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HOMOTOPY ASSOCIATIVITY OF SPHERE EXTENSIONS
To the memory of Professor J. P. Adams

by N. IWASE

(Received 20th June 1988)

Throughout this paper, we work in the category of (p-localized) spaces having the
homotopy type of connected CW-complexes of finite type with base point. We consider
a principal bundle

G^^X^S2""-1, (0.1)

where Gn = SU(n), U(n) or Sp(ri) and d=l,l or 2 respectively. In this case, the bundle is
obtained as an induced bundle by a mapping / of base space S2dll~l from the classical
group extension as follows:

Gn-i = = = = = Gn_i
n n
X f—)Gn

I i
o2dn - 1 / \ C2dn-l

We denote X by M(n,X) following Zabrodsky [19] when deg(/) = A. The problem is
to describe, in terms of d, n and A, the condition when M(n, k) becomes a homotopy
associative H-space or more generally an 4m-space for m^3 (see Stasheff [17]). The case
m=2 was studied by many authors (see Hilton-Roitberg [8], Stasheff [18], Curtis-
Mislin [4], Sigrist-Suter [16] and Zabrodsky [19, 20, 21, 22]) and solved completely by
1972 as the following form.

Fact 1. M(n, X) is an H-space if and only if one of the following three conditions is
valid.

(a) k is odd
{b) dn-^2
(c) A = 0mod2d and dn = 4.

To avoid a confusion with an integer modp, we adopt the notation "a property P at
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460 N. IWASE

p", rather than "a modp property P", for a localized property P at p. Now let us turn
our attention to homotopy associativity (or an /43-structure) of sphere extensions. At
first, Sigrist-Suter show in [15] that M(n,A) is not A3 in case A = 0mod4, d = 2 and n = 2
of Fact 1. By Hemmi [7], the result of Goncalves [5] implies that M(n, A) is not A3 at
the prime 2 in case (c) of Fact 1. We summarize the above results.

Fact 2. In case (c) of Fact 1, M(n,X) is not A3 at the prime 2. In cases (a) and (b) of
Fact I, M(n,X) is an A^-space at the prime 2.

Moreover Hemmi gives the necessary condition in [7] for p = 3, that is, A is prime to
6, when dn = r-3*, (r, 3) = 1 and r>3 , where we denote by 3* a power of 3. On the other
hand, the sufficiency condition is considered by M. Mimura and the author in Section 6
of [14] more generally as the construction of new (higher) homotopy associative H-
spaces. The purpose of this paper is to describe the condition in terms of d, n and A,
working with a concept slightly stronger than homotopy associativity (or ^m-structure).
Let Y be an /lm-space. Hopf's theorem implies that Y is rationally equivalent to a
product of Eilenberg-MacLane spaces niK(Q,2n,—1) which is a loop space. The space
Y is defined to be /lm-primitive, following [14], if the rational equivalence preserves the
/4m-structures, that is, it is an /lra-mapping.

Theorem A. The following three conditions are equivalent for 3^m^oo.

(1) M{n,k) has an Am-structure extending that of Gn-y.
(2) M(n, X) is an Am-primitive Am-space.

(3) For every prime p^m, one of the following two is valid.
(a) A is prime to p

(b) p^dn.

Remark 1. If m is not a prime, the primitivity condition in (2) is omittable. And if
dn^lp, /lp-structure supports /4p-primitivity for dimensional reasons.

Theorem B. Let p be an odd prime. Then the following three conditions are equivalent.

(1) M(n,X) is an Ap-primitive Ap-space at p.

(2) M(n,X) is an Ax-space (loop space or monoid) at p.
(3) A is prime to p or p^dn.

Remark 2. It is sufficient to prove for Gn=U(n) and Sp(n), because [/(«) has the
homotopy type of SixSU(ri). So, we may consider only for the cases Gn = U(n) and
Sp(n).

Remark 3. (2) implies clearly (1). (3) implies that M(n,X) is homotopy equivalent to
Gn at p. Hence (3) implies (2).

We will show in Section 1 that Theorem B implies Theorem A. So, we shall show that
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HOMOTOPY ASSOCIATIVITY OF SPHERE EXTENSIONS 461

(1) implies (3) to prove Theorem B in cases Gn=U(n) and Sp(n). To show this, we
calculate that p-divisibility of Hubbuck operations (see [9, 10, 11]) on the projective
space of M(n, A). Although the divisibility is not determined naturally and depends on
the choice of a splitting of K-theory, the calculations on BU(n) can be applied on the
suspension space of M(n, A).

The author thanks the Department of Mathematics of University of Aberdeen for its
hospitality. He also thanks John Hubbuck for discussions about K-theory operations
without which work on this paper would not have begun and also Michael Crabb and
many other persons in University of Aberdeen for conversations which helped to
organize my thoughts.

1. Proof of Theorem A from Theorem B

Let FI be the set of all primes, P , the set of primes p with p^dn, P 2 the set of primes
p with dn>p>m and P 3 = n —Px —P2. Then Gn has the homotopy type of a product of
spheres at P , . In particular, the bundle (0.1) is trivial. Hence, the pull-back M{n,X) is
also trivial and homotopy equivalent to Gn at Px . Hence M(n,X) has an /1^-structure
extending that of Gn_t at Px . Secondly, we may write A = A,A2 where (A,,P2) = 1 and
(A2,II —P2) = l. Let <? = MinP 2 where we regard Min<£ = oo. Then M(n,k) is homotopy
equivalent to M{n,X2) at P 2 which has an Aq_,-structure extending that of Gn_1; by
Theorem 6.5 of [14]. Therefore, M(n,X) has an /l^-j-structure extending that of Gn, if
and only if it has at P3 , by the property (P7) of [14].

Firstly we assume (3). Then / is a homotopy equivalence between M(n,X) and Gn at
P 3 and Gn has an /1^-structure extending that of Gn-l. This implies (1). Secondly we
assume (1). Then by [13], it follows that the generators of H*(M(n, A)); Q) are all
/^-j-primitive and therefore represented by Am_i-mappings, by the property (P9) of
[14]. By the proof of the Corollary in [13], the obstruction to be /lm-primitive is in
H2'(M(«,2))*...*M(M,A);Q) = H 2 i (G n _ ,*- -*G n _ 1 ;Q) ) i^n. (1) implies that the inclu-
sion mapping Gn_1-»M(«,A) induces a homomorphism of spectral sequences of
Stasheff's type (see [17, 13]). For dimensional reasons, the obstructions are mapped to 0
by the injective homomorphism induced from the inclusion. Hence the generators are
represented by Am-mappings and M(n, A) is -4m-primitive. This implies (2). Thirdly, we
assume (2). Then by Fact 1 and Fact 2, it follows that A is odd or dn^2, since m is
greater than or equal to 3. For an odd prime p^m, (2) implies that M(n,A) is an
/4p-primitive space at p. Then by Theorem B, we obtain (3). This completes the proof of
Theorem A.

2. Decomposition of BU and R(BT") at an odd prime

Let R be the ring of localized integers at an odd prime p, BU(P) the localization of BU
and K(X) = K(X;R) = [X,BU(P)']. By Adams [3], BUlp) is decomposable to p - 1 factors
such as BU(p)czBUwx ••• xBUlp~l) and the Chern character is also decomposable to
p — 1 factors

, i + j(p -1)).
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462 N. IWASE

We denote by K(X)li) the factor [AT, 51/$,] of K(X). Then it follows that
R(X)W © • • • © K(Xy-l). For X = BT, we have

with a0 = 1 and a, e Z.
Then by (2.1), it follows that, for X = BTn,

where j,^0, ix+ ••• +im = i, l^ax< ••• <am^n, m^n and xoeK(BT")(1) corresponds to
the generator of the ath factor of BT".

Using xa as above, we write X-algebras K(BU(ri)) and K(BSp(n)) as follows:

where cfeK(BU(n))(i) is mapped to (7i(x1,...,xn) by the monomorphism K(BU(n))->
K(BT"), <J, is the rth elementary symmetric polynomial and an is the symmetric group
on n letters.

Remark 2.1. cf is the class obtained by modifying the y-class so that ch(cf) lies in
nj^0H

2i+2}(p-1\BU;R). Hence cfi + 1 is mapped to 0 in K(BSp(n)).

3. Hubbuck operations in K(BU(n))

Let E be the fake RxBU{p) such as £ = njg0K(K,2/) and E{X) = [_X,E]. Then
£(Bl/(«))^K[[c1;...,cn]] and E(BTn)^R[[y1,...,yn]'], where C! is the ith Chern class
and is mapped to ot(yx,---,y^ by the ring monomorphism E(BU(n))-*E(BT").

To define Hubbuck operation, we need a splitting. Let us define the ring isomor-
phisms J:E(BU(n))^K(BU(n)) and J0:E(BTn) -> K(BT") as follows:

We regard the algebras K(BU(n)) and E(BU(n)) as the subalgebra of K(BT") and
E(BT"), respectively. Then it follows that J can be regarded as the restriction of Jo to
E{BU(n)) and so we often denote Jo by J. We wish to know the manner of Hubbuck
operations on cf in K-theory.
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Let us recall the Chern character on K(BT). By (2.1), it follows that

where aj=aJ-p
J/(l+j(p-l))\ is in R, because (q+l)\ divides m(g) = nallprimi:5p[''/(p~1)1

(see Adams [1]). To simplify notation, we introduce some functions in Q[[t]] where t is
transcendental:

e(t) = Ej^
V

Since d/dt(e(t))\l=o = ao = 6io = 1, e(t) has the inversion /(t) in Q[[t]]. We choose local
integers fij in R such that

, ^ V ( p ) with )?o = l-

Then it follows that

ch(x) = e(y) and ch(f(x)) = t{e(y)) = y. (3.1)

We will describe Adams operations by using e and L
Firstly we will define a fake Adams operation *F* on the fake K-theory E (see

Hubbuck [9, 10, 11]) and reserve the symbol i/̂  for the genuine Adams operation.

Definition 3.1. The fake Adams operation T* on E( —) is defined by the following
formula:

Vk(xn) = knxn for xneH2n(X;R).

Then the Chern character commutes with (fake) Adams operations \]tk and yVk.
Therefore the Adams operation preserves the mod p decomposition of (fake) K-theories.
So, we may write for the generator x of K(BT),

where r/fc) is a local integer in R, fo(k) = k and f1(p) = lmodp. On the other hand, we
can compute the Adams operation by using e and £ as follows:

and

c/#V(x))) = T*(c/!(/(x))) = ¥'(3;) = k • y = k • ch(t(x)) = ch(k • f(x)).
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464 N. IWASE

Therefore, we obtain \//k(^(x)) = k" f(x) and then it follows that

where /?,- f e £ is given by the formula

Using dj and JSJ ,, we can define more "stabilized" decomposition of the Adams
operation i//k by the following formula

where

We remark that Fj(k) and rj(k) has the following relation

f.{k)=±lM. (3.2)

We have prepared to describe the Hubbuck operations on K(BU(n)). Let us define Qh

Si and R(k)i in the ring Q[ltl,...,tnJ] as follows:

0Ae/(ti,.--,a

...y(g)
(3.3)
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where Q{, S{ and RJ(k)i are in R[ t 1 , . . . , t J L n and are written as polynomials of the
elementary symmetric polynomials ay,...,an of tu...,tn, if (k,p) = l. The following
equations can be easily checked:

ch(cf) =

<l,k(c?) = ki-R(k)i{x1,...,xn), when (fe,p) = l.

Next we define i?-endomorphisms of K{BU(ri)) extending the following relation by the
Cartan formula (see Hubbuck [9, 10, 11]):

= Q!(xu...,xn),

) = # (* ! , . . . ,xn),

R\k)(cf) = RJ(k)i(*i,-•-,*„), when (k,p) = 1.

Using them, we define Q(t), S(t) and R(k;t) in EndR{K(BU{n)))®RQ[itJ], by the
following formula

Then by the definition, we obtain

Proposition 3.1. The following four equations are valid:

(1) Q = J o c h a n d c h o S = J"1,

(2) S o Q = Q o S = I d e n t i t y and i//koS<> J(Wi) = k'S<> J ( W i ) ,

(3) ^J(w() = i'--^)oJ(4

(4) R\k) = 1/pT.Uok
ilI>-l)-SJ-'oQ',
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where w, is in H2i(BU(n); R).

Proof. (1) and (3) are obtained directly by the deflnitions of the Hubbuck operations
on cf together with the Cartan formulae. Firstly we show (2). By (1), J o ch o S = Identity.
This implies that Q°S = Identity and therefore, SoQ = QoS = Identity. Similarly, we have
c/ioSoJ = Identity. This implies that choij,k0SoJ = 1'kochoSoJ = *¥k and cho^oSo
J(wi) = il/k(wi) = kiwi = kichoSoJ(wi). Hence i/f*oS»J(Wi) = k'• SoJ(w,). To show (4), it
suffices to show

because both R9(k) and Sq~JoQJ increase the same weight q{p— 1). By (3), we obtain that

= il/koSoQoJ(Wi)

= s i - ^ o S o ^ o ; ( w , . ) .

Here, QJ °J(wt) has the weight i + j(p— 1) and then by (3), we proceed as follows:

j i p )

k' • R(k) o J(Wi) = ^r-—p— • S o QJ o J(W.)

This completes the proof of Proposition 3.1.

4. /^-divisibility

Before starting to prove Theorem B, we will show the key lemma of this paper. We
denote by vp the valuation of the ring of p-localized integers R, that is, vp(m) is the
largest power of p dividing m.

From now we assume that k = p—l. Then by Adams [2] or Hubbuck [10, Lemma
4.3], it follows that

* (4-1)

Firstly we show the p-divisibility of Hubbuck operations in K(BU(n)).

*If we take fc = 2, this equality fails for p= 1093 (see [6]).
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Lemma 4.1 Let in = m + j{p—l), i ^ l , n't.m'^.l. If vp(m)gvp(n), then the coefficient
of(cf)' in KJ(k)(cfS is divisible by n/m in R.

Proof. We write #(k)m('i O ^ i O ^ i . - -,<O in /?[>„. . . ,*, , ] , where ax is the ith
symmetric polynomial of tu...,tn. Then the desired coefficient is given by
PJ

m(0,...,0,l) = Ri{k)m(Z,Z2,...,£'), where £ is the primitive nth root of unity in the
complex number field. Using the definition (3.3), we write

Hh,...,ttt),

where jx,••-,]„ run over all integers such that O^j1^---jm^j = j l + --- +jm and the
polynomial Lm is given by

where j ' u . . . , j ' m and au...,am run over the set A given by {(a1,...,am;j'l,...,fj\l£
ax< ••• <am^n, U'i,---J'm)=Uu---JJ if we ignore the ordering}, by the following
calculation:

Hence we obtain that

where jlt...,jm run over 0£h£-~ £jm£j=jl + —+jm, g{3) =
ai(fi(p—!)+!)+ •' +amU'm(p — l) + l) i n the cyclic group of order n and 8 =
(al,...,am;j'i,...,j'J. We remark here that L'm is a localized integer. So, we are left to
show that the localized integer L'm' is divisible by n/m if v^n)^ vp(m).

Let T be the element of £„ such that t(a) = a + 1 modn and a the element of Zm such
that 1 ̂ T(aff(!))<••• <T(a<r(m))gn. Then a = Identity or o{i) = i— lmodm for all i. We
remark that CT depends on both T and ( a 1 , . . . , a j . Let <5 = ( a 1 ) . . . , a m ; / 1 , . . . , j J and
^• 8=(aa{i),...,ao(m); f , , w , . . . , ; ; ( m ) ) . Then we obtain that

g{T-8)=g(8) mZ/nZ,
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- l—t-
#2 a3 &4 a5 a6

FIGURE 1

b e c a u s e i n = j(p—l) + m = (ji(p—l) + l ) + ••• +(jm(p — l) +I). T h e r e f o r e we o b t a i n t h e
following equation

where A' is the quotient set of A by the action of Z/nZ and n{x, 5) is the cardinality of
the set {<5,T<5,...,x"~15}. Hence, n{x,S) divides n.

On the other hand, the equation ^•i)5 = 5 implies aff(0 + n(x,8) = a(modn and
o'(i) = i — m(x, d) mod m for some a' e Zm and 1 ^ m(z, 5) ^ m. Therefore, we obtain the
equation

mix,S) = #({f l l , . . . ,am}n [1,n(x,<5)])

This implies m(t, d) divides m and m/m(x, 5) = n/n(x, d). Hence n(x, 6) = n • m(x, d)/m and

•Ui Jm(£ ...,«")= (n/m) •

in the ring R if vp(n) ^ vp(m). This implies the lemma.

5. Proof of Theorem B

We assume (1). To construct a Hubbuck operation on the projective spaces P(m) and
P(m) for Gn and M(n, A), we need a splitting from the fake JC-theory £* to K-theory K*.
Let us recall that K*(P(m)) = M © Sm and K*(P(m)) = M® Sm where M and M are
polynomial algebras truncated at height m +1 and Sm and Sm are ideals (see [13]). By
the definition of Sm and Sm, it follows that ^*(SJ <= Sm and i/^SJ c Sm. In the proof
given in [13], it is required that the K-theory of H-spaces has no torsion and that H-
spaces are /im-primitive. No other assumption is required. So, we obtain the following
isomorphisms similarly to [13]: E*(P(m)) = N © Tm and E*(P(m)) = N® Tm where N and
N are polynomial algebras truncated at height m + 1 and Tm and Tm are ideals.

Let t]n be the canonical n-bundle over BGn (complex or quaternionic). Then M is
generated by c^(rin) for i^n and N is generated by cdi(r]n) for i^n. Let gM and QM be
the indecomposable quotients of M and M, respectively. Then by [13], it follows that
QM??QK*(Gn) and QM^QK*(M(n,A)) whose generators are corresponding to each
other by the homomorphism induced by / except for the generators in exact filtration
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degree 2dn—\. In the filtration degree 2dn— 1, the generators are spherical and J' times
X on the generators. Hence we obtain

Proposition 5.1.

(1) M is generated by w,-= c*(f7n) for ign ,

(2) M is generated by u{ for i ̂  n,

(3) u, = E/!(u,) in QM for i<n and

Proposition 5.2.

(1) N is generated by vt = cdi(nn) for i<n,

(2) N is generated by vt for i ^ n,

(3) jJ.- = 27!(i;i) in QN for i<n and

Then we define the splittings J and J by the following equations:

J{Vi) = uh i^n and

The mapping / induces the following homomorphism </>:

(/>(u,) = uu i < n, and
(5.1)

= X-un in QM.

Remark 5.3. If one extends ^ as a ring homomorphism, then <f> does not commute
with Adams operations, even if / is an /lm-mapping. Also / induces the following
homomorphism <j>0:

and
(5.2)

<Po(vn) = X-vn, in QN.

By Hubbuck [9, 10], these splitting J and J determine K-theory operations Sj, Sj,
Qj, QJ> RJ a n d RJ> which now satisfy

Rhj°<1>o = 4>o°Rhj M Q H , (5-3)

since <f>oj = J o $ 0 by (5.1) and (5.2).
We will write the Hubbuck operations by S \ Qh, Rh and Rh when the formula is valid
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independently of the choice of a splitting. The following formulae are due to Hubbuck
(see [9, 10]):

Proposition 5.4.

(1) Rh is an integral operation,
(2) Rh satisfies the Carton formula R\x- y) = lLi+j=hR\x)- R\y),

(3) S'Xv^vf mod p,

(5) (l-k«''-11)-S'=*I,lZ[k!*-hn'-1>-ph-RhoS9-k + p<-Rq, where k = p-l.

Remark 5.5. By the definition of J, S),Qhj and R) coincide with the restriction to
P{m) of S\ Qh and Rh(k) respectively given in Section 4, if we identify JC-theory with fake
K-theory by the splitting J above.

Assuming that X = 0 mod p and dn > p, we are led to a contradiction.
Let a = vp(dri). Then by a simple computation, (a+ l)(p — \)<dn. By Proposition 5.4,

we obtain the following proposition similarly to Hubbuck-Mimura [12].

Proposition 5.6. The following two statements are valid in QM:

(1) pfl+1-t;nep*-fi;(eN''m)mod/ + (pa+2)
(2) p"+' • vn e pw • Rhj{QNdm) mod /+{f+ 2)

for some l^h, h'^a+l, where m = n — h(p — l)/d, m' = ri — h'(p— l)/d, I = (vl,...,vn_i) and

Proof. The formulae given in (5.4) imply that

(1 - kin(p ~l))-vi
neph- R%QNdm) mod I+(pa+2)

( 1 _kMP- U). $repir . Ri^QN**) m o d T+(pa + 2)

for some lg/ i , h'^a + l such that in = m + h(p-l)/d, i'n = m' + h\p— \)/d and lg i , i'^p.
For dimensional reasons, in the formula above, we obtain that i = i'= 1. Then by (4.1),
Proposition 5.6 follows.

By Lemma 4.1 and Proposition 5.6, it follows that

pa+1 vnep-RJiQN^-^-^modp''*2 in QNdn.

Also by (5.3) together with Lemma 4.1 and Proposition 5.6, it follows that

pa+lvnep-RKQNdn-{p-l))modp"+2 in QNdn.

However, if (A,p)#l, then by (5.3) together with Lemma 4.1 and Remark 4.2, it follows
that R1j(QN'">-(''-1)) = l(l>0Rj(QN'"'-<''-1>) = Omodpa+1 and hence, p"+1-vn =
0modpa + 2. It is a contradiction and this completes the proof of Theorem B.
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