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Abstract. In this paper we study a non-linear elliptic equation involving p(x)-
growth conditions and satisfying a Neumann boundary condition on a bounded
domain. For that equation we establish the existence of two solutions using as a
main tool an abstract linking argument due to Brézis and Nirenberg.
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1. Introduction. The goal of this paper is to establish the existence of solutions
for the Neumann problem

{−div(|∇u|p(x)−2∇u) = f (u), for x ∈ �,
∂u
∂ν

= 0, for x ∈ ∂�,
(1)

where � ⊂ �N(N ≥ 3) is a bounded domain with smooth boundary, p ∈ C(�) with
1 < p(x) < N for all x ∈ � and f : � → � is a continuous function given by the formula

f (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|t|a−1t, for |t| ≤
(

1
2

) 1
a−1

,

t − |t|a−1t, for |t| >

(
1
2

) 1
a−1

,

where a is a positive real number.
The study of problems involving variable exponent growth conditions has a strong

motivation due to the fact that they can model various phenomena which arise in
the study of elastic mechanics (see [27]), electrorheological fluids (see [1], [5], [14],
[26]) or image restoration (see [4]). In what concern some recent studies on equations
possessing variable exponent growth conditions we refer to [10, 11, 16–23] and the
references therein.
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This paper is motivated by the studies in [17] and [18]. In [17] the following problem
is studied {

−div(|∇u|p(x)−2∇u) = A|u|a−2u + B|u|b−2u, for x ∈ �,

u = 0, for x ∈ ∂�,
(2)

where p ∈ C(�) verifies p(x) > 1 for any x ∈ � and 1 < a < inf� p < sup� p <

b < min{N,
N·inf� p

N−inf� p } and A, B > 0. Using Ekeland’s variational principle and the
mountain-pass lemma, the author shows that for A and B small enough problem (2)
has two distinct solutions.

In [18] the following Neumann problem is analysed⎧⎨
⎩

−div(|∇u|p(x)−2∇u) + |u|p(x)−2u = λ(|u|q(x)−2u − u), for x ∈ �,

∂u
∂ν

= 0, for x ∈ ∂�,
(3)

where p ∈ C(�) verifies p(x) > N for any x ∈ �, λ > 0 is a constant and q ∈ C(�)
satisfies 2 < q(x) < infy∈� p(y) for any x ∈ �. For problem (3) the author proves the
existence of three solutions by using a result due to Ricceri [25].

In the present paper we continue the studies begun in [17] and [18]. Under suitable
conditions we will prove the existence of two solutions for problem (1) by applying
an abstract linking argument due to Brézis and Nirenberg [3]. More exactly, our key
argument will be the following theorem.

THEOREM 1 (Brézis–Nirenberg [3]). Assume X is a Banach space with the direct
sum decomposition

X = X1 ⊕ X2,

with dim X2 < ∞. Assume J ∈ C1(X, �) with J(0) = 0 satisfies (PS) condition (i.e., any
sequence {un} ⊂ X satisfying {J(un)} is a bounded sequence in � and 〈J ′

(un), v〉 ≤ εn‖v‖X

for any v ∈ X, with εn → 0, has a convergent subsequence). Moreover, for a positive
constant R > 0, we have

J(u) ≥ 0, for all u ∈ X1 with ‖u‖X ≤ R,

J(u) ≤ 0, for all u ∈ X2 with ‖u‖X ≤ R.

Also assume that J is bounded below and infX J < 0. Then J has at least two non-trivial
critical points.

2. Preliminary results. In this section we recall some background facts
concerning the generalized Lebesgue–Sobolev spaces Lp(x)(�) and W 1,p(x)(�), where
� is a bounded domain in �N . We refer the reader to the book by Musielak [24] and
the papers by Edmunds [6–8], Kovacik and Rákosnı́k [15] and Fan [9, 12].

Throughout this paper we assume that p(x) > 1, p(x) ∈ C(�).
Set

C+(�) = {h; h ∈ C(�), h(x) > 1 for all x ∈ �}.
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For any h ∈ C+(�) we define

h+ = sup
x∈�

h(x) and h− = inf
x∈�

h(x).

For any p(x) ∈ C+(�), we define the variable exponent Lebesgue space

Lp(x)(�) = {u; u is a measurable real-valued function such that
∫

�

|u(x)|p(x) dx < ∞}.

We define a norm, th so-called Luxemburg norm, on this space by the formula

|u|p(x) = inf

{
μ > 0;

∫
�

∣∣∣∣u(x)
μ

∣∣∣∣
p(x)

dx ≤ 1

}
.

We remember that the variable exponent Lebesgue spaces are separable and reflexive
Banach spaces. If 0 < |�| < ∞ and p1, p2 are variable exponents such that p1(x) ≤
p2(x) almost everywhere in � then there exists the continuous embedding Lp2(x)(�) ↪→
Lp1(x)(�).

We denote by Lp
′
(x)(�) the conjugate space of Lp(x)(�), where 1/p(x) + 1/p

′
(x) = 1.

For any u ∈ Lp(x)(�) and v ∈ Lp
′
(x)(�) the Hölder-type inequality∣∣∣∣

∫
�

uv dx
∣∣∣∣ ≤

(
1

p− + 1

p′ −

)
|u|p(x)|v|p′ (x) (4)

holds true.
An important role in manipulating the generalized Lebesgue–Sobolev spaces is

played by the modular of the Lp(x)(�) space, which is the mapping ρp(x) : Lp(x)(�) → �

defined by

ρp(x)(u) =
∫

�

|u|p(x) dx.

If (un), u ∈ Lp(x)(�) then the following relations hold true

|u|p(x) > 1 ⇒ |u|p−
p(x) ≤ ρp(x)(u) ≤ |u|p+

p(x), (5)

|u|p(x) < 1 ⇒ |u|p+
p(x) ≤ ρp(x)(u) ≤ |u|p−

p(x), (6)

|un − u|p(x) → 0 ⇔ ρp(x)(un − u) → 0. (7)

Next, we define

W 1,p(x)(�) =
{

u ∈ Lp(x)(�);
∂u
∂xi

∈ Lp(x)(�), for any x ∈ {1, . . . , N}
}

.

On W 1,p(x)(�) we consider the norm

‖u‖ = |u|p(x) + | |∇u| |p(x).

We remember that (W 1,p(x)(�), ‖ · ‖) is a reflexive and separable Banach space.
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Set

	(u) =
∫

�

(|∇u|p(x) + |u|p(x)) dx.

Then

‖u‖p− ≤ 	(u) ≤ ‖u‖p+
, ∀ u ∈ W 1,p(x)(�) with ‖u‖ > 1, (8)

‖u‖p+ ≤ 	(u) ≤ ‖u‖p−
, ∀ u ∈ W 1,p(x)(�) with ‖u‖ < 1, (9)

‖un − u‖ → 0 ⇔ 	(un − u) → 0. (10)

Finally, we note that if s(x) ∈ C(�) and 1 < s(x) < p
(x) for all x ∈ � then the
embedding W 1,p(x)(�) ↪→ Ls(x)(�) is compact and continuous, where p
(x) = Np(x)

N−p(x)
if p(x) < N or p
(x) = +∞ if p(x) ≥ N.

3. The main result. In this paper we study the existence and multiplicity of weak
solutions for problem (1). We say that u ∈ W 1,p(x)(�) is a weak solution of (1) if∫

�

|∇u|p(x)−2∇u∇v dx −
∫

�

f (u)v dx = 0,

for any v ∈ W 1,p(x)(�).
The main result of this paper is given by the next theorem.

THEOREM 2. Assume the following inequality holds true

p+ < a <
Np−

N − p− , (11)

where a is given in the definition of f . Then problem (1) has at least two non-trivial weak
solutions.

We point out that in the context of Orlicz–Sobolev spaces a similar problem as (1)
was studied recently by Halidias and Le [13]. Our result is more general than the result
in [13] since the variable exponent Sobolev spaces are a special type of Musielak–Orlicz
spaces which generalize the Orlicz–Sobolev spaces.

4. Proof of Theorem 2. Let J : W 1,p(x)(�) → � be the energy functional
corresponding to problem (1)

J(u) =
∫

�

1
p(x)

|∇u|p(x) dx −
∫

�

F(u) dx,

where F is a primitive of f , i.e.,

F(t) =
∫ t

0
f (r) dr =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
a + 1

|t|a+1, for |t| ≤
(

1
2

) 1
a−1

t2

2
− 1

a + 1
|t|a+1 − D, for |t| >

(
1
2

) 1
a−1

,

with D a positive constant such that F is continuous on �.
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Standard arguments imply that J ∈ C1(W 1,p(x)(�), �) with

〈J ′(u), v〉 =
∫

�

|∇u|p(x)−2∇u∇v dx −
∫

�

f (u)v dx,

for any u, v ∈ W 1,p(x)(�). Thus, we observe that the critical points of functional J
correspond to the weak solutions of equation (1).

On the other hand, we point out that since p− ≤ p(x) for all x ∈ �, it follows that
W 1,p(x)(�) ⊂ W 1,p−

(�).
Set

V ′ =
{

u ∈ W 1,p−
(�);

∫
�

u(x) dx = 0
}

and

V = V ′ ∩ W 1,p(x)(�).

Clearly, V ′ is the topological complement of � with respect to W 1,p−
(�) and V is the

topological complement of � with respect to a subspace X of W 1,p(x)(�), i.e.,

W 1,p−
(�) = V ′ ⊕ �,

X = V ⊕ � ⊂ W 1,p(x)(�).

The above considerations show that it is enough to find weak solutions for equation
(1) in the subspace X of W 1,p(x)(�).

REMARK 1. We remark that using the Poincaré–Wirtinger inequality (see [2],
p. 194) we have

|u|p− ≤ C · ‖∇u‖p− , ∀ u ∈ V ′, (12)

where C > 0 is constant.

Our idea is to prove Theorem 2 by applying Theorem 1. With that end in view, we
prove some auxiliary results which show that functional J satisfies the conditions from
the hypotheses of Theorem 1.

LEMMA 1. Assume that condition (11) is fulfilled. Then J is bounded from below and
infX J < 0.

Proof. Clearly, by the definition of function F we observe that F(t) ≤ 0 for t large
enough. Since F is continuous on � we deduce that there exists a constant k > 0 such
that ∫

�

F(u) dx ≤ k, ∀ u ∈ X.

Thus, we find

J(u) ≥
∫

�

1
p(x)

|∇u|p(x) dx − k ≥ −k > −∞, ∀ u ∈ X,

or J is bounded from below.
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On the other hand, there exists a constant t1 > 0 small enough such that∫
�

F(t1) dt = ∫
�

1
a+1 t1

a+1 dt = 1
a+1 t1

a+1|�| > 0. Using that fact we get

J(t1) < 0.

Since any constant function is an element of X we infer that infX J < 0. The proof of
Lemma 1 is complete. �

LEMMA 2. Assume that condition (11) is fulfilled. Then J satisfies the (PS)
condition.

Proof. Let {un} ⊆ X be such that

|J(un)| ≤ M (13)

and

|〈J ′(un), ϕ〉| ≤ εn‖ϕ‖, ∀ϕ ∈ X, (14)

where εn → 0.
We claim that {un} is bounded in X . Arguing by contradiction and passing to a

subsequence, we assume that ‖un‖ → ∞ and ‖un‖ > 1.
Set

vn(x) := un(x)
‖un‖ .

Since {vn} is bounded in X and X is a reflexive Banach space we can assume that,
passing eventually to a subsequence, vn converges weakly to v in X . Next, since X is
compactly embedded in Lp(x)(�) we infer that vn converges strongly to v in Lp(x)(�).

By (13) we have ∫
�

1
p(x)

|∇un|p(x) dx −
∫

�

F(un) dx ≤ M. (15)

On the other hand, it is obvious that

tp(x) ≥ ρp− ·
(

t
ρ

)p(x)

, ∀ t > 0, ρ > 1, x ∈ �.

Choosing t = |∇un(x)| and ρ = ‖un‖ > 1 we get,∣∣∣∣ |∇un(x)|
‖un‖

∣∣∣∣
p(x)

· ‖un‖p− ≤ |∇un(x)|p(x), ∀ x ∈ �. (16)

Using (16) we deduce that∫
�

1
p(x)

|∇vn(x)|p(x) dx ≤ 1
‖un‖p−

∫
�

1
p(x)

|∇un(x)|p(x) dx. (17)

Dividing (15) by ‖un‖p−
> 1 and using (17) we obtain∫

�

1
p(x)

|∇vn(x)|p(x) dx ≤
∫

�

F(un)
‖un‖p− dx + M

‖un‖p− , ∀ n. (18)
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Next, we prove that ∫
�

F(un)
‖un‖p− dx → 0. (19)

The definition of F implies that there exists a constant M1 > 0 such that

F(t)
|t|p− ≤ 0, ∀ |t| > M1, a.e. x ∈ �.

Hence∫
�

F(un)
‖un‖p− dx ≤

∫
{x∈�;|un(x)|≤M1}

F(un)
‖un‖p− dx +

∫
{x∈�;|un(x)|≥M1}

F(un)
|un(x)|p−

|un(x)|p−

‖un‖p− dx

≤
∫

{x∈�;|un(x)|≤M1}

F(un)
‖un‖p− dx.

The above results assure that (19) holds true.
By (18) and (19) we have ∫

�

1
p(x)

|∇vn|p(x)dx → 0, (20)

which implies ‖∇vn‖p(x) → 0. Since ‖p(x) is (weakly) inferior semi-continuous, we find

0 ≤ ‖∇v‖p(x) ≤ lim inf
n→∞ ‖∇vn‖p(x) = 0.

Therefore ∇v(x) = 0 a.e. x ∈ � which yields v ∈ �. It follows that

lim
n→∞ ‖∇(vn − v)‖p(x) = lim

n→∞ ‖∇vn‖p(x) = 0. (21)

Relation (21) and the fact that vn converges strongly to v in Lp(x)(�) imply that actually
vn converges strongly to v in X . That fact combined with ‖vn‖ = 1 shows that v �= 0
and consequently |un(x)| → ∞ as n → ∞ a.e. x ∈ �.

Next, choosing ϕ = un in (14) and taking into account that relation (13) holds
true, we find∫

�

[p−F(un(x)) − f (un(x)) · un(x)] dx +
∫

�

|∇un|p(x) dx −
∫

�

p−

p(x)
|∇un|p(x) dx

≤ M · p− + εn · ‖un‖.

Dividing the above inequality by ‖un‖ we obtain∫
�

p−F(un(x)) − f (un(x)) · un(x)
|un(x)| · |vn(x)| dx ≤ Mp− + εn‖un‖

‖un‖ .

Passing to the limit in the above relation we have

lim inf
n→∞

∫
�

p−F(un(x)) − f (un(x)) · un(x)
|un(x)| · |vn(x)| dx ≤ 0.
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The above inequality and the Fatou Lemma imply∫
�

lim inf
n→∞

p−F(un(x)) − f (un(x)) · un(x)
|un(x)| · |vn(x)| dx ≤ 0. (22)

On the other hand, analysing the definition of functions f and F we deduce

lim
|t|→∞

p−F(t) − f (t)t
|t| = lim

|t|→∞

p−

2
t2 − p−

a + 1
|t|a+1 − p−D − t2 + |t|a+1

|t| = ∞,

since by relation (11) we have a + 1 > p−. It follows that there exists a constant α > 0
such that

lim
|t|→∞

p−F(t) − f (t)t
|t| ≥ α > 0.

The above inequality, relation (22) and the fact that |un(x)| → ∞ as n → ∞ a.e. x ∈ �

imply ∫
�

|v(x)| dx ≤ 0.

But v �= 0 is a constant function as we have already noticed and that is a contradiction
with the above relation. In this way we have proved that {un} is bounded in X . Then there
exists u ∈ X such that un converges weakly to u in X . Since X is compactly embedded in
any Ls(x)(�) for any s ∈ (�) with 1 < s(x) < (Np−)/(N − p−) for all x ∈ � we deduce
that un converges strongly to u in Ls(x)(�). That information and the form of f and F
imply that

lim
n→∞

∫
�

f (un)(un − u) dx = 0.

In order to prove that un converges strongly to u in X we choose ϕ = un − u in (14).
This yields∣∣∣∣

∫
�

(|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)(∇un − ∇u) dx
∣∣∣∣

≤
∫

�

|f (un)||un − u| dx + ε‖un − u‖ +
∣∣∣∣
∫

�

|∇u|p(x)−2∇u(∇un − ∇u) dx
∣∣∣∣ .

All the above pieces of information show that∣∣∣∣
∫

�

(|∇un|p(x)−2∇un − |∇u|p(x)−2∇u
)
(∇un − ∇u) dx

∣∣∣∣ → 0.

The last relation, the fact that un converges strongly to u in Lp(x)(�) and Theorem 3.1
in [10] imply that un converges strongly to u in X , i.e., J satisfies the (PS) condition.
The proof of the lemma is complete. �

LEMMA 3. Assume that condition (11) is fulfilled. Then there exists ρ > 0 such that
for all u ∈ V with ‖u‖ ≤ ρ we have J(u) ≥ 0 and J(e) ≤ 0 for all e ∈ � with |e| ≤ ρ.
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Proof. We choose u ∈ V with ‖u‖ = ρ, where ρ is small enough and will be
specified later. The definition of F and relation (11) imply that for all ε > 0 there exist
δ > 0 and γ > 0 such that

F(t) ≤ ε|t|p+
, ∀ |t| ≤ δ, a.e. x ∈ �

and

F(t) ≤ ε|t|p+ + γ |t|a+1, ∀ |t| ∈ �, a.e. x ∈ �. (23)

Since p− ≤ p(x) for all x ∈ � we have that Lp(x)(�) is continuously embedded in Lp−
(�).

Thus, there exists k0 > 0 such that

|u|p− ≤ k0|u|p(x), u ∈ Lp(x)(�).

Assuming ‖u‖ ≤ 1 it follows ‖∇u‖p(x) ≤ 1. Hence by (6) we deduce that∫
�

1
p(x)

|∇u(x)|p(x) dx ≥ 1
p+ ‖∇u‖p+

p(x) ≥ C‖∇u‖p+
p− . (24)

Inequalities (12) and (24) imply∫
�

1
p(x)

|∇u(x)|p(x) dx ≥ C‖u‖p+

W 1,p− (�)
. (25)

Relations (23) and (11) yield∫
�

F(u) dx ≤ ε|u|p+
p+ + γ1|u|a+1

a+1 ≤ εc1‖u‖p+

W 1,p− (�)
+ γ2‖u‖a+1

W 1,p− (�)
, (26)

where γ1 and γ2 are positive constants.
Choosing ε small enough and using relations (25) and (26) we obtain

J(u) ≥ C‖u‖p+

W 1,p− (�)
− γ1‖u‖a+1

W 1,p− (�)
. (27)

Relations (27) and (11) show that there exists θ > 0 such that

J(u) ≥ 0, ∀ u ∈ V with ‖u‖W 1,p− (�) ≤ θ.

Since V ⊂ X ⊂ W 1,p(x)(�) ⊂ W 1,p−
(�), there exists C0 > 0 such that

‖u‖W 1,p− (�) ≤ C0‖u‖, ∀ u ∈ V.

Taking ρ > 0 small enough, ‖u‖ ≤ ρ implies ‖u‖W 1,p− (�) ≤ θ , for all u ∈ V and therefore

J(u) ≥ 0, ∀ u ∈ V with ‖u‖ ≤ ρ.

Finally, for t ∈ � considering the constant function which belongs to X we have
J(t) = − ∫

�
F(t) dx. But F(t) ≥ 0 for |t| small enough. It follows that for t ∈ � small

enough we have J(t) ≤ 0. The proof of the lemma is complete. �

PROOF OF THEOREM 2 COMPLETED. By Lemmas 1, 2 and 3 we remark that the
hypotheses of Theorem 1 are fulfilled. Thus, we conclude that problem (1) has two
non-trivial weak solutions. Theorem 2 is verified. �
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22. M. Mihăilescu and V. Rădulescu, On a nonhomogeneous quasilinear eigenvalue
problem in Sobolev spaces with variable exponent, Proc. Amer. Math. Soc. 135 (9) (2007),
2929–2937.
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