how to use M_{n-1} , M_{n+1} to estimate M_n and how to use M_{n-1} , M_n to estimate M_{n+1} ? Apparently these questions are more complicated because there are two parameters involved.

In this paper we solve these two questions and show that Theorem 1 is a corollary of our results.

2. Preliminaries

Since

$$M_i = [a_{i+1}; a_i, \ldots, a_1] + [0; a_{i+2}, a_{i+3}, \ldots],$$

letting $P = [a_{n+2}; a_{n+3}, ...]$ and $Q = [a_n; a_{n-1}, ..., a_1]$, we have

(1)
$$M_{n-1} = Q + \frac{1}{a_{n+1} + P^{-1}},$$

(2)
$$M_n = a_{n+1} + P^{-1} + Q^{-1},$$

and

(3)
$$M_{n+1} = P + \frac{1}{a_{n+1} + Q^{-1}}.$$

It is well known [2, 3, 4] that

(4)
$$\xi - \frac{p_i}{q_i} = \frac{(-1)^i}{M_i q_i^2}.$$

3. Main results

THEOREM 2. Let ξ be an irrational number such that

$$\boldsymbol{\xi} = [\boldsymbol{a}_0; \boldsymbol{a}_1, \ldots, \boldsymbol{a}_i, \ldots].$$

If r, R are two real numbers such that r > 1, R > 1 and rR > 4, then $M_{n-1} < r$ and $M_n < R$ imply

(5)
$$M_{n+1} > \frac{1}{\frac{1}{r} + a_{n+1}\sqrt{1 - \frac{4}{Rr} - \frac{a_{n+1}^2}{R}}}$$

Jingcheng Tong

PROOF. Since $M_{n-1} < r$, by (1) we have $Q^{-1} > 1/(r - 1/(a_{n+1} + P^{-1}))$. By (2) we have

$$\begin{split} R > a_{n+1} + P^{-1} + \frac{1}{r - \frac{1}{a_{n+1} + P^{-1}}} &= \frac{r(a_{n+1} + P^{-1})^2}{r(a_{n+1} + P^{-1}) - 1}, \\ r(a_{n+1} + P^{-1})^2 - Rr(a_{n+1} + P^{-1}) + R < 0, \\ a_{n+1} + P^{-1} < \frac{1}{2} \left(R + \sqrt{R^2 - \frac{4R}{r}} \right), \end{split}$$

and

(6)
$$P > 2/\left(R + \sqrt{R^2 - \frac{4R}{r}} - 2a_{n+1}\right).$$

From $M_n < R$ and (2) we have

(7)
$$a_{n+1} + Q^{-1} < R - P^{-1}$$

By (3), we then have

(8)
$$M_{n+1} > P + \frac{1}{R - P^{-1}}.$$

By (7), we have $RP > P(a_{n+1} + P^{-1} + Q^{-1}) > a_{n+1}P + 1 > 2$.

This implies that the right-hand side of (8) is an increasing function of P. By (6) and (8) we then have

$$M_{n+1} > 1/\left(\frac{1}{r} + a_{n+1}\sqrt{1 - \frac{4}{Rr}} - \frac{a_{n+1}^2}{R}\right)$$
.

REMARK 1. In Theorem 2, if we reverse the directions of the inequality signs in the proof, we have a conjugate theorem.

THEOREM 2'. Let ξ , r, R be given as in Theorem 2. Then $M_{n-1} > r$ and $M_n > R$ imply

$$M_{n+1} < 1/\left(\frac{1}{r} + a_{n+1}\sqrt{1 - \frac{4}{Rr}} - \frac{a_{n+1}^2}{R}\right)$$

REMARK 2. The conditions $M_{n-1} < r$ and $M_n < R$ in Theorem 2 can be changed to be $M_{n-1} \leq r$ and $M_n \leq R$ but $M_{n-1} = r$ and $M_n = R$ do not hold simultaneously. A similar result is true for Theorem 2'.

REMARK 3. If we interchange the roles of M_{n+1} and M_{n-1} in the proof of Theorem 2, and use equation (3) instead of equation (1), the conclusion of the theorem becomes $M_n < R$ and $M_{n+1} < r$ implying

$$M_{n-1} > 1/\left(\frac{1}{r} + a_{n+1}\sqrt{1 - \frac{4}{Rr}} - \frac{a_{n+1}^2}{R}\right)$$

As in Remark 2, the inequalities $M_n < R$ and $M_{n+1} < r$ may be replaced by $M_n \le R$ and $M_{n+1} \le r$, provided that $M_n = R$ and $M_{n+1} = r$ do not hold simultaneously.

COROLLARY 1. Let r, r' be two real numbers such that r > 1, r' > 1. Then $M_{n-1} < r$ and $M_{n+1} < r'$ imply

(9)
$$M_n > \frac{\frac{1}{r} + \frac{1}{r'} + \sqrt{a_{n+1}^2 + \frac{4}{rr'}}}{1 - a_{n+1}^{-2} \left(\frac{1}{r} - \frac{1}{r'}\right)^2}.$$

PROOF. Let H be the right-hand side of inequality (9). It is easy to check the following equality.

(10)
$$\left(a_{n+1}^{-2}\left(\frac{1}{r}-\frac{1}{r'}\right)^2-1\right)H^2+2\left(\frac{1}{r}+\frac{1}{r'}\right)H+a_{n+1}^2=0.$$

We consider two possible cases.

CASE 1. $r \leq r'$. Rewrite (10) as follows:

(11)
$$\left(a_{n+1}^{-1}\left(\frac{1}{r}-\frac{1}{r'}\right)H+a_{n+1}\right)^2=H^2-\frac{4H}{r'}.$$

Since r > 1, r' > 1, we have $0 < 1 - a_{n+1}^{-2} (1/r - 1/r')^2 \le 1$. From $r \le r'$ we have

$$r'\left(\frac{1}{r}+\frac{1}{r'}+\sqrt{a_{n+1}^2+\frac{4}{rr'}}\right) > \frac{r'}{r}+1+\sqrt{\frac{4r'}{r}} \ge 4.$$

Hence Hr' > 4 and (11) becomes

$$a_{n+1}^{-1}\left(\frac{1}{r} - \frac{1}{r'}\right)H + a_{n+1} = H\sqrt{1 - \frac{4}{Hr'}},$$

$$r = 1/\left(\frac{1}{r'} + a_{n+1}\sqrt{1 - \frac{4}{Hr'}} - \frac{a_{n+1}^2}{H}\right).$$

If $M_n \leq H$, by $M_{n+1} < r'$ and Remark 3, we have

$$M_{n-1} > 1/\left(\frac{1}{r'} + a_{n+1}\sqrt{1 - \frac{4}{Hr'}} - \frac{a_{n+1}^2}{H}\right) = r,$$

contradicting the assumption that $M_{n-1} < r$. Hence $M_n > H$.

CASE 2. r > r'. By a similar method we can prove that

$$r' = 1 / \left(\frac{1}{r} + a_{n+1} \sqrt{1 - \frac{4}{Hr}} - \frac{a_{n+1}^2}{H} \right) .$$

By Theorem 2, $M_n \le H$ and $M_{n-1} < r$ imply $M_{n+1} > r'$, contradicting the assumption that $M_{n+1} < r'$. Hence $M_n > H$.

Now we discuss a special case of Corollary 1. By (1) and (3), if $M_{n-1} = M_{n+1}$ we have $(P-Q)(a_{n+1}PQ+P+Q) = 0$. Hence P = Q. But P is an infinite continued fraction, and hence irrational, while Q is finite and hence rational so that $P \neq Q$. Therefore $M_{n-1} = r$ and $M_{n+1} = r$ cannot hold simultaneously. Corollary 1 may be varied in the same way as Theorem 1, as described in Remarks 1, 2 and 3. By these variations and setting r = r', we obtain the following result.

COROLLARY 2. Let r > 1 be a real number. Then (i) $M_{n-1} \le r$ and $M_{n+1} \le r$ imply $M_n > \frac{2}{r} + \sqrt{a_{n+1}^2 + \frac{4}{r^2}};$ (ii) $M_{n-1} \ge r$ and $M_{n+1} \ge r$ imply $M_n < \frac{2}{r} + \sqrt{a_{n+1}^2 + \frac{4}{r^2}}.$

REMARK 4. Theorem 1 is a simple corollary to Corollary 2 because $\min(M_{n-1}, M_{n+1}) \ge 4r/(r^2 - a_{n+1}^2)$ implies, by (ii), that $M_n < r$ and $\max(M_{n-1}, M_{n+1}) \le 4r/(r^2 - a_{n+1}^2)$ implies, by (i), that $M_n > r$. The contrapositives of these two statements imply the three parts of Theorem 1.

We give another application of Corollary 2.

In [7], the present author proved that if τ is a real number such that $1 \le \tau < 2 + \sqrt{5}$, then among any three consecutive convergents p_i/q_i (i = n-1, n, n+1) of an irrational number ξ , at least one satisfies the following inequality:

(12)
$$\frac{-1}{\sqrt{a_{n+1}^2 + 4\tau}} q_i^2 < \xi - \frac{p_i}{q_i} < \frac{\tau}{\sqrt{a_{n+1}^2 + 4\tau}} q_i^2$$

We show that the restriction $\tau < 2 + \sqrt{5}$ may be dropped.

THEOREM 3. Let $\tau \ge 1$ be a real number. Then among three consecutive convergents p_i/q_i (i = n - 1, n, n + 1) of an irrational number ξ , at least one satisfies inequality (12).

PROOF. By (4) we need only prove that either there is an odd index *i* among n-1, n, n+1 such that $M_i > \sqrt{a_{n+1}^2 + 4\tau}$, or there is an even index *i* such that $M_i > \sqrt{a_{n+1}^2 + 4\tau}/\tau$.

We discuss two possible cases.

CASE 1. *n* is odd. Then n-1 and n+1 are even. If one of M_{n-1} , $M_{n+1} > \sqrt{a_{n+1}^2 + 4\tau/\tau}$, then (12) holds by (4). If both M_{n-1} , $M_{n+1} \le \sqrt{a_{n+1}^2 + 4\tau/\tau}$, we may assume $\sqrt{a_{n+1}^2 + 4\tau/\tau} > 1$ because $\sqrt{a_{n+1}^2 + 4\tau/\tau} \le 1$ implies

$$M_{n+1} > a_{n+2} \ge 1 \ge \sqrt{a_{n+1}^2 + 4\tau}/\tau.$$

Letting

$$r=\sqrt{a_{n+1}^2+4\tau}/\tau$$

in Corollary 2(i), we have $M_n > \sqrt{a_{n+1}^2 + 4\tau}$. CASE 2. *n* is even. Then n-1 and n+1 are odd. If one of M_{n-1} , $M_{n+1} > \sqrt{a_{n+1}^2 + 4\tau}$, then (12) holds by (4). If both M_{n-1} , $M_{n+1} \le \sqrt{a_{n+1}^2 + 4\tau}$, then letting $r = \sqrt{a_{n+1}^2 + 4\tau} > 1$ in Corollary 2(i), we have

(13)
$$M_n > \frac{2 + \sqrt{a_{n+1}^4 + 4a_{n+1}^2 \tau + 4}}{\sqrt{a_{n+1}^2 + 4\tau}}$$

Since $\tau \ge 1$, the right-hand side of (13) is greater than $\sqrt{a_{n+1}^2 + 4\tau}/\tau$. The proof is complete.

REMARK 5. An alternative proof of Theorem 3 can be found in [1].

Acknowledgement

The author thanks the referee sincerely for his valuable suggestions to improve this paper.

References

- [1] C. Kraaikamp, 'On the approximation by continued fractions', preprint.
- [2] W. J. LeVeque, Topics in Number Theory I, II, (Addison-Wesley Publ. Co., 1956).
- [3] O. Perron, Die Lehre von den Kettenbruchen I, II, 3rd ed., (Teubner, Leipzig, 1954).
- [4] W. M. Schmidt, Diophantine Approximation, (Lecture Notes in Math. 785, Springer-Verlag, 1980).
- [5] B. Segre, 'Lattice points in infinite domains and asymmetric Diophantine approximation', Duke J. Math. 12 (1945), 337-365.
- [6] J. Tong, 'The conjugate property of the Borel theorem on Diophantine approximation', Math. Z. 184 (1983), 151-153.
- [7] ____, 'A theorem on approximation of irrational numbers by simple continued fractions', Proc. Edinburgh Math. Soc. 31 (1988), 197-204.
- [8] _____, 'Segre's theorem on asymmetric Diophantine approximation', J. Number Theory 28 (1988), 116-118.
- [9] ____, 'The conjugate property for Diophantine approximation of continued fractions', Proc. Amer. Math. Soc. 105 (1989), 535-539.

Department of Mathematics and Statistics University of North Florida Jacksonville, Florida 32216 U.S.A.