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OPERATORS ON L2(I) 0 Cr 

R. R. D. KEMP* 

Several authors have considered eigenvalue problems for differential 
equations where the eigenvalue parameter also appears in the boundary 
conditions. Such problems do not appear to arise from any spectral 
problem associated with a linear operator on a Hilbert space. However, it 
is possible to reset such problems in this context. This has been done for 
certain second order cases by Walter [4] using a special measure on the 
interval in question, and by Fulton [1, 2] using the type of space indicated 
in the title of this article. 

It is our purpose here to consider a general class of operators on 
L2(I) © Cr, which are based on a differential expression T of order n on / . 
We shall first investigate adjoints, boundary conditions, and self-
adjoin tness for such operators. We shall then show that all eigenvalue 
problems of the form ry = Ay, with boundary conditions which involve X 
in a linear fashion, can be reset in the context of such operators. 

1. A general class of operators on L2(I) © Cr. Let T be a differential 
expression of order n 

(1.1) ry = 2 p/»-J> 
7=0 

where/? e Cn~J(I) and/?0 ¥= 0 on / . We shall denote by D^r) the domain 
of the maximal operator in L2(I) associated with T, and by D0(r) the 
domain of the minimal operator. If Vx, . . . , VN is a basis for the boundary 
functionals associated with T on / then 

£»0(T) = {y G Z>,(T) \Vj(y) = 0 , 1 ^ S N}. 

The operators we wish to consider on L2(I) © Cr will be based on r 
for the L2 to L2 part, but since they naturally involve mappings from 
L2 to © Cr and vice versa it seems natural to allow a finite dimensional 
perturbation of r (see [3] ). 

Let x(x) denote a m X \(fh X 1) column vector with linearly 
independent entries in L2(I). Let A, B, C, D, E, F be matrices with 
complex entries of dimensions r X r, m X r, m X m, m X TV, r X m, 
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r X N respectively. Denote by V(y) the N X I column with entries V(y). 
Let 

(1.2) •LI 
ry + XT{C(y\x) + DV(y) + Bz}' 

Az + E(y\x) + F F ( 7 ) 

This expression L defines a mapping from DX(T) © C r into L2(7) © C r, and 
thus can be used to define operators on the latter as soon as it is endowed 
with an inner product. 

If for a positive definite r X r matrix P we impose the inner product 

( (y\, z\) I (y2>
 zi) )P = (y\\yi) + z*Pz\> 

L2(I) © Cr becomes a Hilbert space JtfL. However, we may find N such that 
N*PN = I and U:J%->JFp by U(y, z) = (y, Nz) is unitary. Thus we may 
always replace P by / , and shall assume that this has been done. 

2. Adjoints and boundary conditions. Let F b . . . , VN denote a basis for 
the boundary functionals associated with T* on / . Thus the Green's 
formula for T is 

(2.1) (ry\u) - (y\r*u) = V(u)*Q{T)V(y), 

where Q(T) is N X TV non-singular. Note that the Green's formula for T* 
will involve Q(T*) = —Q(r*). 

We denote by TX(L) the operator on L2(I) © Cr with domain 
£>,(T) © C\ defined by (1.2). Let 

(2.2) W(u, w) = V(u) - Q(r*)~lD*(u\x) - Ô(r*)_1F*w. 

THEOREM 2.1 The operator TX(L) has an adjoint with domain 

D$ = { (u9 w) e D^T*) © Cr\W(u, w) = 0}, 

and is defined by 

xT{ 
A*w + B*(u\x) J' 

Proof. Suppose 

(«, w) e Z>(r,(L)*) = D$ and 

r,(L)*(«, w) = (Û, w). 

Then for all y e D ^ T ) and z <= r 

0 = (r,(L)( j , z) | («, w) ) - ( (y, z) | (û, Û) ) 

(2.4) = (ry + X
T{C(y\x) + DV(y) + Bz) \u) 

+ w*{Az + E(y\x) + FV(y) } - (y\Û) -

In particular (2.4) holds if z = 0 and y e -C>o(T)> s o 

(2.3) r,(L)*[wJ = [ 
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0 = (ry\u) - (y\ù - xT{C*(u\X) + E*w} ) 

for all such j , and it follows that u e DX(T*) and 

ù = r*w + xr{C*("lx) + £**>}• 

On the other hand (2.4) must hold for y = 0, so 

0 = (u\x)*Bz + w*Az — w*z. 

Since z is arbitrary 

w — A*w + B*(u\x), 

and the proof of (2.3) is complete. 
Now using (2.3) in (2.4) we obtain the further condition that 

0 = {V(u)*Q(r) + (u\X)*D + w*F}V(y) 

= W(u, w)*Q(T)V(y). 

Since V(y) is arbitrary and Q(T) non-singular this implies that (w, w) e 
Dx(r*) © Cr is in /)$ if and only if W(u, w) = 0, which completes the 
proof. 

Definition 2.1. An expression L of the form (1.2) is adjoint to L if and 
only if the restriction of TX{L) to D% coincides with TX(L)*. 

It is clear that we do not have a unique adjoint expression here. Since L 
can differ from (2.3) only in terms which vanish when (w, w) e DQ there 
may be additions to x- However, these can be regarded as in L already, 
with appropriate zero entries in C and E. 

THEOREM 2.2. The expression L defined by 

r\u] = [T*w +f{S(uP + 5VSu) + Sw 

( } L J L Aw + E(u\X) + FV(u) 
is adjoint to L if and only if 

C = C* + DQ(T)*~~XD* 

B = E* + DQ(T)*~XF* 

(2.6) _ _ 
A = A* + F Ô ( T ) * *F* 

£ = B* + FQ(T)*- lD*. 

Proof If (w, w ) G Z)# then W(u, w) = 0 so 

V(u) = -Q{T)*-XD *(u\x) - Ô ( T ) * ~ 
]F*w 

and 

4:1 
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[T*W + xT{ (C ~ DQ(T)*~1D*)(U\X) + (B - D e ( T ) * _ 1 F ) w } l 
= L (A - FQ(T)*~]F*)W + (É - FQ(T)*~1D*)(U\X) J' 

Since the entries in x are linearly independent (u\x) is arbitrary in Cm, so 
this coincides with (2.3) if and only if (2.6) holds. 

It is immediate from Theorem 2.2 that if L is adjoint to L then L 
is adjoint to L. The adjoint to TX(L) is a restriction of TX(L) and is a 
minimal operator associated with L. Since L is not unique, neither is 
this minimal operator. We thus modify our notation. Let 

W(y9 z) = V(y) - Q(r)-]D*(y\x) ~ Q(T)-]F*Z, 

D0(L; L) = { (y9 z) e DX(L) \W{y9 z) = 0}, 

and T0(L; L) = T}(L)* is the restriction of TX(L) to Z>0(L; L). Also, we 
now denote D% by D0(L; L) and ^ ( L ) * by T0(L; L). At this point it is a 
straightforward calculation to verify the Green's formula for TX(L) and 
T}(L): 

(2.8) (7i(LX>\ z) | (ii, H0 ) - ( (y, z) \TX(T)(U, W) ) 

= W(u, w)*Q(T)W(y, z). 

It is clear that DX(L) is dense in L2(I) © Cr, and the denseness of 
D0(L; L) follows, for example, from Lemma 2.2 of [3]. Thus T0(L; L) has 
an adjoint, which will be the closure of TX(L). We shall show that TX(L) is 
closed by showing that the domain of T0(L; L)* is contained in DX(L). 

THEOREM 2.3 For adjoint expressions L and L the associated maximal 
operators are closed and 

T0(L; L)* = r ,(L), T0(L; L)* = TX{L). 

Proof. It is sufficient to prove the first equality, and as noted above, we 
need only show that if (w, w) G D(T0(L; L)*) then (w, w) e DX(L). 

If T0(L; L)*(w, w) = (w, w) then for all (y, z) G D0(L; L) 

(2.9) 0 = (T0(L; L\yy z) \ (u, w) ) - ( (y, z) \ (Û, w) ). 

In particular this must hold if y vanishes outside a compact subinterval 
[a, b] of I and W(y, z) = 0. If [a, b] is contained in the interior of / then 
V(y) = 0, and W(y, z) = 0 is 

(>#,) + ijz = o 

where 

* = -W)~XDTx 
and | is the / h column of x = FQ(T)*~\ Let /; = y{n) so that for 
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fx (x - s)k~l 

I ~ 77T h(s)ds x e [a, b] /»~k\x) = {J a (k ~ 1)! 

0 x £ [û,fe] 

and 

ry = 
n fx ( \fc — 1 

!/>0(*)A(x) + 2 Pk(*)Ja„ ' , *(*)<& x G [fl, 6] 
» * = i J a (k - 1)! 

Now continuity requirements force /z to be orthogonal on [a, b] to all 
polynomials of degree < n, and since (y, z) must be orthogonal to (\pj, £y) 
1 ^ j ^ N it is easy to see that (h, z) is orthogonal to 

(i!jHTV>*.*) >*>** 
as well as to (q, 0) for every polynomial q of degree < n. 

If we now rewrite (2.9) we have 

fb ( fb " ^ _ x ) / c - l 

^ fl V ^ x k = \ (A ~~ U-

/

b (s — x\n-\ - fb 

7 - 7 x*WC& / a u(t)x(t)dt x (n — 1)! J a 

>g> P (* - * ) " " ' — , fb (̂  - ^ ) , M ^ , \ , 
*i?* / x(s)ds — / u(s)ds tax 

J x (n - 1)! -J * (« - 1)! J 

4- w* 

+ [w*A * — w*]z. 

Thus we have a vector in L2( [a, b]) © Cr which is orthogonal to all 
(/z, z). Thus there exists a polynomial g of degree < n, and constants 
ci9 1 ^j^N such that 

ylw - vv = 2 cy|y-
iV 

1 

and 

v 2 Pk(s)~ 777 " C O * 
* h— 1 I AT — 1 1! * - i ( * - 1)! 
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+ J*-<ï=T)ï x{s)dsB"" J*ô^ôr u(s)ds 

^ fb (s — X)n~l 

= q(x) + 2J C: — yp-(s)ds a.e. on [a, b]. 
i J J x (u — 1)! 

By altering u on a null set this becomes an equality everywhere on [a, b]. 
Thus u is absolutely continuous on [a, b], and on differentiation we obtain 
an a.e. equality between the derivative of an absolutely continuous 
function and an absolutely continuous function. This new equality must 
thus hold everywhere on [a, b]. Repeating this argument we find that t/ ^ 
is absolutely continuous on [a, b] 0 ^ k ^ n— 1, and 

N 

T*W 4- XT[C<Mx)[a,b] + Sw] - ù = 2 c/fy a.e. on [a, ft]. 

Recalling the definition of the i//- we see that 

TV 

T*W 4- xT[C(u\x) + 2?w] - u = 2 <Wv a.e. on [a, 6], 
l 

If [a, b] is not contained in the interior of / the same argument works if y is 
restricted by 

y(k\a) = y{k\b) = 0 0 ^ fc ^ w - 1. 

Now if 0 b . . . , <£M form an orthonormal basis for the subspace of 
L2(I) spanned by \px, . . . , \pN it follows that for any compact subinterval 
J = [a, b] of I there are constants ck such that 

M 

T*U + x ^ O I x ) + Sw] - ù = 2 cJ
k<j>k a.e. on / . 

l 

If A(J) - det[ ( ^ l ^ ) / ] it is clear that as J expands to /, A(/) -> 1. Thus 
there is a compact interval J0 such that J D J0 implies A(/) > Vi so 
<>!,. . . , 0 M are linearly independent on such / . Thus if Jx and J2 both 
include J0 

M M 

2 <#** = 2 4 % a.e. on /0 
l l 

and by linear independence cJ
k
l = cJ

k
2 1 ^ h ^ M. Thus the ĉ  do not 

depend on / . It follows that T*W e L2(7) and so (w, w) e / ^ ( T ) . 

The operators we wish to consider are closed densely defined operators 
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T with r0(L; L) c T c ^ ( L ) . This does, in fact, include all closed, 
densely defined operators T c TX(L) with 

Z)(r) = { (y9 z) G ^ ( L ) | i / F ( j ) + J(y\x) + Az = 0} 

where H, J, K are k X N, k X in, k X r respectively. In order that D(T) be 
dense the rank of H must be greater than or equal to that of [JK] for 
otherwise the conditions include ones of the form 

((y,z) |(4>,£)) = 0 where (<*>,£) # 0. 

Let us drop extraneous conditions and let rank H = k. There is then a 
N X k right inverse H to H and if we set 

D = -J*HQ(T)* and JF - -K*HQ(T)* 

we determine L adjoint to L, and thus W(y, z) so that 

HW(y, z) = HV(y) + J(y\x) + ^ -

In a precisely analogous fashion to the classical differential operator 
case we have 

THEOREM 2.4. If T is a closed operator with 

T0(L; L)cT^ TX{L) 

then there is an integer k (0 = k = N) and a k X N matrix M of rank k 
such that 

D(T) = { (y, z) G DX(L) \MW(y, z) = 0}. 

Furthermore if M is a (N — K) X N matrix of rank N — k such that 

(2.10) MQ(T)~1M* = 0, 

then 

D(T*) = { (w, w) G D^L) \MW(u, w) = 0}, 

and T* is the restriction of TX(L) to D(T*). 

Proof Since T is a closed, densely defined operator T = 71** and 
O , z) G D(T) if and only if (y, z) G DX(L) and 

W(u, w)*Q(r)W(y, z) = 0 for all (u, w) G D(T*). 

Now W is a linear map of JD(T*) into C^ and we can choose (w, w-) 
1 ^ j ^ k such that W^w,, w ) form a basis for the range. It follows 
immediately that if M is the matrix with rows W(u., W,)*Ô(T) then M has 
rank k and £>(T) is described as above. 

Now let U be a JV X TV unitary matrix with first k rows (denoted by Ux ) 
spanning the row space of M. Let U2 denote the (N — k) X N matrix 
consisting of the last N — k rows of U. Then (yy z) G D(T) if and only if 
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UxW(y, z) = 0 and U2W(y, z) = c is arbitrary. Thus (w, w) e Z)(r*) 
if and only if 

W(u, W)*Q(T)U%C = 0 

for all c, or equivalently 

U2Q(T)*W(U, W) = 0. 

Now suppose M is (N — k) X TV of rank N — k, and (2.10) holds. Then 
the rows of MQ(r)*~l are orthogonal to the vows of M, and thus to the 
rows of Lfj. It follows that the rows of MQ(T)*~ are all in the row space 
of £/2, so (noting the identity of ranks) there is a non-singular K such 
that 

MQ(T)*~X = KU2 and MW(u, w) = KU2Q(T)*W(U, W), 

which completes the proof. 

Due to the fact that the boundary conditions involved in the definitions 
of D(T) and D(T*) can be used to change the form of L and L on those 
domains, it is clear that T and T* can also be defined using different pairs 
of adjoint expressions. We shall now exhibit, with respect to a given T and 
r * arising from L and L*, a canonical pair L0 and L0, also an adjoint pair, 
which can be used to define T and T*, but being more simply related to 
each other than L and L. We denote the matrices involved in L0 and L0 by 
using zero subscripts. 

THEOREM 2.5. Let T and T* be adjoint operators arising from the adjoint 
pair L and L with 

D(T) = { (y, z) e DX(L) \MW(y9 z) = 0} 

D(T*) = { (u, w) G DX(L) \MW(u, w) = 0} 

where MQ(r)~ M* = 0 and rank M + rank M = N. Then there exists an 
adjoint pair L0 and L0 such that 

L0(y, z) = L(y, z) for all (y, z) G D(T), 

L0(u, w) = L(u, w) for all (u, w) G D(T*), 

D(T) = { (y, z) G DX(LQ) \MW0(y, z) = 0} 

D(T*) = { (u, w) G Z),(L0) \MW0(u, w) = 0}. 

Furthermore the coefficient matrices of L0 and L 0 satisfy 

(2.11) C0 = Q , B0 = Et ÂQ = At E0 = fi0* 

(2.12) D0Q(ry[Dt D0Q(rylFt FQQ(T)-1F$, F0Q(T)~]D$ all = 0. 
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Proof. We define L0 and L0 by 

where A, S2, A, H are m X À:, r X k, m X (TV - &), r X (N - k) 
respectively and /: = rank M. It is clear that L0 and L will coincide on 
D(T) and L 0 and L will coincide on D(T*). 

The verification that L0 and L 0 form an adjoint pair is straightforward. 
For illustration we will demonstrate the validity of the first condition of 
(2.6) 

C 0 - C$ - B0Q(r)*-lD$ 

= (C + AMQ(r)*~lD*) - (C - AMQ(ry}D*)* 

- (D 4- 7LM)Q(T)*~X(D 4- AM)* 

= c - c* - 5g(T)*_1i)*, 

since 

Mg(T)*_ 1M* = ( M Ô ( T ) _ 1 M * ) * - 0. 

Thus if the first condition of (2.6) is satisfied for L and L it is also satisfied 
for L0 and L0 . The others are similar. 

It follows from (2.6) that (2.11) will follow from (2.12) so we must show 
that it is possible to choose A, Q, A, Q so that (2.12) is satisfied. Recall 
from the proof of Theorem 2.4 the unitary matrix U with first k rows Ux 

and last N — k rows U2 such that M = RUX and M = RU2Q(T)* where 
i? and # are non-singular. If we set 

S = - £ / f # - 1 and £ = -Q(T)*~1U£R~1 

and then A - DS, 0 = FS, A = DS, Û = F S we find that the conditions 
of (2.12) amount to the unitarity of U. In particular 

D0Q(T)-XF$ = (Z) + A M ) Ô ( T ) _ 1 ( F + É2M)* 

= D[I + SAfjeCT)"1!/ + M*S*]F* 

= D[I - UTU^Qirr^I ~ Q(T)U$U2Q(T)-1]F* 

= D[I - U*XUX][I - U$U2]Q(T)-1F* 

= D[I - UfUx - U$U2]Q(rylF* 

since Ux U* = 0. The fact that I = U*UX + U%U2 is just the unitary nature 
of U. All the others follow in the same way. 

Finally 
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MW0(y, z) = MW(y, z) - MQ(j) *Af *[A*(.y|x) + Œ*z] 

= MW(y, z). 

Similarly MW0(u, w) = MW(u, w) and the proof is complete. 

3. Self-adjointness. In order that an expression L have the possibility of 
generating self-adjoint operators it is necessary that TX(L)* be a restric
tion of TX(L). This implies that for (w, w) <= D(TX(L)*) we also have 
(u, w) e / ^ (L) and 

rw + x r[^(w|x) + DV(u) + fiw] 

= T*W + xT[C*(u\x) + £**>]. 

This means that for all u such that there exists a w with (w, w) e 
D(TX(L)*)9 (T — T*)W belongs to the joint span of the entries in x and x-
Since D(TX(L)*) is dense in L2(I) ® Cr it follows that the manifold of such 
w's is infinite dimensional. Thus T* = r. 

With T* = T it is natural to use V = F (so that (?(T)* = — 6 ( T ) ) and 
replace x and x with a column which spans both of them. We shall denote 
this possibly enlarged column by x-

THEOREM 3.1. If T* = T, V = V, and x = X', TX{L)* is a restriction of 
TX(L) if and only if L is adjoint to itself i.e., 

c = C* - DQ(T)~1D* 

B = E* - DQ(rylF* 
(3.1) 1 

A = A* - FQ(T)~1F* 

E = B* - FQ(T)~1D*. 

Proof. Here 

L y] \ry + x r{C(^ |X) + DV(y) + Bz}} 
A L Az + E(y\x) + i^(.y) J 

and by Theorem 2.1 

D (7i(L)*) = { (w, w) e Z),^) 0 C r |F(W) 

- Q(T)-'D*{U\X) ~ Q(rylF*w = 0} 

with 

T(T\*\U\ = \TU + XT{C*(u\x) + £ * " } ] 
lV ; LwJ L ,4*w + £*(w|x) J' 

and this is the restriction of TX(L) to D(TX(L)*) if and only if (3.1) 
holds. 

From Theorem 2.4 and 3.1 we have 
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COROLLARY 3.1. IfL is self-adjoint then a closed operator T, T0(L; L) c 
Ta TX(L) is self-adjoint if and only if N = 2/ w eve« ««J 

Z)(T) = { (y, z) e D,(L) |M^(j>, *) = 0} 

where M is an I X 2/ matrix of rank I such that 

MQ(T)~1M* = 0. 

Here we also obtain a canonical form analogous to that obtained in 
Theorem 2.5. 

THEOREM 3.2. If L is a self adjoint expression and T is a self-adjoint 
restriction of TX(L) with 

D{T) = { {y, z) e DX{L) \MW{y, z) = 0}, 

then there is a self-adjoint expression L0 such that L(y, z) = L0(y, z)for all 
(y, z) G D(T), and 

D(T) = { (y9 z) G DX(L0) \MW0(y, z) = 0}. 

Furthermore, the coefficient matrices of L0 satisfy 

(3.2) C0 = C0*, B0 = Et ^ 0 = ^0* 

and 

(3.3) D0Q(rylDS, D0Q(T)-1F5, F0Q(T)-1F$ all = 0. 

Proof We define L0 by 

It is clear that L0 and L coincide on D(T), and the self-adjointness of L0 

follows from that of L and the fact that MQ(T)~XM* = 0. 
We must show that A and fi can be chosen so that (3.3) is satisfied, for 

this combined with (3.1) for L0 will imply (3.2). 
Since Q(T) is non-singular and Q(r)* = —Q(j) it follows that iQ(r) 

is hermitian and there exists a non-singular matrix X such that 
Qx = X*(Iq(r))X is diagonal with diagonal entries + 1 or — 1. 
Thus Q\ = Q* = Q]f1. Let Mx = MX and choose R non-singular so that 
RMX has orthonormal rows. Thus RMXQX has orthonormal rows. Now 

0 = MQ(T)~1M* = -iMxQxMl 

so 

RMX(RMXQXY = R(MxQxMf>R* = 0, 

and the matrix U with first / rows RMX and last / rows RMXQX is 
unitary. 
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Since 

/ = u*u = MfR*RMx + QxMfR*RMxQx, 

if we set A = -DXMfR*R* and 12 = -FXMfR*R, the conditions (3.3) 
are all equivalent to the unitarity of U and the proof is complete. 

4. Application to problems for T with X in boundary conditions. Here we 
consider problems ry = Xy with boundary conditions which involve X in a 
linear fashion. Thus let H and G be r X N matrices, K a (p — r) X N 
matrix and consider 

TU — Xu = 0 

(4.1) HV(y) = XGV(y) 

KV(y) = 0. 

Since we always drop extraneous conditions we shall assume that the 
p X N matrix 

has rank p except possibly for isolated values of X. 
If we define the expression L(y, z) = (ry, HV(y)), and define an 

operator T on L2(I) © Cr using L with 

D(T) = { (y, z) e DX{L) \GV(y) = z, ^ F ( y ) = 0}, 

we obtain an operator for which the spectral problem gives (4.1). However 
this does not fit with the discussion of Section 2 unless the matrix M 
involved, M = [GTKT]T, is of rank p. Thus it is necessary to replace the 
boundary conditions of (4.1) by an equivalent set for which this condition 
is fulfilled. 

PROPOSITION 4.1. The boundary conditions of (4.1) are equivalent to 
a set of conditions in which J(X) has rank p for all X and M also has rank 
p (M = [GTKT]T\ 

Proof. If J(X0) has rank < p there is a non-zero row vector c = [cxc2] 
(cx the first r entries of c) such that CJ(XQ) = 0. Note that if cx = 0 then 
c2K = 0 and J(X) will have rank < p for all X. We now delete from 
H — XG a row corresponding to a non-zero entry in cx and adjoin the 
row cxG to K. This is possible since 

0 = cx[HV(y) - XGV(y) ] + c2KV(y) 

= (X0 - X)cxGV(yX 

so the modified set of conditions is equivalent to the original set. 
Repeating this argument we arrive at a stage where the new J(X) has rank 
p for all X. 
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Now if the row spaces of G and K have a non-zero intersection (or if G 
has rank < r) there are row vectors c and J such that cG = dAT and c ^ 0. 
Then the row c// can be adjoined to K and a row of H — XG 
corresponding to a non-zero component of c deleted. This follows from 

0 = c[HV(y) - XGV(y) ] + XdKV(y) = cHV(y). 

Repeating if necessary the proof is complete. 

THEOREM 4.1. The eigenvalue problem (4.1) where J(X) and M have rank 
p for all X arises from the spectral problem for the operator T on L2(I) ® Cr 

defined by the expression 

L{y,z) = (ry,HV(y)) 

with 

D{T) = { (y, z) e Z ) , ( L ) G F ( J O = z, KV(y) = 0). 

Furthermore, the adjoint operator T* arises from an eigenvalue problem 
of the form (4.1) if and only if[HGK] has rank p + r (so, in particular 
r < N - p). 

Proof. The spectral problem for 7 is ry = Xy, HV(y) = Xz, GV(y) = z, 
and KV(y) = 0; which are precisely (4.1) with z as an auxiliary set of 
variables. 

From the remarks following Theorem 2.3, since M = {GTKT]T is of 
rank p we may choose F (thus determining L and W(y, z) ) so that 
MW(y, z) = 0 has first r conditions GV(y) = z and last/? — r condi
tions KV( y) = 0. This requires 

GQ(T)~XF* = I and KQ(rylF* = 0. 

Note that in L, 

A = FQ(T)*~1H*. 

The operator T* is determined by L and conditions MW(u, w) = 0 where 
M is (N — p) X JV of rank N — p and 

M £ ( T ) _ 1 M * = 0. 

Modifying the form of L and L using the boundary conditions we see that 
it is impossible to obtain an expression L j defining T* which has A j = 0 
(necessary in order that T* give rise to a problem of the form (4.1) ) unless 
it is possible initially to choose F so that 

HQ(rylF* = 0. 

Now if [HTGTKT]T has rank < p + r the row spaces of H and G must 
have a non-zero intersection and there are non-zero row vectors c and d 
such that cH = JG. It follows that 
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CHQ(T)-[F* = dGQ(r) XF* = d ¥= 0, 

so it is impossible to have HQ(T)~ F* = 0. On the other hand 
if Jx = [HTGTKT]T has rank p 4- r (so TV ^ P 4- r) then there is an 
TV X (/? 4- r) right inverse 7^ to Jx and we may choose 

F = [070]/f C(T)* , 

where the partitioned matrix consists of r X r, r X r, and r X (p 
blocks. Then 

r) 

GQ(r) 
l]7* I,HQ(T)~1F* 0, and KQ(T)~1F* = 0. 

Let us now examine the question of when two eigenvalue problems of 
the form (4.1) arise from adjoint operators. Consider 

(A) ry - Xy = 0 

HV(y) - XGV(y) = 0 

KV(y) = 0 

(B) r*w - Xu = 0 

HV(u) - XGV(u) = 0 

KV(u) = 0 

where H, H, G, G are r X N, Kis (p - r) X iV, and K is (N - p - r) X 
N. Let the (/> 4 r) X N matrix [HTGTKTf be of rank /* + r, and the 
(N - p 4 r) X TV matrix [HTGTKTf be of rank N - p + r. 

THEOREM 4.2. 77ie eigenvalue problems (A) #« J (B) are adjoint to each 
other in the sense that they arise from operators T and T* respectively if and 
only if 

(4.2) Q(r)~l[H*G*K*] 
0 - 5 0 
S 0 0 
0 0 0 

where the r X r matrix S is non-singular. Furthermore problem (A) always 
has an adjoint of the form (B). 

Proof. Let 

L(y, z) = (ry, FV(y) ) and L(u, w) = (r*u, FV(u) ) 

be adjoint expressions. Then 

W(y,z) = V(y) - Q(r)-'F*z 

W{u, w) = V{u) - Q(T*y]F*w. 

In order that T defined by L with 
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D(T) = { (y, z) e DX(L) \MW(y9 z) = 0} 

give rise to (A) we must choose F, F, and M in such a way that 
MW(y, z) = 0 and FF(.y) = Xz are equivalent to 

# F ( J O - XGV(y) = 0 and #F(.y) = 0 

on elimination of z. Thus 

0 = XMV(y) - MQ(r)~xF*FV{y) 

must include 

HV(y) - XGV(y) = 0 and KV(y) = 0. 

Since M is of rank/?, MQ(T)~1F*F must be of lower rank, in fact of rank 
r. We may thus arrange that the last/? — r rows of MQ{T)~XF*F vanish 
and the last/? — r conditions reduce to the last/? — r entries of XMV(y) 
must vanish. Thus choose M = [GTKT]T and require that 

(4.3) [ £ ] e ( T ) - , F * F = ["]. 

Similarly for (B) we can choose M = [GTKT]T and require that 

(4-4) [ ~ ] e ( T V ' F * i ? = [ ^ ] . 

Now in order to have adjointness we must have: 

(4.5) FQ(T)~XF* = 0 

and 

(4.6) MQ(T)~]M* = 0. 

Now since H is of rank r and from (4.3) 

GQ(T)~1F*F = H 

it follows that GQ(T)~XF* and F must both be of rank r. Thus the former 
is invertible and F = CH where C is non-singular. Similarly F = CH 
where C is non-singular. Thus FQ(T)~1F* = 0 implies HQ(r)~]H* = 0, 
and substitution in (4.3) and (4.4) yield 

\^]Q(T)-]H*C*CH = [^], 

and 

The rank argument yields 
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GQ(T)~1H*C*C = I 

GQ(T*)~1H*C*C = L 

Since C and C are non-singular so is 

i f j - 1 : ^ - l l S = GQ(T) lH* = (C*C)~l = [(C*C) T 

= (GQ(T*)~]H*)* = -HQ(T)~1G*. 

Note that (4.6) implies the lower right 2 X 2 block of (4.2) and we have 
verified the (1, 1) entry and the statements about the (1, 2) and (2, 1) 
entries of (4.2) so it remains to verify the vanishing of KQ(r)~lH* and 
HQ(ryxK*. Now 

0 = KQ(T)~1F*F = KQ(T)~]H*C*CH, 

and C*CH, being of rank r, has a right inverse, thus 

KQ(T)~1H* = 0. 

Similarly 

HQ(T)~XK* = -[KQ(T*)~1H*]* = 0 

and the proof of (4.2) is complete. 

Thus if (4.2) is satisfied and we choose r X r non-singular matrices 
C and C such that C*C 
M = [GTKT]T, and M 

and define F = CH, F CH, 
[GTKTf we determine expressions L and L 

adjoint to each other, and boundary conditions determining adjoint 
operators T and T* which yield problems (A) and (B) respectively. 

Now if we are given only (A), the matrix [HTGTKT]T is of rank/? + r and 
we may adjoin JV 
non-singular. Let 

- r rows / so that R = [HTGTKTJT]T 
is 

0 Ir 0 0 
Ir 0 0 0 
0 0 0 /, 

be (AT 

lN-p-r 

p + r) X N and define 

Then 

H 
G 
K 

H 
G 
K 

= PR" Q(T)* 

Q(T)~1[H*G*K*] = 

H 0 -Ir 0 
G R ip* _ Ir 0 0 
K 0 0 0 

so H, G, K determine a problem (B) which is adjoint to (A). 
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An important remark must be inserted here. Even if T* = r and (4.2) 
holds with H = / / , G = G, and ^ = i^, it does not follow that problem 
(A) (which now coincides with problem (B) ) is really self-adjoint. The 
difficulty is that we may not be able to make the operator T on L2(I) ® Cr 

self-adjoint. 

COROLLARY 4.1. / / T * = T and (4.2) holds for H = H, G = G, K = K; 
with S = GQ(T)~ H* positive definite, then (A) is self adjoint in the sense 
that it arises from a self-adjoint operator T on L2(I) © Cr. 

Proof. In order to have L self-adjoint it is necessary and sufficient to 
have F = F, which requires C = C, so 

GQ(T)~XH*C*C = I. 

Since C*C is positive definite its inverse S = GQ(r)~ H* must also have 
that property. We can then choose C to be the positive square root of 
S~~\ 

5. Regular problems. Let T be regular on I = [a, b] of order n. Thus 
N = 2n and we may use 

V(y) = ly(a), /(a),... ,/"-l\a), y(b), y'(b),. . . ,/"-'\b)]. 

Let L be an expression (1.2), L be an adjoint expression and T an operator 
generated by L with 

D(T) = { (y, z) e DX(L) \MW(y, z) = 0} 

for some n X 2n matrix M of rank n. 
Let ul9. . ., un form the basis for solutions of ry — Xy = 0 on [a, b] 

determined by the initial conditions 

«f "')(«) = 8jk. 
We shall denote by Jt(f) the solution to ry — Xy = /which satisfies zero 
initial conditions at a. Note that 

^(f) = / * *(*, s X)f(s)ds, 

where the kernel K can be easily expressed in terms of ux, u2, . . . , w„. 
We now solve (T — Xl)(y, z) = (f w). Let P denote the m X 1 column 

vector 

C(y\x) + DV(y) + 2?z 

and note that a solution to 

ry + X
TP - ^ =f 

must be of the form 
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n 

(5.1) y = 2 cfl, - JTCx)^ + Jf(/) . 
l 

To determine y and z we must determine « c-'s, r z 's , and m i^-'s. In 
the process of doing this we include 2n Vj(y)9s and m (j>lx/)'s a s 

auxiliary unknowns. We obtain the necessary 3n + m 4- m + r equations 
by using 

(/I — X/)z -f E(y\x) + PK(}>) = lv (r equations), 

the boundary conditions (« equations), the definition of P (m equations), 
applying V to (5.1) (2n equations), and taking the inner product of (5.1) 
with x {m equations). This yields the system 

(5.2) V(y) - V(uT)C + V(JT(xf)P = V{JtT{f)) 

(y\x) - (u\xT)Tc + Wx) \XT)TP = W ) Ix) 
- DV(y) - C(y\x) + P - Bz = 0 

FV(y) + E(y\x) + (A - XI)z = w 

MV(y) - MQ(T)~lD*(y\x) ~ MQ(T)~XF*Z = 0. 

The various matrices denoted compactly in this system are: 

V(uT) In X n withy, k entry Vj(uk) 

V(JT(X)T) In X m withy, k entry V^ixu ) 

(w|x r) r m X n withy, /c entry (%lxy) 

W x ) I x Y » X m withy, k entry (JT(X^) lxy). 

While it is easy enough to eliminate V(y) and (y\x) t o obtain a system 
for c, P, and z, the coefficients become rather complex. It is clear from the 
properties of solutions to ry — Ay = 0 that the determinant of coefficients 
in (5.2), denoted by A(X), is entire. If A(X) = 0 then w i t h / = w = 0 there 
will be a non-trivial solution for c, P, and z and thus X is an eigenvalue of 
the operator T. Since A(X) is entire, the eigenvalues of T will form an at 
most countable set with oo as the only possible limit point, unless A(X) is 
identically 0. 

If A(X) ¥* 0 it is clear that c, P, and z can be found so that the solution 
for y and z will be of the form 

y(t, X) = W, X)Tw + J a G(t, s9 X)f(s)ds 
( 5 3 ) z(X) = 0(X)w + (/|Ç(-, X) ). 

This formula for (7" — XI)~l makes it clear that this operator is 
completely continuous, so that if T is self-adjoint we may obtain an 
expansion in eigenvectors precisely as is done for self-adjoint regular 
differential operators. 
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6. Examples, (i) Let 

y iy' + {(j>U) - - ^ ( ^ ( 0 ) + i>(i)) - iz 

z + / ( j | l ) - - ^ ( ^ ( 0 ) + />(!)) 

define an operator 71 on L2( [0, 1] ) © C with 

z>(D = {(y, z) G D,(L) 

\y{Q) - iy{\) - (1 - / ) ( j | l ) + (1 + i)z = 0}. 

This operator is self-adjoint with eigenvalues fi = 0 and X„ = IT/2 + 2mr, 
« = 0, ± 1 , ±2,... and eigenvectors 

respectively, where 

0- = e 
-i\j 1 + i 

w„ = — 

The eigenvectors form an orthonormal basis for L2{ [0, 1] ). 
I n ( T - X/)" 1 ? = ^ a n d 

W, X) 

i^Xe-^'-^-2sm-] 

~7\ X . XI 
X cos - — sin -

L 2 21 

«A(0 

0(X) = 

— oo A„ 

-X cos - + (A + 2) sin - ^ _ 

2 = 2 ^^ 
- o o A„ À ,r x xi 

' cos - — sin -
L 2 21 

G(t, s, X) = 12 sin -
2 

cos - — sin -
2 2J 

- \e -i\(t-Vi) \é iHs-Vi) + J 

= _ i + 2 oB(/)Q„(^)> 

À — oo X„ — A 

where 
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(l - 0. 2-i\(t-Vi) . JKs 

^-^-\2e~iXt • e'*s-'V 0 

0 ë s â t ë 1 

(ii) «y — Xy = 0 with 

qy(0) + Z>y(l) = X(cy(0) + dy{\)). 

Here / / = [ab], G = [cd] and in order to have X really in the boundary 
condition we must have ad — be ¥= 0. 

r. 

Thus for self-adjointness |Z?| = |Û|, |d| = |c|, i(ac — bd) = — z(/zc — Z>d) > 
0. Thus we may take a = \, b = eia, d = ce7^ with a, /? real. Now 

_ _ /(«-fl . (a - p) 
— i(ac — bd) = — Ice 2 sin and 

i(ac — bd) = —Ice • ^ . (« - fi) 
sin 

Thus 

sin ^ 0 and c = — ke l signlsm I 

where k > 0 for self-adjointness. If k < 0 the eigenvalue problem (ii) is its 
own adjoint, but does not arise from a self-adjoint operator. 

(iii) ry = — {p/J + qy on / = [0, 1] where/? is non-negative and C1 

and <? is continuous. Here 

Q(r) 

(a) Separated boundary conditions 

auy(0) + fll2/(0) = X[buy(0) 4- ft12/(0) ] 

«2^(1) + «22/(1) = X[ft21^(l) + 6 2 2 / ( l ) ] . 

For self-adjointness the conditions of Corollary 4.1 require that all a's and 
b's be real and 

0 /HO) 0 0 
p(0) 0 0 0 
0 0 0 -/>(!) 
0 0 />(!) 0 
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aubn ~ aubu > 0, a2lb22 ~ a22b2l < 0. 

These conditions correspond to those of Fulton [1, 2] and Walter [4]. Note 
that if either or both signs are wrong we have an apparently self-adjoint 
problem which does not arise from a self-adjoint operator. 

(b) Non-separated boundary conditions. We give two examples of 
non-separated conditions which arise from self-adjoint operators: 

(i) y(0) = \[ap(0)y'(0) - bp(\)y'(\)] 

y(Y) = \[bp(0)/(0) - cp(\)y'(\) ]. 

If r is positive definite this arises from a self-adjoint operator. 

(ii) y(0) -p(0)y'(0) + y(\) = \[y(0) + .y(l) ~ PiWV) Ï 

p(0)/(0) 4- p(l)/(l) = 0 

arises from a self-adjoint operator. 
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