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SOME GROUPS WHOSE S3-SUBGROUPS

HAVE MAXIMAL CLASS

ED CLINE

1. Introduction

In this paper, we investigate several classes of groups, among which the

most general is defined as follows:

DEFINITION 1.1. A finite group G is a SR-grouβ if it contains a subgroup

Px of order 3 satisfying:

(a) yl/Ss-subgroup P2 of iVσ(Pi) is elementary of order 9;

(b) NG(P2)IP2 acts semi-regularly by conjugation on the conjugates of

Pi contained in P2.

To emphasize the role of Pl9 we sometimes say G is a SivNgroup with

respect to Pλ.

The main result of this paper is

THEOREM 1.2. If G is a SR-group, then 03(G) is a proper subgroup of G.

It is clear that the definition of Si?-groups can be easily generalized

to primes other than 3, but the conclusion of Theorem 1.2 does not carry

over to these primes.

The class of Si?-groups contains several interesting subclasses, e.g., let X

be a finite group, Px a subgroup of Aut(Z) such that \PX\ = |C^(Pi)| = 3.

Then the semidirect product G = PλX is a S#-group. If X= PSL{3,q),

where q is congruent to 1 mod 3 but not mod 9, let a be the automorphism

/0 λ 0
of X induced by the matrix 0 0 1 where λ is a primitive cube root

\l 0 0

of unity in the field with q elements. If Pλ is the cyclic group generated

by α, the semidirect product G = PXX is a Si?-group.
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The proof of Theorem 1.2 is given in section 2. In section 3, we con-

sider a smaller class of groups called SRTI groups (cf. Def. 3.1), and

characterize the 3-solvable groups in this class. If we let G be a SRTI

group which is minimal subject to non-3-solvability, the results of this section

yield an analogue to the maximal subgroup theorem (Theorem 8.6.3 of [5])

for G. However, we do not include this result here.

In section 4, we apply Theorem 1.2 to the theory of Frobenius Regular

groups as defined by Keller in [7]. We recall G is a Frobenius Regular

group if it contains a subgroup M such that NG{M) = MQ is Frobenius with

kernel M, and M and Q are 77 sets in G.

Frobenius Regular groups may be viewed as a two parameter family

of groups if we specify the number a of transitive constituents of MQ which

have length |M|, and the number β of constituents of length |MQ|. If

this is done, we call a Frobenius Regular group G an (a,β) group.

THEOREM 1.3. Let G be a (2,/3) group resrepented on the cosets of MQ. Let

π = {2,3}, and consider the characteristic series.

If τ = [Gi : G2], then

(i) G2 is simple;

(ϋ) τ ^ 3 ;

(iii) G2 is a (2,σ) group on M{Qf)G2), where σ = [G : G2]β;

(iv) A^2(QΠG2) is a Frobenius group;

(v) G=QG2.

The notation in this paper is consistent with that of [4], with the ex-

ception that we use VG(X; Y) to denote the weak closure of X in Y with

respect to G.

2. Proof of Theoerm 1.2.

It is clear from the definition of SivNgroups that the S3-subgroups of an

SR-group have maximal class. We use the following properties of such

groups:
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LEMMA 2.1. [Blackburn [1]) Let P be a p-group, p a prime,

(i) If K is an element of order p in P such that CP{π) has order p2, then P

has maximal class.

(ii) If P has maximal class, the normal subgroups of P contained in Pr form

a chain.

(iiii) If p — 3, Pr is abelian with at most 2 generators.

The key step in the proof of Theorem 1.2 is the following description

of the Sylow 3-structure of a SR-gτowp.

THEOREM 2.2. Let G be a SR-group with respect to Pλ. Suppose P is a

Si-subgroup of G, has order 3n, and contains Pί9 then

(i) for each i = 1, , n there is a unique subgroup Pi of P such that

\Pi\ = 3\ and Pi contains Px;

(ii) ifl<i<n, Pi+ί = NoiPi);

(iii) P has index at most 2 in its normalizer;

(iv) If ω is an involution in G which normalizes P, then ω acts regularly on

PID(P);

(v) Nσ[Pi) has a normal ^-complement B. If B ψl, then NG{Pι)lPι is Fro-

benius with kernel

Proof Part (b) of the definition of Si?-groups says that if P2 = JVp(Pi),

then P2 is a self-normalizing S3-subgroup of NG{Pi)9 so (v) is an immediate

consequence of Burnside's theorem.

For the proof of (i) and (ii), we use induction on i, noting that (i) is

obvious for i — 1, while (ii) is vacuous. We may assume for any conjugate

Pi of Pi contained in P, that (i) holds for all k^i, and (ii) holds for all

j^Li — 1. Of course, we assume 1 < i < n. Note first that

(2.1) NG{Pi)IPi is semi-regular on the conjugates of P ^ (under G) which

are contained in Piβ

Suppose τ^NG{Pi) normalizes some conjugate P\_x of P^u and that P?>!

is contained in P4. By (i), P?_x and P4 are the unique subgroups of orders

3*-1 and 3* respectively of P which contain Pξ. By part (ii), P< = NβiPζ^)

if i > 2 , so τePί and (2.1) follows if i > 2. When i = 2, (2.1) is part of

the definition of Si?-groups, so (2.1) holds in all cases.
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Since Pλ^Pi, Lemma 2.1 implies P4 has maximal class, hence PilD{Pi)

is elementary of order 9, and it follows that Pi contains at most four con-

jugates of Pi-i. Since i < n, the index [NG{Pi) : PJ is divisible by 3. Since

complete reducibility implies any involution in NG{Pi) must normalize at

least two maximal sugroups of Pi9 (2,1) implies [NG{Pi) : PJ = 3.

Let H be any subgroup of order 3 ΐ + 1 of which contains Pγ. The uni-

queness of Pi implies Pi is a maximal subgroup of H, hence is normal in

H, so H= NG(Pi) — Pί+ι is unique. This completes the proof of parts (i)

and (ii). We note that for i = n, (2.1) is a consequence of (i) and (ii).

If ω is an involution in NG(P), ω normalizes at least two maximal subgroups

of P. Since it cannot normalize Pn-U (Hi) follows at once from (2.1), and

so does (iv).

COROLLARY 2.3. Assume the hypothesis of Theorem 2.2. If P contains an

elementary subgroup E of type (3,3,3,), then P= PXE has order 81, and is self-

normalizing in G.

Proof By Lemma 8.4 of [4], P has an abelian normal subgroup A

with 3 generators. By Lemma 2.1, it follows that A is maximal in P, and

we can assume E = Ωι(A). Then Pt fixes exactly three elements of E, so

PγE is isomorphic to the wreath product of a cyclic group of order 3 with

itself. Here P^PJL)' is the unique subgroup of PXE which is non-abelian

of order 27 and exponent 3, hence is characteristic in PXE, By Theorem

2.2, it follows that NG(P) ̂  PiE = P, and the proof is complete.

As a second application of Theorem 2.2, we obtain more information

about the 3-local subgroups of G in

LEMMA 2.4. Let G satisfy the hypothesis of Theorem 2.2. Let A be a

maximal abelian normal subgroup of P, and C = CP{Z2(P)) If P has class at least

3, and Pr is not weakly closed in P, either

(i) Λ = C = VG(P';P), or

(ϋ) | P | = 81, and C= A has type (9,3).

In case (i), either NG{A)ICG{A) is isomorphic to SL(2,3), or P has order 81, A is

elementary, and NG{A)ICG(A) is isomorphic to AA or the non-abelian group of order

39.
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Proof. Since Pf is not weakly closed in P, Lemma 2 of [3] implies
A— C. If IJPI >81, the proof of Lemma 2 of [3] applies in this situation
and yields

A=VG(P';P)

as well as

(2.2) SL(2,3)^NG(A)ICG{A).

By Corollary 2.3, A has two generators, so Theorem 2.2 implies equality
in (2.2).

Suppose I JP I = 81, and C— A does not have type (9,3). Then A is
elementary, and Corollary 2.3 implies P is self-normalizing in G. It follows
that NG(A)ICG{A) is a Frobenius group, and is isomorphic to a subgroup of
GL(3,3). The last statement of the lemma follows easily from this.

Remark. If V=VG(P';P), \P\ = 81, and A has type (9,3), it is not
difficult to see V must be non-abelian of order 27 and exponent 3. Here
NG(V)ICQ{VID{V)) is isomorphic to SL{2,3).

The proof of Theorem 1.1 is now easy. Griin's theorem, and part (iv)
of Theorem 2.2 imply NG(Pr)IPr has a proper 3-factor group. If P has class
2, or if case (ii) of Lemma 2.4 occurs, then NG(Pf) contains NG(C), and
Theorem 1 of [3] implies

O'(NG(P'))nNG(C))<NG(Q).

By Lemma 2.4, 0*{NG{C) in all cases, so Theorem 1.1 follows from Theorem
1 of [3].

3. SRTI groups.

If G is a 3-solvable S^-group, Lemma 1.2.3 of [6] and Lemma 2.1
show that if P is a S3-subgroup of G, then Pf is contained in 03,3(G). By
the Frattini argument,

(3.1) G=NG(VG(P';P))0AG).

It is not hard to show (3.1) is the best possible result for 3-solvable SR-
groups, so we consider a slightly stronger set of conditions which yield an
improvement of (3.1).
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DEFINIITON 3.1. A group G is a SRTI-group if it contains a subgroup

Pj of order 3 which satisfies:

(a) If P2 is a S3-subgroup of Nσ{Pi)9 P2 is elementary of order 9;

(b) P2 is self-centralizing in NG(Pί);

(c) if B = Oβ/CΛkCPO), then Q = PxxB is a 77 set in G.

Remark: Throughout this section, we use the notation introduced in

Definition 3.1. If G is a SRTI-group, and π is the set of primes dividing

the order of B, Frobenius' theorem on normal complements shows G satis-

fies Dπ.

Our first lemmas provide some basic properties of SRTI-groups.

LEMMA 3.2. If G satisfies {a) and [c) of Definition 3.1, either G has a

normal ^-complement, or G is a SRTI-group.

Proof Since Q = P,xB is a TI set in G, CG{P2) = P2xCB{P2). If for

some μ in G, QμΓiP2>l, then CG(P2)^NG{Qμ), hence

CB(P2)^BμΓ\B.

If CB(P2) is non-trivial, it follows that μ normalizes Q, hence exactly one

conjugate of Q intersects P2 non-trivially. Since NG{P2) permutes these con-

jugates among themselves, NG{P2)^NG(Q), and Burnside's theorem implies

G has a normal 3-complement.

LEMMA 3.3. If G is a SRTI-group, it is also a SR-group.

Proof Suppose Pμ

x^P2, and an element σ of NG{P2) normalizes P\.

Then Pξ is contained in QμΓ\Qμσ, so σ normalizes Qμ. Thus σ lies in

NG{Qμ)ΠNG(P2). By part (b) of Definition 3.1, P2 is self-normalizing in

NG{P2) so σ lies in P2, and G is a SR-group.

For the remainder of this section, we let G be a Si?77-group with

respect to Pu and let P be a S3-subgroup of G which contains P1# Since

G is a Si?-group, we let P̂  be the unique subgroup of P which contains

Pi and has order 3\ We are interested in the properties of the subgroups

of G which are normalized by P̂  for various choices of i.

LEMMA 3.4. Let X be a group whose Sz-subgroup P* has maximal class. If

every abelian subgroup of P* has two generators, and if P* is self-normalizing in

X, then X has a normal ^-complement.
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Proof. Let C = CP*(Z2(P*)). By Theorem 1 of [3], and induction, we

may assume C is normal in X, and if C is non-abelian, we may assume

P*' is normal in X. Furthermore, if Y^{C,P*f}, we know that XjY has a

normal 3-complement H/Y. Since Y is generated by two elements, HICH(Y)

is isomorphic to a 2-subgroup of SL{293) which is normalized by a S3-

subgroup of SL(2,3). Since P* is self-normalizing in X, it follows that

H = CH{Y) has a normal 3-complement, and the proof is complete.

LEMMA 3.5. (a) Let μ be an element of G, and X a subgroup of G

such that P'i^LX^G. One of the following occurs:

(i) | X | 3 = 3 ; X has a normal 3-complement;

(ii) 3 < \X\s< | G | 8 ; X has a normal 3-complement X is a SR77-group

(iϋ) | χ | 8 = | G | 8 ; X is a SΛ7Y-group.

(b) If iV is normal in G, and 9 divides the index [G : JV], then

is a Si? 77-group with respect to

Proo/. (a) Clearly, we can assume P? = Pi. Also (i) is obvious, so

suppose P* is a S3-subgroup of X, and P a S3-subgroup of G satisfying

PX<P*<P. Since G is a Si?-group, Theorem 2.2 implies P* has index 3

in its normalizer in G, thus P* is self-normalizing in X By Lemma 2.1,

P* has maximal calss, and by Corollary 2.3, P* satisfies the hypotheses of

Lemma 3.4. It follows that X has a normal 3-complement.

Now Br = O^fiNxiP,)) = BOX is the normal 3-complement of iVr(Pi). If

JMGI is chosen so that ζ)' = Λ x F satisfies Q 'n(ζ>y>l , then μ^Nx{P1)^

Nx(Qr), so Qr is a T/ set in X. All other parts of the definition are clearly

satisfied, so (ii) follows. Since this paragraph applies equally well to part

(iii), (a) holds.

For the proof of (b), we denote homomorphic images in GIN by bar-

ring the appropriate letter, e.g., G = GfN. Assume first 3 divides the order

of N. Theorem 2.2 implies i\fe(Pi) ^s elementary of order 9, since 9 divides

the order of G, so in this case Definition 3.1 holds.

If N is a 3'-group, we can use the Frattini argument to show N^P^)

= NG(Pι)N, so (a) and (b) of the definition are clear. Also B is the normal

3-complement of A^(Pi), and we need only show Q is a TI set in G.

Suppose for μ = Nμ, QθQJΓ>ϊ. Then QNf)Qμ>l. Since QN is a

Frobenius group with Q as the subgroup fixing a letter, if π is the set of
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primes dividing the order of Q, QN satisfies Dπ, so there is an η in N such

that Qμ >: QNΠ Qμ. It follows that Qη = Qμ, and this completes the proof,

since Qμ = Qη = Q.

We have already noted G is a Si?-group, and introduced the subgroups

Pi9 We now state a uniqueness property for the Pi which is useful for the

investigation of the subgroups normalized by the P*:

(3.2) If i>.2% and Pτ^Pi9 then Pτ = P.

To see this, note that for some j ^ i , PτΓ)P=Pj= {PT)j by Theorem

2.2. If j < n, Theorem 2.2 implies Pj+1= {Pτ)j+ί which is impossible, so

(3.2) follows.

LEMMA 3.6. Suppose i>.2, and Pi normalizes the subgroup U of G. Suppose

UnPi = 1. Then U is a 3''-group, and P't centralizes U. If i > 2 , \U\ is prime

to I NG(Pι) I, and U is nilpotent of class at most 2.

Proof Let S be a S3-subgroup of U chosen so that Pi normalizes S.

If P* is a S3-subgroup of G containing PiS, (3.2) implies P* = P, and if

S > 1 , SnPi^Z{P), a contradiction. Thus U is a 3;-group.

Since P2 is abelian, we may assume i > 2 , and let π be the set of

primes dividing the order of B. We show U is a π'-group. If not, let

T > 1 be a St-subgroup of U for some prime t in π. Since U is a 3r-group,

we may assume T is normalized by PL. Since G is a 5i?77-group, G satisfies

A , so for some <; in G, T^B\ Since 5 is a T/ set in G, it follows that

Pi normalizes Bσ, which contradicts the fact that a S3-subgroup of NG(Bσ)

has order 9. If P? is any conjuagte of Px contained in P :, then P? must

act Frobeniusly on £/, hence the main theorem of [8] implies U is nilpotent

of class at most 2.

Let W be the kernel of the representation of P,b on U, and suppose

W <P[. Consider the action of E = PιxZ{Pi) on £7, where barring a letter

denotes taking homomorphic images in PjW. Since E is properly contained

in Pi9 Theorem 2.2 implies E contains exactly three conjugates of P lβ The

last sentence of the preceeding paragraph shows that these conjugates all

act Frobeniusly on U. The remaining cyclic subgroup of E is Z(P4), and

since E acts cyclicly on every irreducible submodule of U/D(U), it follows

that Z(Pi) centralizes UjD{U)9 hence also U. This contradicts the faithfulness

of Pi on U, hence W contains P[.

We obtain a corollary,
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LEMMA 3.7. (i) Suppose 2 < i < n, Pi normalizes U9 and UπPi = 1, then

PiΓ\Pf centralizes U.

(ii) If 27 divides the order of G, and P2 normalizes U, Uf\Pz-l, then

either U^Na{Pi)9 or U<CQ(Z(P)). In either case U is nilpotent.

Proof (i) The fact that i < n insures Pi\P[ contains three conjugates

of PiP'JP'i under action by Pi+l9 so the same argument applies.

(ii) We know U is a 3'-grouρ. Let ζ)* = Q n U, so Q* is a self-

normalizing Hall subgroup of U which is a TI set. Either U = Q*, Q* = 1,

or U — Q*K is Frobenius with kernel K. If U is Frobenius, it follows that

all conjugates of P1 contained in P2 act Frobeniusly on K, hence, as above,

we obtain K^CG(Z(P)). However, the definition of S#7Y-groups shows

that Z{P)Q* is a Frobenius group which normalizes K. Since Q* is non-

trivial on K, Z{P) does not centralize K, and we have a contradiction.

If ζ)* = 1, Z[P) centralizes U, so the proof of (ii) is complete. In both

cases, U is nilpotent of class at most 2.

We can now apply these results, which hold in general for SR 77-groups,

to characterize 3-solvable S^TY-groups.

THEOREM 3.8. Let G be a 3-solvable SRTI-group with S%-subgroup P. Then

V0{P';P) is normal in G. If U - 03,(G), and 27 divides the order of G, U is

nilpotent of class at most 2, and B = 1. If | G | 3 = 9, either G has a normal 3-

complement U, and there is a nilpotent normal subgroup K of G contained in U such

that PJJ = QK, and Qf)K=l, or U is nilpotent of class at most 2, and B = 1,

or U. The possibilities for G\U are given in Theorem 2.2, and Lemma 2.4.

Proof, By (3.1), to show VG{P';P) is normal in G, it suffices to show

Pf centralizes U, but this follows from Lemma 3.6. If 27 divides the order

of G, it is clear that U is nilpotent of class at most 2. Now B is a Hall

subgroup of G, and it follows from (3.1) and Lemma 2.4 that B is contained

in U9 hence B — 1.

Suppose | G | 3 = 9 . If P2 is self-normalizing in G, G has a normal 3-

complement U. If U > B > 1, it is a nilpotent self-normalizing TI set in

U, so U is a Frobenius group with kernel K, and the second statement of

Theorem 3.8 is obvious. This completes the proof since Theorem 2.2 and

Lemma 2.4 are essentially an analysis of the possibilities for G/U.
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4. Proof of Theorem 1.3

Throughout this section, let G be a (2,j9) group on MQ. The proof of Theo-

rem 1.3 consists of the following lemmas.

LEMMA 4.1. Let X be a {a,β) group on MQ. If a is even, T= S2{Q) is

cyclic. If T is non-trivial, then X= F(X)MQ.

Proof. Suppose T is non-trivial. By Lemma 2.2 of [7], the index

[NX{Q) : Q] = a + 1 is odd. Since NX(T) is contained in NAQ), it follows

that T is a S2-subgroup of X. It is well known that T is either quaternion

or cyclic (cf. Theorem 10.3.1 of [5]). If T is quaternion, a result of Brauer

and Suzuki [2] implies Z{XIO2,{X)) has order 2, hence M ^ K = 0 2 / ( X ) . The

definition of (a,β) groups implies M is not normal in G, and since Mis a

Hall subgroup of G, M is not normal in K.

By the famous theorem of Feit and Thompson [4], there is a prime p

such that 0p(K) = Kλ is not the identity. Clearly Mf)Kι= 1, so MKλ is a

Frobenius group. However, M is nilpotent of odd order, so it follows that

M is cyclic. Since this contradicts ths fact that TM is Frobenius and T is

quaternion, it follows that T must be cyclic.

Now K is a normal 2-complement for X. Suppose T is non-trivial,

and F(X)MQ< X. Since M is not normal in X, F(X)ΠMQ = 19 hence

F(X) = F{K) has order prime to \MQ\. Let Kγ be a normal subgroup of

K minimal with respect to the containments K^.KX > F{X). If Mi=MΓ) Kx > 1,

then Mi is a Hall subgroup of Ku and the Frattini argument implies

X— F(X)Nx(Mι), a contradiction since Nx{Mι) is contained in MQ. Thus it

follows that MKi is a Frobenius group, hence by [9], Kγ is nilpotent, a con-

tradiction to K1>F(X) = F(K).

COROLLARY 4.2. The order of Q is odd.

Proof. If T=S2{Q), then G = F(G)MQ by Lemma 4.1. Since M is a

Hall subgroup of G, and is non-normal in G, we obtain F(G)ΠMQ = 1. If

F is any MQ-invariant section of -F(G), then CY(Q) > 1, since MF{G) is a

Frobenius group, and |F(G)| is prime to |MQ|. Since [NG(Q) : Q] = 3, it

follows that JP(G) is an elementary 3-group, and MQ acts irreducibly on

F(G). In particular, Q acts as a multiple of the regular Z3(Q)-module (here

Z3 is the field with three elements). Since [NG{Q) : Q] = 3, it follows that
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\F{G)\ =3\Q\. Since the smallest prime q dividing M is at least 5, the

Frobenius group MQ does not have a faithful irreducible representation of

degree \Q\ over Z3, so the corollary follows.

This corollary shows the Sylow subgroups of Q are cyclic, hence in

particular, Q has a normal 3-complement B by Burnside's theorem. Let U

be a S3-subgroup of NG(Q), and let V=Uf)Q be the corresponding S3-

subgroup of Q.

LEMMA 4.3. Either G has a normal ̂ -complement, or U is elementary of order

at most 9.

Proof. Suppose U is not elementary of order at most 9. Then it

follows that V contains a characteristic subgroup K of U such that K>1.

Since Q is a TI set in G, NG{U)^NG{Q) and it follows that U is a S3-

subgroup of G. Since iVG(Q) has a normal 3-complement, if C > 1 is any

characteristic subgroup of U contained in V, our previous argument shows

NG(C) has a normal 3-complement. If U is abelian, G has a normal 3-

complement by Burnside's Theorem.

Suppose U is non-abelian, then U contains an abelian subgroup of type

(3,3) so there is an element σ of order 3 in U such that U = O>F. Since

σ is an automorphism of V of order 3, a simple computation shows

U'^Z{U) = D(V) = D{U)<U.

This implies U has class 2, hence Ω\(U) has exponent 3. Since U does not

have exponent 3, 0i(ί/):<<(7>xZ>(E/). If 4̂ is an abelian subgroup of U for

which the minimum number of generators is maximal, then Ωι{A) = Ω^U)

and since U is non-abelian, we have U > AD(U)~^>(σyxD(U). The maxi-

mality of (σ}xD(U) in U implies A is contained in <a}xD(U). If /(£/) is

the subgroup of U generated by all abelian subgroups of U for which the

minimum number of generators is maximal, then

(4.1) /(£/)= <σ>xD(U)

Since Z{T) is contained in V, our remarks in the first paragraph show

CG{Z(T))^NG{Q) has a normal 3-complement. If \(U)\ > 3 , then the sub-

group Ωi(D{U)) is characteristic in J(U), so NG{J(U)) is contained in NG(Q),

and it has a normal 3-complement. By Thompson's theorem [9], G has a

normal 3-complement.
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Suppose J(U) is elementary. Then U has order 27 by (4.1). CG{J{U))

is contained in NG{Q), hence has odd order. If R is the normal 3-comple-

ment in Q, it follows that CG(J(U)) = J(U)xR\ where R' = CB(J(U)). Since

R' is a normal 3-complement in CG{J(U))9 if /? '> 1, NG(UCG(J(U))^NG(Q),

and if Λ ' = 1, NG{UCG{J(U))) = NG(U)<NG(Q), so in any case it has odd

order. Since JV= NG{J(U))ICG{J{U)) is isomorphic to a subgroup of GL(2,3),

our preceeding statement shows ί? = UCG(J{U))ICG(J{U)) is a self-normalizing

S3-subgroup of iV. This implies N= 0, hence NG{J{U)) has a normal 3-

complement and so does G by Thompson's Theorem.

LEMMA 4.4. G does not have a normal ^-complement.

Proof. Let H be a normal 3-complement for G. Since NG{M) — MQ is

Frobenius, it follows that M is contained in H. Since M is a nilpotent

Hall subgroup of G, the results of [10] allow us to use the Frattini argument

to obtain G = QH. In particular, Q contains a S3-subgroup of G which is

not the case.

Consider the structure of NG(Q). Corollary 4.2 implies Q is metacyclic,

so if we let Qi be the maximal normal cyclic Hall-subgroup of 0, Q = RQi

where R is a cyclic Hall-subgroup of Q. We note that Lemmas 4.3 and 4.4

imply V is central in Q, hence R is a 3'-Hall subgroup of G. Choose R so

that U normalizes R, then UR is represented on Qu Since Qx is cyclic,

and i? is non-trivial on Qu the group UR must be abelian. If Φ is the set

of primes dividing the order of R, Burnside's theorem implies G has a

normal Φ-complement G*, and clearly G = QG*. Let Q* = ζ) n G*9 and let

£* = 03,(Q). If C = C&{U), then C is a Hall subgroup of G*, and for the

set of primes Φ dividing \C\, G* has a normal Φ-complement Gi. Clearly

QGj = G9 and since G/Gi has order prime to 6, Gi contains 0*'(G). The

proof of Theorem 1.3 will be complete if we can show Gi satisfies parts (i)-

(iv) of Theorem 1.3 since this also implies Gi = Off'(G). Let Qί = VxB=QΓ)Gi.

LEMMA 4.5. IfV>l, d is a SRTI-group.

Proof. Consider V = Pi by Lemmas 4.3, and 4.4, V is cyclic of order

3, Q1 = VxB is a TI set in Gί9 and an S3-subgroup P2 of NOl(Pi) is ele-

mentary of order 9. If B > 1, the discussion above shows P^B\PX is a Fro-

benius group, hence P2 is self-centralizing in NGl(P1)9 and the lemma follows.

By Theorem 1.2, either V = 1, or there is a subgroup G2 of index 3 in

Gi which is normal in Gί9 and which satisfies VG2 = Gi.
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LEMMA 4.6. B > 1 .

Proof. If B = 1, Q n G 2 = : 1. Since M is not normal in G, it is not

normal in G2, hence G2 = KM is a Frobenius group, and G = KMQ.

As in Corollary 4.3, K is an elementary abelian group of order 3'ρl,

and MQ operates faithfully and irreducibly on K. Thus M is cyclic and

\M\ is prime to 6. The same contradiction obtained in Corollary 4.3

applies here, so the lemma holds.

The next lemma completes our proof.

LEMMA 4.7. G2 is simple.

Proof. Let N be a non-identity normal subgroup of G2. Since B > 1,

NG2(B) is a Frobenius group. From this it follows that M π i V > l . By the

Frattini Argument, and the fact that M is a TI set, G = NMQ. If JV< G,

G/JV is isomorphic to a factor group of MQ, and this contradicts the fact

that NG2{B) is Frobenius. Thus N= G is simple.

The simplicity of G2 implies G2 = 03(Gi), and Gx = (Γ(G). The fact that

Gi and G2 are (2,Γ) groups for the appropriate choices of T is trivial. The

fact that [Gi : G 2 ] ^ 3 follows immediately from the statement Gι = VG2. This

completes the proof.
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