EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR A NEUMANN PROBLEM INVOLVING VARIABLE EXPONENT GROWTH CONDITIONS

MARIA-MAGDALENA BOUREANU

Department of Mathematics, University of Craiova, 200585 Craiova, Romania e-mail: mmboureanu@yahoo.com

and MIHAI MIHĂILESCU*

Department of Mathematics, Central European University, 1051 Budapest, Hungary e-mail: mmihailes@yahoo.com

(Received 8 October 2007; revised 17 April 2008; accepted 1 May 2008)

Abstract. In this paper we study a non-linear elliptic equation involving p(x)growth conditions and satisfying a Neumann boundary condition on a bounded
domain. For that equation we establish the existence of two solutions using as a
main tool an abstract linking argument due to Brézis and Nirenberg.

2000 Mathematics Subject Classification. 35D05, 35J60, 35J70, 58E05, 76A02.

1. Introduction. The goal of this paper is to establish the existence of solutions for the Neumann problem

$$\begin{cases} -\operatorname{div}(|\nabla u|^{p(x)-2}\nabla u) = f(u), & \text{for } x \in \Omega, \\ \frac{\partial u}{\partial v} = 0, & \text{for } x \in \partial\Omega, \end{cases}$$
(1)

where $\Omega \subset \mathbb{R}^N (N \ge 3)$ is a bounded domain with smooth boundary, $p \in C(\overline{\Omega})$ with 1 < p(x) < N for all $x \in \overline{\Omega}$ and $f : \mathbb{R} \to \mathbb{R}$ is a continuous function given by the formula

$$f(t) = \begin{cases} |t|^{a-1}t, & \text{for } |t| \le \left(\frac{1}{2}\right)^{\frac{1}{a-1}}, \\ t - |t|^{a-1}t, & \text{for } |t| > \left(\frac{1}{2}\right)^{\frac{1}{a-1}}, \end{cases}$$

where *a* is a positive real number.

The study of problems involving variable exponent growth conditions has a strong motivation due to the fact that they can model various phenomena which arise in the study of elastic mechanics (see [27]), electrorheological fluids (see [1], [5], [14], [26]) or image restoration (see [4]). In what concern some recent studies on equations possessing variable exponent growth conditions we refer to [10, 11, 16–23] and the references therein.

https://doi.org/10.1017/S0017089508004424 Published online by Cambridge University Press

^{*}Corresponding author.

566 MARIA-MAGDALENA BOUREANU AND MIHAI MIHÅILESCU

This paper is motivated by the studies in [17] and [18]. In [17] the following problem is studied

$$\begin{cases} -\operatorname{div}(|\nabla u|^{p(x)-2}\nabla u) = A|u|^{a-2}u + B|u|^{b-2}u, & \text{for } x \in \Omega, \\ u = 0, & \text{for } x \in \partial\Omega, \end{cases}$$
(2)

where $p \in C(\overline{\Omega})$ verifies p(x) > 1 for any $x \in \overline{\Omega}$ and $1 < a < \inf_{\Omega} p < \sup_{\Omega} p < b < \min\{N, \frac{N \cdot \inf_{\Omega} p}{N - \inf_{\Omega} p}\}$ and A, B > 0. Using Ekeland's variational principle and the mountain-pass lemma, the author shows that for A and B small enough problem (2) has two distinct solutions.

In [18] the following Neumann problem is analysed

$$\begin{cases} -\operatorname{div}(|\nabla u|^{p(x)-2}\nabla u) + |u|^{p(x)-2}u = \lambda(|u|^{q(x)-2}u - u), & \text{for } x \in \Omega, \\ \frac{\partial u}{\partial \nu} = 0, & \text{for } x \in \partial\Omega, \end{cases}$$
(3)

where $p \in C(\overline{\Omega})$ verifies p(x) > N for any $x \in \overline{\Omega}$, $\lambda > 0$ is a constant and $q \in C(\overline{\Omega})$ satisfies $2 < q(x) < \inf_{y \in \overline{\Omega}} p(y)$ for any $x \in \overline{\Omega}$. For problem (3) the author proves the existence of three solutions by using a result due to Ricceri [25].

In the present paper we continue the studies begun in [17] and [18]. Under suitable conditions we will prove the existence of two solutions for problem (1) by applying an abstract linking argument due to Brézis and Nirenberg [3]. More exactly, our key argument will be the following theorem.

THEOREM 1 (Brézis–Nirenberg [3]). Assume X is a Banach space with the direct sum decomposition

$$X = X_1 \oplus X_2,$$

with dim $X_2 < \infty$. Assume $J \in C^1(X, \mathbb{R})$ with J(0) = 0 satisfies (PS) condition (i.e., any sequence $\{u_n\} \subset X$ satisfying $\{J(u_n)\}$ is a bounded sequence in \mathbb{R} and $\langle J'(u_n), v \rangle \leq \epsilon_n \|v\|_X$ for any $v \in X$, with $\epsilon_n \to 0$, has a convergent subsequence). Moreover, for a positive constant R > 0, we have

 $J(u) \ge 0, \text{ for all } u \in X_1 \text{ with } \|u\|_X \le R,$ $J(u) \le 0, \text{ for all } u \in X_2 \text{ with } \|u\|_X \le R.$

Also assume that J is bounded below and $\inf_X J < 0$. Then J has at least two non-trivial critical points.

2. Preliminary results. In this section we recall some background facts concerning the generalized Lebesgue–Sobolev spaces $L^{p(x)}(\Omega)$ and $W^{1,p(x)}(\Omega)$, where Ω is a bounded domain in \mathbb{R}^N . We refer the reader to the book by Musielak [24] and the papers by Edmunds [6–8], Kovacik and Rákosník [15] and Fan [9, 12].

Throughout this paper we assume that p(x) > 1, $p(x) \in C(\overline{\Omega})$.

Set

$$C_+(\overline{\Omega}) = \{h; h \in C(\overline{\Omega}), h(x) > 1 \text{ for all } x \in \overline{\Omega}\}.$$

For any $h \in C_+(\overline{\Omega})$ we define

$$h^+ = \sup_{x \in \Omega} h(x)$$
 and $h^- = \inf_{x \in \Omega} h(x)$.

For any $p(x) \in C_+(\overline{\Omega})$, we define the variable exponent Lebesgue space

 $L^{p(x)}(\Omega) = \{u; u \text{ is a measurable real-valued function such that } \int_{\Omega} |u(x)|^{p(x)} dx < \infty\}.$

We define a norm, th so-called Luxemburg norm, on this space by the formula

$$|u|_{p(x)} = \inf\left\{\mu > 0; \ \int_{\Omega} \left|\frac{u(x)}{\mu}\right|^{p(x)} dx \le 1\right\}.$$

We remember that the variable exponent Lebesgue spaces are separable and reflexive Banach spaces. If $0 < |\Omega| < \infty$ and p_1 , p_2 are variable exponents such that $p_1(x) \le p_2(x)$ almost everywhere in Ω then there exists the continuous embedding $L^{p_2(x)}(\Omega) \hookrightarrow L^{p_1(x)}(\Omega)$.

We denote by $L^{p'(x)}(\Omega)$ the conjugate space of $L^{p(x)}(\Omega)$, where 1/p(x) + 1/p'(x) = 1. For any $u \in L^{p(x)}(\Omega)$ and $v \in L^{p'(x)}(\Omega)$ the Hölder-type inequality

$$\left| \int_{\Omega} uv \, dx \right| \le \left(\frac{1}{p^{-}} + \frac{1}{p^{'^{-}}} \right) |u|_{p(x)} |v|_{p'(x)} \tag{4}$$

holds true.

An important role in manipulating the generalized Lebesgue–Sobolev spaces is played by the *modular* of the $L^{p(x)}(\Omega)$ space, which is the mapping $\rho_{p(x)} : L^{p(x)}(\Omega) \to \mathbb{R}$ defined by

$$\rho_{p(x)}(u) = \int_{\Omega} |u|^{p(x)} dx$$

If (u_n) , $u \in L^{p(x)}(\Omega)$ then the following relations hold true

$$|u|_{p(x)} > 1 \implies |u|_{p(x)}^{p^{-}} \le \rho_{p(x)}(u) \le |u|_{p(x)}^{p^{+}},$$
 (5)

$$|u|_{p(x)} < 1 \implies |u|_{p(x)}^{p^+} \le \rho_{p(x)}(u) \le |u|_{p(x)}^{p^-},$$
 (6)

$$|u_n - u|_{p(x)} \to 0 \quad \Leftrightarrow \quad \rho_{p(x)}(u_n - u) \to 0.$$
 (7)

Next, we define

$$W^{1,p(x)}(\Omega) = \left\{ u \in L^{p(x)}(\Omega); \ \frac{\partial u}{\partial x_i} \in L^{p(x)}(\Omega), \text{ for any } x \in \{1, \dots, N\} \right\}.$$

On $W^{1,p(x)}(\Omega)$ we consider the norm

$$||u|| = |u|_{p(x)} + ||\nabla u||_{p(x)}$$

We remember that $(W^{1,p(x)}(\Omega), \|\cdot\|)$ is a reflexive and separable Banach space.

Set

$$\Lambda(u) = \int_{\Omega} (|\nabla u|^{p(x)} + |u|^{p(x)}) \, dx$$

Then

$$||u||^{p^{-}} \le \Lambda(u) \le ||u||^{p^{+}}, \quad \forall \ u \in W^{1,p(x)}(\Omega) \text{ with } ||u|| > 1,$$
(8)

$$\|u\|^{p^+} \le \Lambda(u) \le \|u\|^{p^-}, \quad \forall \ u \in W^{1,p(x)}(\Omega) \text{ with } \|u\| < 1,$$
(9)

$$\|u_n - u\| \to 0 \iff \Lambda(u_n - u) \to 0.$$
⁽¹⁰⁾

Finally, we note that if $s(x) \in C(\overline{\Omega})$ and $1 < s(x) < p^{\star}(x)$ for all $x \in \overline{\Omega}$ then the embedding $W^{1,p(x)}(\Omega) \hookrightarrow L^{s(x)}(\Omega)$ is compact and continuous, where $p^{\star}(x) = \frac{Np(x)}{N-p(x)}$ if p(x) < N or $p^{\star}(x) = +\infty$ if $p(x) \ge N$.

3. The main result. In this paper we study the existence and multiplicity of weak solutions for problem (1). We say that $u \in W^{1,p(x)}(\Omega)$ is a *weak solution* of (1) if

$$\int_{\Omega} |\nabla u|^{p(x)-2} \nabla u \nabla v \, dx - \int_{\Omega} f(u) v \, dx = 0,$$

for any $v \in W^{1,p(x)}(\Omega)$.

The main result of this paper is given by the next theorem.

THEOREM 2. Assume the following inequality holds true

$$p^{+} < a < \frac{Np^{-}}{N - p^{-}},\tag{11}$$

where a is given in the definition of f. Then problem (1) has at least two non-trivial weak solutions.

We point out that in the context of Orlicz–Sobolev spaces a similar problem as (1) was studied recently by Halidias and Le [13]. Our result is more general than the result in [13] since the variable exponent Sobolev spaces are a special type of Musielak–Orlicz spaces which generalize the Orlicz–Sobolev spaces.

4. Proof of Theorem 2. Let $J: W^{1,p(x)}(\Omega) \to \mathbb{R}$ be the energy functional corresponding to problem (1)

$$J(u) = \int_{\Omega} \frac{1}{p(x)} |\nabla u|^{p(x)} dx - \int_{\Omega} F(u) dx,$$

where F is a primitive of f, i.e.,

$$F(t) = \int_0^t f(r) \, dr = \begin{cases} \frac{1}{a+1} |t|^{a+1}, & \text{for } |t| \le \left(\frac{1}{2}\right)^{\frac{1}{a-1}} \\ \frac{t^2}{2} - \frac{1}{a+1} |t|^{a+1} - D, & \text{for } |t| > \left(\frac{1}{2}\right)^{\frac{1}{a-1}}, \end{cases}$$

with *D* a positive constant such that *F* is continuous on \mathbb{R} .

568

Standard arguments imply that $J \in C^1(W^{1,p(x)}(\Omega), \mathbb{R})$ with

$$\langle J'(u), v \rangle = \int_{\Omega} |\nabla u|^{p(x)-2} \nabla u \nabla v \, dx - \int_{\Omega} f(u) v \, dx,$$

for any $u, v \in W^{1,p(x)}(\Omega)$. Thus, we observe that the critical points of functional J correspond to the weak solutions of equation (1).

On the other hand, we point out that since $p^- \leq p(x)$ for all $x \in \overline{\Omega}$, it follows that $W^{1,p(x)}(\Omega) \subset W^{1,p^-}(\Omega)$.

Set

$$V' = \left\{ u \in W^{1,p^-}(\Omega); \int_{\Omega} u(x) \, dx = 0 \right\}$$

and

$$V = V' \cap W^{1,p(x)}(\Omega).$$

Clearly, V' is the topological complement of \mathbb{R} with respect to $W^{1,p^-}(\Omega)$ and V is the topological complement of \mathbb{R} with respect to a subspace X of $W^{1,p(x)}(\Omega)$, i.e.,

$$W^{1,p^{-}}(\Omega) = V' \oplus \mathbb{R},$$
$$X = V \oplus \mathbb{R} \subset W^{1,p(x)}(\Omega).$$

The above considerations show that it is enough to find weak solutions for equation (1) in the subspace X of $W^{1,p(x)}(\Omega)$.

REMARK 1. We remark that using the Poincaré–Wirtinger inequality (see [2], p. 194) we have

$$|u|_{p^-} \le C \cdot \|\nabla u\|_{p^-}, \quad \forall \ u \in V', \tag{12}$$

where C > 0 is constant.

Our idea is to prove Theorem 2 by applying Theorem 1. With that end in view, we prove some auxiliary results which show that functional J satisfies the conditions from the hypotheses of Theorem 1.

LEMMA 1. Assume that condition (11) is fulfilled. Then J is bounded from below and $\inf_X J < 0$.

Proof. Clearly, by the definition of function F we observe that $F(t) \le 0$ for t large enough. Since F is continuous on \mathbb{R} we deduce that there exists a constant k > 0 such that

$$\int_{\Omega} F(u) \, dx \le k, \quad \forall \, u \in X.$$

Thus, we find

$$J(u) \ge \int_{\Omega} \frac{1}{p(x)} |\nabla u|^{p(x)} dx - k \ge -k > -\infty, \quad \forall \ u \in X,$$

or J is bounded from below.

On the other hand, there exists a constant $t_1 > 0$ small enough such that $\int_{\Omega} F(t_1) dt = \int_{\Omega} \frac{1}{a+1} t_1^{a+1} dt = \frac{1}{a+1} t_1^{a+1} |\Omega| > 0$. Using that fact we get

$$J(t_1) < 0.$$

Since any constant function is an element of *X* we infer that $\inf_X J < 0$. The proof of Lemma 1 is complete.

LEMMA 2. Assume that condition (11) is fulfilled. Then J satisfies the (PS) condition.

Proof. Let $\{u_n\} \subseteq X$ be such that

$$|J(u_n)| \le M \tag{13}$$

and

$$|\langle J'(u_n), \varphi \rangle| \le \epsilon_n \|\varphi\|, \quad \forall \varphi \in X, \tag{14}$$

where $\epsilon_n \to 0$.

We claim that $\{u_n\}$ is bounded in X. Arguing by contradiction and passing to a subsequence, we assume that $||u_n|| \to \infty$ and $||u_n|| > 1$.

Set

$$v_n(x) := \frac{u_n(x)}{\|u_n\|}.$$

Since $\{v_n\}$ is bounded in X and X is a reflexive Banach space we can assume that, passing eventually to a subsequence, v_n converges weakly to v in X. Next, since X is compactly embedded in $L^{p(x)}(\Omega)$ we infer that v_n converges strongly to v in $L^{p(x)}(\Omega)$.

By (13) we have

$$\int_{\Omega} \frac{1}{p(x)} |\nabla u_n|^{p(x)} dx - \int_{\Omega} F(u_n) dx \le M.$$
(15)

On the other hand, it is obvious that

$$t^{p(x)} \ge \rho^{p^-} \cdot \left(\frac{t}{\rho}\right)^{p(x)}, \quad \forall t > 0, \ \rho > 1, \ x \in \Omega.$$

Choosing $t = |\nabla u_n(x)|$ and $\rho = ||u_n|| > 1$ we get,

$$\left|\frac{|\nabla u_n(x)|}{\|u_n\|}\right|^{p(x)} \cdot \|u_n\|^{p^-} \le |\nabla u_n(x)|^{p(x)}, \quad \forall x \in \Omega.$$
(16)

Using (16) we deduce that

$$\int_{\Omega} \frac{1}{p(x)} |\nabla v_n(x)|^{p(x)} \, dx \le \frac{1}{\|u_n\|^{p^-}} \int_{\Omega} \frac{1}{p(x)} |\nabla u_n(x)|^{p(x)} \, dx. \tag{17}$$

Dividing (15) by $||u_n||^{p^-} > 1$ and using (17) we obtain

$$\int_{\Omega} \frac{1}{p(x)} |\nabla v_n(x)|^{p(x)} dx \le \int_{\Omega} \frac{F(u_n)}{\|u_n\|^{p^-}} dx + \frac{M}{\|u_n\|^{p^-}}, \quad \forall \ n.$$
(18)

Next, we prove that

$$\int_{\Omega} \frac{F(u_n)}{\|u_n\|^{p^-}} dx \to 0.$$
(19)

The definition of F implies that there exists a constant $M_1 > 0$ such that

$$\frac{F(t)}{|t|^{p^-}} \le 0, \quad \forall |t| > M_1, \text{ a.e. } x \in \Omega.$$

Hence

$$\int_{\Omega} \frac{F(u_n)}{\|u_n\|^{p^-}} dx \le \int_{\{x \in \Omega; |u_n(x)| \le M_1\}} \frac{F(u_n)}{\|u_n\|^{p^-}} dx + \int_{\{x \in \Omega; |u_n(x)| \ge M_1\}} \frac{F(u_n)}{\|u_n(x)\|^{p^-}} \frac{|u_n(x)|^{p^-}}{\|u_n\|^{p^-}} dx$$
$$\le \int_{\{x \in \Omega; |u_n(x)| \le M_1\}} \frac{F(u_n)}{\|u_n\|^{p^-}} dx.$$

The above results assure that (19) holds true.

By (18) and (19) we have

$$\int_{\Omega} \frac{1}{p(x)} |\nabla v_n|^{p(x)} dx \to 0,$$
(20)

which implies $\|\nabla v_n\|_{p(x)} \to 0$. Since $\|_{p(x)}$ is (weakly) inferior semi-continuous, we find

 $0 \le \|\nabla v\|_{p(x)} \le \liminf_{n \to \infty} \|\nabla v_n\|_{p(x)} = 0.$

Therefore $\nabla v(x) = 0$ a.e. $x \in \Omega$ which yields $v \in \mathbb{R}$. It follows that

$$\lim_{n \to \infty} \|\nabla (v_n - v)\|_{p(x)} = \lim_{n \to \infty} \|\nabla v_n\|_{p(x)} = 0.$$
 (21)

Relation (21) and the fact that v_n converges strongly to v in $L^{p(x)}(\Omega)$ imply that actually v_n converges strongly to v in X. That fact combined with $||v_n|| = 1$ shows that $v \neq 0$ and consequently $|u_n(x)| \to \infty$ as $n \to \infty$ a.e. $x \in \Omega$.

Next, choosing $\varphi = u_n$ in (14) and taking into account that relation (13) holds true, we find

$$\int_{\Omega} [p^{-}F(u_{n}(x)) - f(u_{n}(x)) \cdot u_{n}(x)] dx + \int_{\Omega} |\nabla u_{n}|^{p(x)} dx - \int_{\Omega} \frac{p^{-}}{p(x)} |\nabla u_{n}|^{p(x)} dx$$
$$\leq M \cdot p^{-} + \epsilon_{n} \cdot ||u_{n}||.$$

Dividing the above inequality by $||u_n||$ we obtain

$$\int_{\Omega} \frac{p^{-}F(u_n(x)) - f(u_n(x)) \cdot u_n(x)}{|u_n(x)|} \cdot |v_n(x)| \, dx \le \frac{Mp^{-} + \varepsilon_n ||u_n||}{||u_n||}.$$

Passing to the limit in the above relation we have

$$\liminf_{n\to\infty}\int_{\Omega}\frac{p^{-}F(u_{n}(x))-f(u_{n}(x))\cdot u_{n}(x)}{|u_{n}(x)|}\cdot |v_{n}(x)|\,dx\leq 0.$$

572 MARIA-MAGDALENA BOUREANU AND MIHAI MIHĂILESCU

The above inequality and the Fatou Lemma imply

$$\int_{\Omega} \liminf_{n \to \infty} \frac{p^{-}F(u_{n}(x)) - f(u_{n}(x)) \cdot u_{n}(x)}{|u_{n}(x)|} \cdot |v_{n}(x)| \, dx \le 0.$$
(22)

On the other hand, analysing the definition of functions f and F we deduce

$$\lim_{|t| \to \infty} \frac{p^{-}F(t) - f(t)t}{|t|} = \lim_{|t| \to \infty} \frac{\frac{p^{-}}{2}t^{2} - \frac{p^{-}}{a+1}|t|^{a+1} - p^{-}D - t^{2} + |t|^{a+1}}{|t|} = \infty,$$

since by relation (11) we have $a + 1 > p^-$. It follows that there exists a constant $\alpha > 0$ such that

$$\lim_{|t|\to\infty}\frac{p^-F(t)-f(t)t}{|t|}\geq\alpha>0.$$

The above inequality, relation (22) and the fact that $|u_n(x)| \to \infty$ as $n \to \infty$ a.e. $x \in \Omega$ imply

$$\int_{\Omega} |v(x)| \, dx \le 0$$

But $v \neq 0$ is a constant function as we have already noticed and that is a contradiction with the above relation. In this way we have proved that $\{u_n\}$ is bounded in X. Then there exists $u \in X$ such that u_n converges weakly to u in X. Since X is compactly embedded in any $L^{s(x)}(\Omega)$ for any $s \in (\overline{\Omega})$ with $1 < s(x) < (Np^-)/(N - p^-)$ for all $x \in \overline{\Omega}$ we deduce that u_n converges strongly to u in $L^{s(x)}(\Omega)$. That information and the form of f and Fimply that

$$\lim_{n\to\infty}\int_{\Omega}f(u_n)(u_n-u)\,dx=0.$$

In order to prove that u_n converges strongly to u in X we choose $\varphi = u_n - u$ in (14). This yields

$$\left| \int_{\Omega} (|\nabla u_n|^{p(x)-2} \nabla u_n - |\nabla u|^{p(x)-2} \nabla u) (\nabla u_n - \nabla u) \, dx \right|$$

$$\leq \int_{\Omega} |f(u_n)| |u_n - u| \, dx + \varepsilon ||u_n - u|| + \left| \int_{\Omega} |\nabla u|^{p(x)-2} \nabla u (\nabla u_n - \nabla u) \, dx \right|.$$

All the above pieces of information show that

$$\left|\int_{\Omega} \left(|\nabla u_n|^{p(x)-2} \nabla u_n - |\nabla u|^{p(x)-2} \nabla u \right) (\nabla u_n - \nabla u) \, dx \right| \to 0.$$

The last relation, the fact that u_n converges strongly to u in $L^{p(x)}(\Omega)$ and Theorem 3.1 in [10] imply that u_n converges strongly to u in X, i.e., J satisfies the (PS) condition. The proof of the lemma is complete.

LEMMA 3. Assume that condition (11) is fulfilled. Then there exists $\rho > 0$ such that for all $u \in V$ with $||u|| \le \rho$ we have $J(u) \ge 0$ and $J(e) \le 0$ for all $e \in \mathbb{R}$ with $|e| \le \rho$.

EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR A NEUMANN PROBLEM 573

Proof. We choose $u \in V$ with $||u|| = \rho$, where ρ is small enough and will be specified later. The definition of *F* and relation (11) imply that for all $\epsilon > 0$ there exist $\delta > 0$ and $\gamma > 0$ such that

$$F(t) \le \varepsilon |t|^{p^+}, \quad \forall |t| \le \delta, \text{ a.e. } x \in \Omega$$

and

$$F(t) \le \varepsilon |t|^{p^+} + \gamma |t|^{a+1}, \quad \forall |t| \in \mathbb{R}, \text{ a.e. } x \in \Omega.$$
(23)

Since $p^- \le p(x)$ for all $x \in \overline{\Omega}$ we have that $L^{p(x)}(\Omega)$ is continuously embedded in $L^{p^-}(\Omega)$. Thus, there exists $k_0 > 0$ such that

$$|u|_{p^-} \le k_0 |u|_{p(x)}, \quad u \in L^{p(x)}(\Omega)$$

Assuming $||u|| \le 1$ it follows $||\nabla u||_{p(x)} \le 1$. Hence by (6) we deduce that

$$\int_{\Omega} \frac{1}{p(x)} |\nabla u(x)|^{p(x)} dx \ge \frac{1}{p^+} \|\nabla u\|_{p(x)}^{p^+} \ge C \|\nabla u\|_{p^-}^{p^+}.$$
(24)

Inequalities (12) and (24) imply

$$\int_{\Omega} \frac{1}{p(x)} |\nabla u(x)|^{p(x)} dx \ge C ||u||_{W^{1,p^{-}}(\Omega)}^{p^{+}}.$$
(25)

Relations (23) and (11) yield

$$\int_{\Omega} F(u) \, dx \le \epsilon |u|_{p^+}^{p^+} + \gamma_1 |u|_{a+1}^{a+1} \le \epsilon c_1 ||u||_{W^{1,p^-}(\Omega)}^{p^+} + \gamma_2 ||u||_{W^{1,p^-}(\Omega)}^{a+1}, \tag{26}$$

where γ_1 and γ_2 are positive constants.

Choosing ϵ small enough and using relations (25) and (26) we obtain

$$J(u) \ge C \|u\|_{W^{1,p^{-}}(\Omega)}^{p^{+}} - \gamma_{1} \|u\|_{W^{1,p^{-}}(\Omega)}^{a+1}.$$
(27)

Relations (27) and (11) show that there exists $\theta > 0$ such that

$$J(u) \ge 0, \quad \forall \ u \in V \text{ with } \|u\|_{W^{1,p^-}(\Omega)} \le \theta.$$

Since $V \subset X \subset W^{1,p(x)}(\Omega) \subset W^{1,p^-}(\Omega)$, there exists $C_0 > 0$ such that

$$||u||_{W^{1,p^{-}}(\Omega)} \le C_0 ||u||, \quad \forall \ u \in V$$

Taking $\rho > 0$ small enough, $||u|| \le \rho$ implies $||u||_{W^{1,p^-}(\Omega)} \le \theta$, for all $u \in V$ and therefore

$$J(u) \ge 0, \quad \forall u \in V \text{ with } ||u|| \le \rho.$$

Finally, for $t \in \mathbb{R}$ considering the constant function which belongs to X we have $J(t) = -\int_{\Omega} F(t) dx$. But $F(t) \ge 0$ for |t| small enough. It follows that for $t \in \mathbb{R}$ small enough we have $J(t) \le 0$. The proof of the lemma is complete.

PROOF OF THEOREM 2 COMPLETED. By Lemmas 1, 2 and 3 we remark that the hypotheses of Theorem 1 are fulfilled. Thus, we conclude that problem (1) has two non-trivial weak solutions. Theorem 2 is verified. \Box

574 MARIA-MAGDALENA BOUREANU AND MIHAI MIHĂILESCU

ACKNOWLEDGEMENTS. The authors have been supported by Grant CNCSIS PNII-79/2007 'Degenerate and Singular Nonlinear Processes'.

REFERENCES

1. E. Acerbi and G. Mingione, Gradient estimates for the p(x)-Laplacean system, J. Reine Angew. Math. **584** (2005), 117–148.

2. H. Brézis, Analyse fonctionnelle: Théorie, méthodes et applications (Masson, Paris, 1992).

3. H. Brézis and L. Nirenberg, Remarks on finding critical points, *Comm. Pure Appl. Math.* **44** (8–9) (1991), 939–963.

4. Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image processing, *SIAM J. Appl. Math.* **66** (4) (2006), 1383–1406.

5. L. Diening, Theoretical and numerical results for electrorheological fluids, Ph.D. Thesis (University of Frieburg, Germany, 2002).

6. D. E. Edmunds, J. Lang and A. Nekvinda, On *L*^{*p*(*x*)} norms, *Proc. R. Soc. Lond. Ser. A*, **455** (1999), 219–225.

7. D. E. Edmunds and J. Rákosník, Density of smooth functions in $W^{k,p(x)}(\Omega)$, Proc. R. Soc. Lond. Ser. A, **437** (1992), 229–236.

8. D. E. Edmunds and J. Rákosník, Sobolev embedding with variable exponent, *Studia Math.* 143 (2000), 267–293.

9. X. Fan, J. Shen and D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$, J. Math. Anal. Appl. **262** (2001), 749–760.

10. X. L. Fan and Q. H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, *Nonlinear Anal.* 52 (2003), 1843–1852.

11. X. Fan, Q. Zhang and D. Zhao, Eigenvalues of p(x)-Laplacian Dirichlet problem, J. Math. Anal. Appl. 302 (2005), 306–317.

12. X. L. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, J. Math. Anal. Appl. **263** (2001), 424–446.

13. N. Halidias and V. K. Le, Multiple solutions for quasilinear elliptic Neumann problems in Orlicz–Sobolev spaces, *Boundary Value Prob.*, **2005** (3) (2005), 299–306.

14. T. C. Halsey, Electrorheological fluids, Science 258 (1992), 761-766.

15. O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{1,p(x)}$, Czechoslovak Math. J. 41 (1991), 592–618.

16. M. Mihăilescu, Elliptic problems in variable exponent spaces, *Bull. Austral. Math. Soc.* 74 (2006), 197–206.

17. M. Mihăilescu, Existence and multiplicity of solutions for an elliptic equation with p(x)-growth conditions, *Glasgow Math. J.* 48 (2006), 411–418.

18. M. Mihăilescu, Existence and multiplicity of solutions for a Neumann problem involving the p(x)-Laplace operator, *Nonlinear Anal.* **67** (2007), 1419–1425.

19. M. Mihăilescu, P. Pucci and V. Rădulescu, Nonhomogeneous boundary value problems in anisotropic Sobolev spaces, C. R. Acad. Sci. Paris, Ser. I 345 (2007), 561–566.

20. M. Mihăilescu, P. Pucci and V. Rădulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, *J. Math. Anal. Appl.* **340** (2008), 687–698.

21. M. Mihăilescu and V. Rădulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, *Proc. R. Soc. A: Math., Phys. Eng. Sci.* **462** (2006), 2625–2641.

22. M. Mihăilescu and V. Rădulescu, On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, *Proc. Amer. Math. Soc.* **135** (9) (2007), 2929–2937.

23. M. Mihăilescu and V. Rădulescu, Continuous spectrum for a class of nonhomogeneous differential operators, *Manuscripta Mathematica* **125** (2008), 157–167.

24. J. Musielak, *Orlicz spaces and modular spaces*, Lecture Notes in Mathematics, Vol. 1034 (Springer, Berlin, 1983).

25. B. Ricceri, On three critical points theorem, Arch. Math. (Basel) 75 (2000), 220–226.

26. M. Ruzicka, *Electrorheological fluids: Modelingn and mathematical theory* (Springer-Verlag, Berlin, 2002).

27. V. Zhikov, Averaging of functionals in the calculus of variations and elasticity, *Math. USSR Izv.* 29 (1987), 33–66.