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Abstract. The main purpose of this paper is to investigate some natural
problems regarding the order structure of representable functionals on ∗-algebras.
We describe the extreme points of order intervals, and give a non-trivial sufficient
condition to decide whether or not the infimum of two representable functionals exists.
To this aim, we offer a suitable approach to the Lebesgue decomposition theory,
which is in complete analogy with the one developed by Ando in the context of
positive operators. This tight analogy allows to invoke Ando’s results to characterize
uniqueness of the decomposition, and solve the infimum problem over certain operator
algebras.

2010 Mathematics Subject Classification. Primary 46L51, Secondary 46K10,
47L07.

1. Introduction. Let A be a not necessarily unital ∗-algebra. A linear functional
f : A → � is said to be representable if there is a ∗-representation π of A in a Hilbert
space H and a vector ζ ∈ H such that

f (a) = (π (a)ζ |ζ ), a ∈ A .

The set A � of representable functionals on A is partially ordered with respect to
the ordering induced by positivity. The purpose of this paper is to investigate some
structural questions of A �, namely to determine the extreme points of order intervals
of the form [f, g], and to decide whether or not the greatest lower bound of two
representable functionals exists.

Analogous questions for positive operators were investigated because of their
physical importance. In the standard Hilbert space model for quantum mechanics (in
the so-called effect algebra), the greatest lower bound A ∧ B is the greatest effect so that
the probability that A ∧ B is observed is not greater than the probability that both A
and B are observed for every state of the system. Sharp quantum effects, i.e. the extreme
points of the effect algebra represent the perfectly accurate yes–no measurements in

https://doi.org/10.1017/S0017089517000106 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089517000106


290 ZSIGMOND TARCSAY AND TAMÁS TITKOS

quantum probability theory. For more details, we refer the reader to [7, 12], and also
to [4] for the corresponding potential theoretic aspects.

The question that whether or not the infimum A ∧ B of two positive operators A
and B exists has been a long standing open problem. The finite-dimensional case was
solved by Moreland and Gudder in [7]. In the general case, a necessary and sufficient
condition was given by Ando in [3] by means of the Lebesgue-type decomposition [2].
This approach turned out to be effective also by characterizing the extreme points of the
effect algebra, or more generally, of operator intervals. Since Lebesgue decomposition
has a quite extensive literature also in the context of representable functionals (see
[6,10,16,17]), it seems possible to treat these questions from a similar point of view. To
do so, we provide a self-contained exposition of the Lebesgue decomposition theory
on general ∗-algebras. In fact, given two representable functionals f and g, we give a
Lebesgue-type decomposition of f with respect to g by means of [g]f := sup

n∈�

f : (ng),

where f : (ng) is the parallel sum of f and ng.
The idea of obtaining the absolutely continuous part by means of the parallel

sum is taken from [8] of Hassi, Sebestyén, and de Snoo who developed a general
Lebesgue decomposition theory for non-negative sesquilinear forms. Actually, it is
always a possibility to consider forms instead of functionals (set tf (a, b) := f (b∗a)),
to invoke some results concerning forms, and then to return to functionals. But we
have to keep in mind that not every non-negative form is induced by a representable
functional, and hence, the last step may fail or at least may be a source of difficulties.
On the other hand, the set of forms and the set of functionals may have completely
different order structures. (As we shall see, this is indeed the situation in some cases,
depending on the properties of A .) In order to evade all these complications and
also to be self-contained, we present an exposition which avoids any reference to
forms.

Let us describe the content of this paper in detail. Section 2 is devoted to collect
all the notions and notations that are needed to formulate our results. Section 3
includes a concise presentation of the Lebesgue decomposition theorem in the context
of representable functionals. Our interpretation is of algebraic nature and follows
the arguments of [8]. We then turn to describe the structure of order intervals in
Section 4. In fact, extreme points of intervals are described by means of Lebesgue
decomposition, and by the notion of disjoint part. Section 5 is intended to investigate
the infimum of representable functionals. In analogy with Ando’s result concerning
the existence of the infimum of positive operators, a necessary and sufficient condition
was given in [19] for sesquilinear forms. Since ∗-algebras may have very different
algebraic structures, there is no hope to give a similar satisfactory characterization in
this setting. Nevertheless, we give a sufficient condition for the existence of the infimum
of two representable functionals, which also allows us to show that the infimum of
two extreme points of an order interval always exists. This condition is however not
necessary in general as it is demonstrated by some counterexamples. In the last section,
we discuss the uniqueness of the Lebesgue-type decomposition. According to Kosaki
[10], the Lebesgue decomposition of representable functionals is not necessarily unique,
even in the case of von Neumann algebras. In this aspect, we are going to provide a
sufficient condition under which the aforementioned decomposition is unique and we
demonstrate examples where the condition may also be necessary. Some other examples
show that there is no uniqueness over Hilbert algebras, as well as for the von Neumann
algebra B(H), where H an infinite-dimensional Hilbert space.
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2. Preliminaries. Throughout this paper, we fix a (not necessarily unital) ∗-
algebra A . A linear functional f : A → � is said to be positive if f (a∗a) ≥ 0 for
all a ∈ A . For a pair f, g of positive functionals, we write f ≤ g if g − f is positive.

A ∗-representation of A in a Hilbert space H is an algebra homomorphism from
A to B(H), the C∗-algebra of all bounded operators of H, which also preserves the
involution: π (a∗) = π (a)∗. A linear functional f on A is said to be representable if
there is a ∗-representation π of A in a Hilbert space H and a vector ζ ∈ H such that

f (a) = (π (a)ζ |ζ ), a ∈ A . (1)

Note that a representable functional is automatically positive, i.e., f (a∗a) ≥ 0 for all
a ∈ A ; the converse is not always true in general. Recall that a positive functional f on
A is representable if and only if it satisfies the following two conditions (see e.g. [15]):
on the one hand, there exists a constant M ≥ 0 such that

|f (a)|2 ≤ Mf (a∗a) for all a ∈ A , (2)

and, on the other hand, for any b ∈ A , there exists Mb ≥ 0 such that

f (a∗b∗ba) ≤ Mbf (a∗a) for all a ∈ A . (3)

In that case, the GNS construction provides a representing triple (Hf , πf , ζf ) fulfilling
(1). Note also that ζf here is the Riesz representing vector of the bounded linear
functional πf (a)ζf 	→ f (a), whence we get the equality

‖ζf ‖2
f = sup

{|f (a)|2 ∣∣ f (a∗a) ≤ 1, a ∈ A
}
. (4)

In other words, ‖f ‖H := ‖ζf ‖2
f is the smallest constant satisfying

|f (a)|2 ≤ ‖f ‖Hf (a∗a) for all a ∈ A ,

and is called the Hilbert bound of f . Recall also the important fact that representability
is hereditary in the sense that if h is any Hilbert-bounded positive functional such that
h ≤ g for a g ∈ A �, then h and g − h are both representable. Furthermore, ‖h‖H ≤ ‖g‖H

holds also true in that case; for the proof see [11, Proposition 9.4.22 (e)]. As an
easy consequence of this fact, one concludes that any order bounded monotonically
increasing sequence (fn)n∈� in A � possesses a supremum in A �. That is, if fn ≤ fn+1 ≤ g
is satisfied for (fn)n∈� and g in A �, then the pointwise limit f equals the least upper
bound of (fn)n∈� in A �.

Let us recall the notions of absolute continuity and singularity of representable
functionals: we say that f is g-absolutely continuous (we write f � g) if

g(a∗
nan) → 0 and f ((an − am)∗(an − am)) → 0 imply f (a∗

nan) → 0

for any sequence (an)n∈� of A (see [6]). Observe immediately that if f is g-dominated,
i.e., f ≤ cg with some c > 0, then f is g-absolutely continuous. We say that f and g are
singular (f ⊥ g) if h ≤ f and h ≤ g imply h = 0 for any representable functional h.

The following characterization of absolute continuity will be used frequently in
the sequel.
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THEOREM 2.1. For f, g ∈ A �, the following assertions are equivalent:

(i) f is g-absolutely continuous.
(ii) f equals the pointwise limit of a monotonically increasing sequence (fn)n∈� in

A � satisfying fn ≤ αng for each n with some αn ≥ 0.

Proof. Assume first that f is g-absolutely continuous. This means that the map
J : Hg → Hf , defined by the correspondence

πg(a)ζg 	→ πf (a)ζf , a ∈ A , (5)

is a well-defined closable operator. First, we claim that

πf (a)〈dom J∗〉 ⊆ dom J∗ and J∗πf (a)z = πg(a)J∗z (6)

for all a ∈ A and z ∈ dom J∗. Indeed, for z ∈ dom J∗ and a, x ∈ A , we have

(Jπg(x)ζg|πf (a)z) = (πf (x)ζf |πf (a)z) = (πf (a∗x)ζf |z)

= (Jπg(a∗x)ζg|z) = (πg(a∗)πg(x)ζg|J∗z)

= (πg(x)ζg|πg(a)J∗z),

yielding (6). Consider the (typically unbounded) positive self-adjoint operator S :=
J∗J∗∗ on Hg and denote by E its spectral measure. By (6), we infer that S commutes
with every πg(a) in the usual sense that πg(a)S ⊂ Sπg(a) for all a ∈ A . Each πg(a)
being bounded, we can also deduce that the spectral projections of S commute with

the πg(a)’s. Consequently, setting Sn :=
∫ n

0
t dE(t) for each integer n, we get πg(a)Sn =

Snπg(a) and hence

fn(a) := (Snπg(a)ζg|ζg), a ∈ A ,

is a representable functional such that fn ≤ fn+1, and that

fn(a∗a) = (S1/2
n πg(a)ζg|S1/2

n πg(a)ζg) → (S1/2πg(a)ζg|S1/2πg(a)ζg) = f (a∗a).

Finally,

fn(a∗a) = (Snπg(a)ζg|πg(a)ζg) ≤ ‖Sn‖(πg(a)ζg|πg(a)ζg) = ‖Sn‖g(a∗a).

Thus, (fn)n∈� fulfills each condition of (ii).
For the converse, suppose (ii) and observe that J : Hg → Hf defined by (5) is well

defined: if πg(a)ζg = 0 for some a ∈ A , then fn(a∗a) = 0, by assumption, hence

‖πf (a)ζf ‖2
f = f (a∗a) = lim

n→∞ fn(a∗a) = 0,

indeed. Our claim is to show that J is closable, or equivalently, that J∗ is densely
defined. By the Riesz representation theorem, for any integer n, there exists a unique
positive contraction Cn ∈ B(Hf ) such that

(Cn(πf (a)ζf )|πf (b)ζf ) = fn(b∗a), a, b ∈ A .
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We claim that ran Cn ⊆ dom J∗ (here “ran” refers to the range). Fix ξ ∈ Hf and observe
for any a ∈ A that

|(Jπg(a)ζg|Cnξ )|2 = |(πf (a)ζf |Cnξ )|2 = |(Cn(πf (a)ζf )|ξ )|2
≤ ‖ξ‖2

f ‖Cn(πf (a)ζf )‖2
f

≤ ‖ξ‖2
f ‖Cn‖(Cn(πf (a)ζf )|πf (a)ζf )

= ‖ξ‖2
f ‖Cn‖fn(a∗a)

≤ αn‖ξ‖2
f g(a∗a) = αn‖ξ‖2(πg(a)ζg|πg(a)ζg),

whence Cnξ ∈ dom J∗. To conclude the statement, our only duty is to verify that

∞⋂
n=1

ker Cn = {0}. (7)

To this end, observe that Cn(πf (a)ζf ) → πf (a)ζf as n → ∞ for each a in A :

‖πf (a)ζf −Cn(πf (a)ζf )‖2
f

= f (a∗a) − 2(Cn(πf (a)ζf )|πf (a)ζf ) + ‖Cn(πf (a)ζf )‖2
f

≤ 2f (a∗a) − 2fn(a∗a) → 0.

Consequently, (Cn)n∈� converges strongly to the identity operator on Hf which
obviously gives (7). Hence, dom J∗ is dense, i.e., J is closable. �

Condition (ii) above was called absolute continuity in [2] in the context of positive
operators, and almost dominatedness in [8] for non-negative sesquilinear forms.
Condition (i) was referred to as strong absolute continuity in [6] and as closability
in [8]. We shall follow Ando’s terminology and use the phrase absolute continuity for
both (i) and (ii).

The most important notion in this paper is the so called parallel sum of two
representable functionals, which was introduced in [18]. Let f and g be arbitrary
elements of A � and denote by (Hf , πf , ζf ) and (Hg, πg, ζg) the GNS-triples associated
with f and g, respectively. Let π be the direct sum of πf and πg. Then the closure of
the following subspace

{πf (a)ζf ⊕ πg(a)ζg|a ∈ A } ⊆ Hf ⊕ Hg

is π -invariant. If P stands for the orthogonal projection onto its orthocomplement,
then the functional f : g defined by the correspondence

(f : g)(a) := (π (a)P(ζf ⊕ 0)|P(ζf ⊕ 0)), a ∈ A ,

is representable and its values on positive elements are given by

(f : g)(a∗a) = inf{f ((a − b)∗(a − b)) + g(b∗b)|b ∈ A }, a ∈ A . (8)

For the details, see [18, Theorem 5.1].
The following proposition contains three elementary observations regarding the

parallel sum that will be used constantly in the upcoming sections.

https://doi.org/10.1017/S0017089517000106 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089517000106


294 ZSIGMOND TARCSAY AND TAMÁS TITKOS

PROPOSITION 2.2. Let f, g, f1, f2, g1, g2 ∈ A � be representable functionals on A .
Then,

(a) f : g ≤ f and f : g ≤ g,
(b) f1 ≤ f2 and g1 ≤ g2 imply f1 : g1 ≤ f2 : g2,
(c) if g ∈ A � and α, β > 0, then (αg) : (βg) = αβ

α+β
g.

Proof. Properties (a) and (b) follow easily from (8), we prove only (c). An elementary
computation gives that αg((a − b)∗(a − b)) + βg(b∗b) equals to

αβ

α + β
g(a∗a) + g

((√
α + βb + α√

α + β
a
)∗(√

α + βb + α√
α + β

a
))

.

Since every term is non-negative, the infimum is attained at b := −α
α+β

a. �
One of the advantages of parallel addition is that it characterizes the notion of

singularity. Namely, f and g are singular precisely when f : g = 0. Indeed, if f and g are
singular, then f : g = 0 because of Proposition 2.2 (a). Conversely, if f : g = 0 and h is
a representable functional majorized by both f and g, then h = 2(h : h) ≤ 2(f : g) = 0
holds according to Proposition 2.2 (b) and (c), i.e., f and g are mutually singular.
This characterization can be found also in [18, Theorem 5.2]. Now, we can define the
representable functional [g]f by

[g]f := sup
n∈�

f : (ng) (9)

in complete analogy with the case of bounded positive operators [2]. Observe that [g]f
is g-absolutely continuous according to Theorem 2.1. Furthermore, it is clear from (8)
and the definition of [g]f that [g]f ≤ f , f1 ≤ f2 and g1 ≤ g2 imply [g1]f1 ≤ [g2]f2, and
that [g](cf ) = c[g]f for all c ≥ 0.

3. Lebesgue decomposition. Let f and g be representable functionals on A . A
decomposition f = f1 + f2 is called a Lebesgue-type decomposition of f with respect
to g (or shortly a g-Lebesgue decomposition of f ) if f1, f2 ∈ A �, f1 � g, and f2 ⊥ g. In
order to investigate some extremal problems, we present a suitable approach for this
type of decomposition. This approach is in complete analogy to the one developed by
Ando [2] for positive operators, and the one given by Hassi, Sebestyén, and de Snoo
for non-negative sesquilinear forms [8].

The significance of the functional [g]f in Lebesgue decomposition theory becomes
clear already in the next proposition.

PROPOSITION 3.1. Let f and g be representable functionals on A . Then

(a) f ⊥ g if and only if [g]f = 0,
(b) f � g if and only if [g]f = f .

Proof. To prove (a), observe that [g]f = 0 implies f : g = 0 by definition, and
hence, f and g are singular. Conversely, assume that f and g are singular, but [g]f �= 0.
In this case, there exists n ∈ � such that f : ng �= 0, which is a contradiction, because
0 �= ( 1

n f
)

: g ≤ f, g.
Now, we are going to prove (b). If [g]f = f , then f : (ng) ≤ ng and Theorem 2.1

imply that f is g-absolutely continuous. For the converse implication, observe first that
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if f is g-dominated, i.e., there exists an α > 0 constant such that f ≤ αg, then [g]f = f .
Indeed, for every n ∈ �, we have

f ≥ [g]f = sup
k∈�

f : (kg) ≥ f :
( n
α

f
)

= n
α + n

f,

which implies [g]f = f by taking supremum in n. Now assume that f is g-absolutely
continuous, and recall that this guarantees that f is a limit of a monotone increasing
sequence (fn)n∈� of g-dominated representable functionals. According to the previous
observation, we have

fn = [g]fn ≤ [g]f ≤ f

which implies that [g]f = f , again by taking supremum. �
COROLLARY 3.2. If f is simultaneously g-absolutely continuous and g-singular, then

f is the identically zero functional.

In the next theorem (which is the main result of this section), we establish a
Lebesgue-type decomposition in terms of [g]f ; cf. also [6], [16], and [17].

THEOREM 3.3. Let f, g ∈ A � be arbitrary representable functionals on A . Then,

f = [g]f + (f − [g]f ) (10)

is a g-Lebesgue decomposition of f , that is, [g]f � g and (f − [g]f ) ⊥ g. Furthermore,
this decomposition is extremal in the following sense:

h ∈ A �, h ≤ f and h � g ⇒ h ≤ [g]f.

Proof. First, we prove the maximality of [g]f . Let h be a representable functional
such that h ≤ f and h � g. According to Proposition 3.1(b) and Proposition 2.2(b),
we have

h = [g]h = sup
n∈�

h : (ng) ≤ sup
n∈�

f : (ng) = [g]f.

Using the maximality property of [g]f and the fact that the sum of g-absolutely
continuous functionals is g-absolutely continuous, one obtains

[g](h + k) ≥ [g]h + [g]k

for every h, k ∈ A �. Since [g]f is g-absolutely continuous according to Theorem 2.1, it
is enough to prove the g-singularity of f − [g]f . This follows from Proposition 3.1 and

[g]f = [g] ≥ [g]([g]f ) + [g](f − [g]f ) = [g]f + [g](f − [g]f ),

because [g](f − [g]f ) = 0 holds if and only if g and f − [g]f are singular. �
The equivalence in Theorem 2.1 combined with the maximality of [g]f shows

that decomposition (10) coincides with the one presented in [17, Theorem 3.3].
Using unbounded operator-techniques, it was also proved in [17, Theorem 4.2] that
the corresponding absolutely continuous parts [g]f and [f ]g are mutually absolute
continuous for all representable functionals f and g. Proposition 3.1 and Theorem 2.1
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shed a new light to this result: mutual absolute continuity follows directly from the
order properties of A �.

COROLLARY 3.4. Let f and g be representable functionals on A , and consider their
Lebesgue-type decompositions with respect to each other. Then the absolutely continuous
parts are mutually absolutely continuous, i.e.,

[g]f � [f ]g and [f ]g � [g]f.

Proof. Observe first that if g1, g2, and h are representable functionals such that
g1 ≤ g2 and g1 � h, then

g1 � [g2]h.

Indeed, if g1 is h-absolutely continuous, then there exists a monotonically non-
decreasing sequence of representable functionals (g1,n)n∈� such that sup

n∈�

g1,n = g1 and

g1,n is dominated by h for all n ∈ � (i.e., g1,n ≤ g1 ≤ g2 and g1,n ≤ cnh for some cn ≥ 0).
Consequently,

g1,n = [g2]g1,n ≤ [g2]cnh = cn[g2]h

which means that g1 � [g2]h. Now, apply the previous observation with

g1 := [g]f g2 := f, h := g.

Similarly, one can prove that [f ]g � [g]f . �
Combining the previous result with Proposition 3.1(b), we gain the following

identity:

[g]f = [
[f ]g

]
f. (11)

Indeed, on the one hand, g ≥ [f ]g implies [g]f ≥ [
[f ]g

]
f . On the other hand, [g]f � [f ]g

and [g]f ≤ f yield

[g]f = [
[f ]g

]
([g]f ) ≤ [

[f ]g
]
f ≤ [g]f,

which proves (11).

4. Extreme points of functional intervals. In this chapter, we are going to describe
the extreme points of intervals of the form

[f, g] := {h ∈ A � | f ≤ h ≤ g}
where f, g ∈ A �, f ≤ g. To do so, we need first the following lemma characterizing
singularity.

LEMMA 4.1. Let f, g, h ∈ A � be representable functionals and assume that f is g-
dominated. Then the following statements are equivalent:

(i) g ⊥ h.
(ii) [g](f + h) = [g]f = f .
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Proof. Since g ⊥ h is equivalent with [g]h = 0, the implication (ii)⇒(i) follows from

[g]f = [g](f + h) ≥ [g]f + [g]h ≥ [g]f.

To prove the converse implication, we observe first that

f = [g]f ≤ [g](f + h) ≤ f + h,

hence [g](f + h) = f + k for some k ∈ A �, k ≤ h. Assume indirectly that k �= 0. Since
g ⊥ h and k ≤ h, we have g ⊥ k. Consequently, k may not be g-absolutely continuous,
because the only representable functional which is simultaneously g-singular and g-
absolutely continuous is k = 0. Thus, there exists a sequence (an)n∈� in A such that
k((an − am)∗(an − am)) → 0 and g(a∗

nan) → 0, but k(a∗
nan) � 0. Since f is g-dominated,

f (a∗
nan) → 0 holds for this sequence, and thus f ((an − am)∗(an − am)) → 0. But then we

get

(f + k)((an − am)∗(an − am)) → 0, g(a∗
nan) → 0 (f + k)(a∗

nan) � 0,

which is impossible because f + k is g-absolutely continuous. �
Assume that f and g are representable functionals such that g ≤ f . Following the

terminology of F. Riesz [13], we say that g is a disjoint part of f if g and f − g are
mutually singular. The following theorem states that the extreme points of [0, f ] are
precisely the disjoint parts of f . For analogous results, see [1, 4, 5, 12, 14].

THEOREM 4.2. Let f and g be representable functionals, and assume that g ≤ f . Then
the following statements are equivalent:

(i) g is an extreme point of [0, f ].
(ii) g is a disjoint part of f .

(iii) [g]f = g.

Proof. To prove that (i) implies (ii) assume that g is not singular with respect to
f − g. In this case, g : (f − g) �= 0, hence

1
2

(
g − (

g : (f − g)
)) + 1

2

(
g + (

g : (f − g)
)) = g

is a non-trivial convex combination in [0, f ]. Implication (ii)⇒(iii) follows directly from
Proposition 3.1(b) and Lemma 4.1:

[g]f = [g](g + (f − g)) = [g]g = g.

Finally, assume [g]f = g and, indirectly, that g is not an extreme point of [0, f ]. In
this case, there exists h, k ∈ [0, f ] (h �= k) and 0 < λ < 1 such that g = λh + (1 − λ)k.
According to Proposition 2.2, we have

f : (ng) ≥ h : (nλh) = nλ

nλ + 1
h,

which yields g = [g]f ≥ h. Similarly,

f : (ng) ≥ k : (n(1 − λ)k) = n(1 − λ)
n(1 − λ) + 1

k,
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which yields g = [g]f ≥ k. These imply g = h = k, otherwise there exists an a ∈ A such
that g(a∗a) > h(a∗a) or g(a∗a) > k(a∗a). But then,

g(a∗a) = λg(a∗a) + (1 − λ)g(a∗a) > λh(a∗a) + (1 − λ)k(a∗a) = g(a∗a),

which is contradiction. �
As an elementary consequence, we can characterize the extreme points of [f, g] in

terms of the parallel sum as follows:

COROLLARY 4.3. A representable functional h ∈ [f, g] is an extreme point of [f, g] if
and only if

(h − f ) : (g − h) = 0.

COROLLARY 4.4. For f, g ∈ A �, the following assertions are equivalent:

(i) g is an extreme point of [0, g + f ].
(ii) Each extreme point of [g, g + f ] is an extreme point of [0, g + f ].

Proof. To prove (i)⇒(ii), assume that g is an extreme point of [0, f + g]. According
to Theorem 4.2(ii), this means that g and f are singular. Let k be an arbitrary extreme
point of [g, g + f ], and observe that k can be written as k = g + h, where h is an extreme
point of [0, f ]. Since h ≤ f and f ⊥ g, Lemma 4.1(ii) and (11) ensure that

[g + h](f − h) = [
[f − h](g + h)

]
(f − h)

≤ [
[f ](g + h)

]
(f − h) = [h](f − h) = 0.

Again, using Theorem 4.2(ii), we conclude that k is an extreme point of [0, f + g] as
well. Implication (ii)⇒(i) is trivial. �

5. On the infimum of representable functionals. The significance of non-
commutative Lebesgue decomposition theory is revealed by considering the infimum
of positive operators in a Hilbert space. Namely, Ando in his famous paper [3] has
shown that the infimum A ∧ B of the positive operators A and B exists (in the positive
cone) precisely when the corresponding absolutely continuous parts [A]B and [B]A are
comparable. Because of the strong analogy, a natural question arises: Can we handle the
problem for representable functionals in the same way? Unfortunately, it turns out that
the situation here is much more complicated. Since ∗-algebras may have very different
algebraic structures, there is no hope to give a similar satisfactory characterization in
such a general setting. Nevertheless, a non-trivial sufficient condition can be furnished
in the same manner. As we shall see, this condition may be necessary, as well as
redundant in some important particular cases (see examples below).

First of all, for the sake of completeness, let us recall the notion of infimum in the
partially ordered set A �. We say that the infimum of f, g ∈ A � exists in A � if there is
an element h in A � such that h ≤ f , h ≤ g, and that h′ ≤ f and h′ ≤ g imply h′ ≤ h for
any h′ ∈ A �. The infimum of f and g (in case when it exists) is denoted by f ∧ g.

Translating Ando’s result, we gain the following sufficient condition for the
existence of f ∧ g.
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THEOREM 5.1. Let f, g be representable functionals on A . If [f ]g and [g]f are
comparable, that is, either [f ]g ≤ [g]f or [g]f ≤ [f ]g, then the infimum f ∧ g exists in
A �. In this case, f ∧ g = min{[f ]g, [g]f }.

Proof. Assume that [f ]g ≤ [g]f . In this case, [f ]g ≤ [g]f ≤ f and [f ]g ≤ g hold,
thus [f ]g ∈ [0, f ] ∩ [0, g]. Now, let h ∈ A � be a functional such that h ≤ f and h ≤ g.
This implies immediately that h � f and h ≤ g, and hence h ≤ [f ]g by the maximality
property of [f ]g. And similarly, if [g]f ≤ [f ]g, then f ∧ g = [g]f . �

As was proved in [7], the set of effects is not a lattice, but the infimum
of a sharp effect with any other effect exists. The previous sufficient condition
combined with Theorem 4.2 allows us to prove an analogous result for representable
functionals.

COROLLARY 5.2. Let u be an extreme point of the interval [0, f ]. Then the infimum
u ∧ h exists for all h ∈ [0, f ], and

u ∧ h = [u]h.

If u and h are both extreme points of [0, f ], then

u ∧ h = [u]h = [h]u.

Proof. According to Theorem 5.1, it is enough to show that [u]h ≤ [h]u. On the
one hand, we obtain from h ≤ f and Theorem 4.2 (iii) that [u]h ≤ [u]f = u. Since [u]h
is h-absolutely continuous, we have

[u]h = [h]([u]h) ≤ [h]u,

which means that u ∧ h = [u]h. On the other hand, if both u and h are extreme points,
we conclude by symmetry that

[u]h = u ∧ h = h ∧ u = [h]u. �

Remark that [f ]g ≤ [g]f holds precisely when [f ]g ≤ f , thus the sufficient condition
in Theorem 5.1 can be stated also as follows: if either [f ]g ≤ f or [g]f ≤ g, then the
infimum f ∧ g exists.

As indicated above, comparability of [f ]g and [g]f is in general not a necessary
condition of the existence of the infimum:

EXAMPLE 5.3. Let A be a unital commutative C∗-algebra. By the commutative
Gelfand–Naimark theorem and the Riesz representation theorem, each positive (hence
representable) functional f on A is of the form

f (a) =
∫

â dμf , a ∈ A ,

where â is the image of a under the Gelfand transform, μf is a positive, regular Borel
measure, and the integral is taken over the maximal ideal space of A . It is well known
that non-negative finite measures on a given σ -algebra form a lattice. Recall that the
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infimum of two measures μ and ν can be calculated by the formula

(μ ∧ ν)(E) := inf
F

{
μ(E ∩ F) + ν(E \ F)

}
.

The Riesz representation theorem also states that the mapping f 	→ μf is surjective and
bipositive, i.e., f ≥ 0 if and only if μf ≥ 0. In particular, the infimum of two positive
functionals f, g ∈ A � always exists as the inverse image of μf ∧ μg along this map.

Next, we are going to analyse a highly non-commutative example, the (non-unital)
C∗-algebra of compact operators. This is a good example to demonstrate that the
condition given in Theorem 5.1 can be also necessary.

EXAMPLE 5.4. Let H be a complex Hilbert space and denote by B0(H) the C∗-
algebra of compact operators on H. The topological dual of B0(H) can be identified
with B1(H), the set of all trace class operators on H. In particular, any positive (hence
representable) functional f on B0(H) is represented by a positive trace class operator
F ∈ B1(H) in the sense that

f (T) = Tr(FT), T ∈ B0(H),

see [9]. Let denote this representation by �, i.e.,

� : B0(H)� → B1(H); �(f ) := F. (12)

First, observe that � is surjective and bipositive (f ≥ 0 if and only if F ≥ 0), thus the
infimum of f, g ∈ B0(H)� exists in B0(H)� if and only if the infimum of F, G exists in
B1(H). For any F, G ∈ B1(H), F, G ≥ 0, one has that

[0, F ] ∩ [0, G] = [0, F ] ∩ [0, G] ∩ B1(H),

thus the infimum F ∧ G exists if and only if [F ]G and [G]F are comparable, according
to Ando [3, Theorem 4]. Since the image of [f ]g under the representing map is just
[F ]G (see Theorem 5.5 below), we deduce that f ∧ g exists if and only if [f ]g and [g]f
are comparable.

Since the missing step in the preceding example will be used also in the next section,
we formulate it separately.

THEOREM 5.5. Let H be a Hilbert space and let us denote by B0(H) the C∗-algebra
of compact operators on H. The representing map � : B0(H)� → B1(H),

f (T) = Tr(�(f )T), T ∈ B0(H)

possesses the following properties:

(a) f, g ∈ B0(H)� are mutually singular if and only if �(f ),�(g) are so.
(b) f is g-absolutely continuous if and only if �(f ) is �(g)-absolutely continuous.

In particular, �([g]f ) = [�(g)]�(f ).

Proof. Assertion (a) follows directly from the fact that � is surjective and bipositive.
In order to see (b), for x, y ∈ H, consider the rank one operator x ⊗ y, defined by
(x ⊗ y)(z) = (z|y)x, z ∈ H. An immediate calculation shows that

Tr(x ⊗ y) = (x|y), and A ◦ (x ⊗ y) = (Ax) ⊗ y,
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for any A ∈ B(H). Hence, we obtain

(�(f )x|x) = f (x ⊗ x) (13)

for any f ∈ B0(H)� and x ∈ H. Assume now that f is g-absolutely continuous, and
consider a monotonically increasing sequence (fn)n∈� in B0(H)� such that fn ≤ αng for
some αn ≥ 0 and that fn → f pointwise on B0(H). Then, by bipositivity, (�(fn))n∈� is
also monotonically increasing, �(fn) ≤ αn�(g), and by (13),

(�(fn)x|x) → (�(f )x|x),

for all x ∈ H. This implies that �(f ) is �(g)-absolutely continuous. Assume conversely
that �(f ) is �(g)-absolutely continuous. Again by bipositivity, there exists a
monotonically increasing sequence (fn)n∈� in A � such that fn ≤ αng for some αn ≥ 0
and that (�(fn)x|x) → (�(f )x|x) holds for any x ∈ H. To conclude that f is a g-
absolutely continuous functional, it is enough to prove that fn(T) → f (T) for each
compact operator T . Moreover, we prove that fn → f in functional norm. With this
end, let ε > 0 and choose an orthonormal basis E in H. Fix a finite subset E0 of E and
an integer N such that

Tr(�(f )) −
∑
e∈E0

(�(f )e|e) <
ε

2
and

∑
e∈E0

((�(f ) − �(fn))e|e) <
ε

2
.

Then for any integer n with n ≥ N,

Tr(�(f − fn)) ≤ Tr(�(f − fN))

≤
∑

e∈E\E0

(�(f )e|e) +
∑
e∈E0

((�(f ) − �(fn))e|e) <
ε

2
+ ε

2
= ε.

Hence, we have ‖fn − f ‖ = Tr(�(f − fn)) → 0. It remains only to show that �([g]f ) =
[�(g)]�(f ). It follows immediately from part (b), the bipositivity of �, and the
maximality of the almost dominated part (both in the operator and functional case).
Indeed, �([g]f ) is �(g)-absolutely continuous because [g]f is g-absolutely continuous.
Hence, �([g]f ) ≤ [�(g)]�(f ) by maximality. To prove the converse implication, let
us denote by  the inverse of �, and observe that ([�(g)]�(f )) is g-absolutely
continuous. And hence, again by maximality,

([�(g)]�(f )) ≤ [g]f.

Applying � to both sides gives [�(g)]�(f ) ≤ �([g]f ), completing the proof. �
To illustrate how sophisticated the order structure of A � may be, let us consider

the following example.

EXAMPLE 5.6. Let X be a compact Hausdorff space and H a Hilbert space. Denote
by C(X) the set of all continuous functions from X to �, and by B0(H) the set of
all compact operators on H. Set A for their direct sum, that is, A := C(X) ⊕ B0(H),
which becomes a C∗-algebra with respect to the usual operations, involution, and norm.
Then, A ′ = C(X)′ ⊕ B0(H)′. It is easy to check from Example 5.3 that the infimum
(f ⊕ 0) ∧ (g ⊕ 0) for f, g ∈ C(X)� always exists. Clearly, (f ⊕ 0) ∧ (g ⊕ 0) = (f ∧ g) ⊕ 0
in this case. On the other hand, (0 ⊕ f ) ∧ (0 ⊕ g) for f, g ∈ B0(H)� may exist if and only
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if f ∧ g in B0(H)� exists. In view of Example 5.4, this happens only if [f ]g and [g]f are
comparable.

6. Uniqueness of the Lebesgue decomposition. As it has been pointed out by
Kosaki [10], the Lebesgue-type decomposition of representable functionals is not
necessarily unique even over von Neumann algebras. Nevertheless, it is possible to
give a non-trivial sufficient condition for the uniqueness in terms of the regular part.
As we shall see, this property can be necessary in some cases.

THEOREM 6.1. Let f and g be representable functionals on A . If [g]f ≤ cg holds for
some c ≥ 0, then the Lebesgue-type decomposition of f with respect to g is unique.

Proof. Assume that f = f1 + f2 is a g-Lebesgue decomposition of f . By the
maximality of [g]f , we obtain that [g]f − f1 ∈ A �, and the inequalities

0 ≤ [g]f − f1 ≤ [g]f ≤ cg and [g]f − f1 ≤ f − f1 = f2

imply that [g]f − f1 is both absolutely continuous and singular. This yields [g]f = f1. �
We remark that a similar argument shows that if absolute continuity is a hereditary

property (i.e., f � g and h ≤ f imply h � g), then the Lebesgue decomposition is
unique. Based on the preceding theorem, the uniqueness problem can be easily solved
over finite-dimensional ∗-algebras.

EXAMPLE 6.2. Let A be a finite-dimensional ∗-algebra. Then for any f ∈ A �,
the representation Hilbert space Hf , obtained along the GNS construction, is finite
dimensional. Hence, for f, g ∈ A �, the mapping

πg(a)ζg 	→ πf (a)ζf

from Hg to Hf is closable if and only if it is continuous. This means that f � g if
and only if f ≤ cg for some c ≥ 0. Hence, in view of Theorem 6.1, the Lebesgue-type
decomposition on A � is unique.

In the next example, we shall see that uniqueness may also appear in infinite
dimension, namely over C(X). In contrast to the finite-dimensional case, the sufficient
condition of Theorem 6.1 is redundant now.

EXAMPLE 6.3. Let A be a unital commutative C∗-algebra. Since there is a bipositive
isometric isomorphism between representable functionals and non-negative regular
Borel measures (see Example 5.3), absolute continuity is a hereditary property in
this case. Indeed, assume that f is g-absolutely continuous, and h ≤ f . According to
Theorem 2.1, the representing map f 	→ μf gives a monotonically decreasing sequence
of measures such that μfn ↑ μf , and μfn is μg-dominated for all n ∈ �. Consequently,
the inverse image of the sequence μhn := μh ∧ μfn guarantees that h is g-absolutely
continuous.

The next example shows that the sufficient condition of Theorem 6.1 may be
necessary in certain infinite-dimensional cases.

EXAMPLE 6.4. For f, g ∈ B0(H)�, we state that the g-Lebesgue decomposition of f is
unique precisely when [g]f ≤ cg for some c ≥ 0. Indeed, letting F = �(f ) and G = �(g)
as in (12), Theorem 5.5 says that the g-Lebesgue decomposition of f is unique if and
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only if the G-Lebesgue decomposition of F is unique in B(H). On account of [2,
Theorem 6], the latter assertion is equivalent to [G]F ≤ cG, and hence, by bipositivity
of � to [g]f ≤ cg.

As the preceding example demonstrates, the Lebesgue decomposition of
representable functionals is not necessarily unique over (non-commutative infinite
dimensional) C∗-algebras. Next, we are going to prove a similar characterization over
B2(H), which shows that the Lebesgue decomposition is not necessarily unique even
over Hilbert algebras. The main tools are Ando’s uniqueness result, again, and a
counterpart of Theorem 5.5.

EXAMPLE 6.5. Let H be a Hilbert space and denote by B2(H) the Hilbert algebra
of Hilbert–Schmidt operators, endowed with inner product

(S|T)2 = Tr(T∗S), S, T ∈ B2(H). (14)

According to the Riesz representation theorem, any bounded positive functional f on
B2(H) is of the form

f (T) = (T |F)2 = Tr(FT), T ∈ B2(H), (15)

for some uniquely determined positive linear operator F ∈ B2(H). The mapping f 	→ F
is bipositive, i.e., f1 ≤ f2 if and only if F1 ≤ F2. Note that the positive functional f is
representable if and only if F is a trace class operator, or equivalently, F1/2 ∈ B2(H).
Indeed, if F ∈ B1(H), then

|f (T)|2 = |(TF1/2|F1/2)2|2 ≤ ‖TF1/2‖2
2‖F1/2‖2

2 = Tr(F)f (T∗T)

for all T ∈ B2(H), hence f is representable. For the converse, suppose f is representable,
that is,

|f (T)|2 ≤ Mf (T∗T), T ∈ B2(H)

for some M ≥ 0. Choose an orthonormal basis E of H, then for any finite set E0 of E,
denoting by P the orthogonal projection of H onto the subspace spanned by E0, we
get ∑

e∈E0

(Fe|e) = Tr(FP) = f (P) = f (P∗P).

By representability,(∑
e∈E0

(Fe|e)

)2

= |f (P)|2 ≤ Mf (P∗P) = M
∑
e∈E0

(Fe|e),

which yields ∑
e∈E0

(Fe|e) ≤ M,

whence we get F ∈ B1(H) and Tr(F) ≤ M.
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We see therefore that B2(H)� may be identified with positive elements of B1(H)
along the bipositive map f 	→ F . Imitating the proof of Theorem 5.5, it can be shown
that this map preserves absolute continuity and singularity as well. Hence, for f, g ∈
B2(H)�, the image of [g]f is just [G]F . Applying Ando’s uniqueness result [2, Theorem
6], the Lebesgue decomposition of f with respect to g is unique if and only if [g]f ≤ cg
for some c ≥ 0.

Our final example demonstrates that Lebesgue decomposition is non-unique over
the von Neumann algebra B(H). In accordance with Theorem 2.1 and Ando’s result [2,
Theorem 6], we show that non-uniqueness occurs whenever H is infinite dimensional.

EXAMPLE 6.6. Let H be a Hilbert space. Given two positive trace class operators
F, G ∈ B1(H), we set

f (T) := Tr(FT), g(T) := Tr(GT), T ∈ B(H). (16)

Then clearly, f, g are positive (hence representable) functionals on B(H). Note that not
every positive functional on B(H) derives from a trace class operator. Functionals of
the form (16) are called normal functionals. The reader can easily verify that f ≤ g if
and only if F ≤ G. Furthermore, any positive functional majorized by a normal one is
normal itself: if k ∈ B(H)�, k ≤ f , then k(T) = Tr(KT) for some (unique) positive
operator K ∈ B1(H). According to these observations and repeating the proof of
Theorem 5.5, one can easily deduce that F and G are mutually singular if and only if
f and g are so. Similarly, F is G-absolutely continuous if and only if f is g-absolutely
continuous. In particular, the g-Lebesgue decomposition of f is unique precisely if the
G-Lebesgue decomposition of F is unique.

After this brief comment, let us construct a counterexample. Assume H is infinite
dimensional and consider an orthonormal sequence (en)n∈� in it. Let (αn)n∈�, (βn)n∈� be
two monotone decreasing sequences in �1 with positive coefficients such that αn/βn →
∞. Set

Fx :=
∞∑

n=1

αn(x|en)en, Gx :=
∞∑

n=1

βn(x|en)en, x ∈ H, (17)

and define f, g ∈ B(H)� by (16). Letting

Fnx :=
n∑

k=1

αk(x|ek)ek,

we have Fn ≤ Fn+1 → F in operator norm and also Fn ≤ αn

βn
G. Hence, F is G-absolutely

continuous, i.e., [G]F = F . On the other hand, F ≤ cG is impossible because αn/βn →
∞. The G-Lebesgue decomposition of F is therefore not unique, in accordance with
[2, Theorem 6]. Hence, the g-Lebesgue decomposition of f fails to be unique as well.
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