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Hyperbolic reductions

This chapter discusses several methods for the construction of symmetric

hyperbolic evolution systems out of the conformal Einstein field equations. Once

suitable evolution systems have been obtained, the methods of Chapter 12

allow, in turn, one to make statements about the existence of solutions to

the equations. Direct inspection of the conformal field equations reveals that

these are overdetermined – there are more equations than unknowns, even if the

symmetries of the various tensorial and spinorial fields are taken into account.

Thus, the process of hyperbolic reduction for the conformal field equations

necessarily requires discarding some of the equations. The discarded equations

are then treated as constraints. It is a remarkable structural property of the

conformal field equations that these constraints satisfy a system of evolution

equations – a so-called subsidiary evolution system – from where it can be

concluded that the constraint equations will be satisfied if they hold at some

initial hypersurface and the evolution equations are imposed. This construction

is called the propagation of the constraints . The solution of the evolution

system together with the propagation of the constraints yields the required

solution of the conformal Einstein field equations.

In this chapter, two different procedures for the hyperbolic reduction of the

conformal Einstein field equations are considered. The first method, based on the

notion of gauge source functions, exploits the fact that certain derivatives of

the conformal fields are not directly determined by the equations and, thus, can

be freely specified. In the spinorial formulation of the equations, once the required

gauge source functions have been specified, the irreducible decomposition of the

various zero quantities leads to the required evolution equations. The equations

obtained by this procedure include the conformal factor as an unknown.

The second hyperbolic reduction procedure presented in this chapter exploits

the properties of congruences of conformal geodesics to construct conformal

Gaussian gauge systems. As discussed in Chapter 5, the connection coeffi-

cients and components of the Schouten tensor with respect to a frame which is
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332 Hyperbolic reductions

Weyl propagated along the congruence satisfy certain relations which lead to a

particularly simple system of equations in which the evolution of all the geometric

unknowns, save for the components of the rescaled Weyl spinor, are either fixed

by the gauge or given by transport equations along the congruence. Moreover,

as a consequence of the properties of the conformal geodesics one gains an a

priori knowledge of the location of the conformal boundary; see Proposition 5.1.

Despite these attractive features, this method is less flexible than the one based

on the use of gauge functions and may not be readily extended to non-vacuum

situations.

13.1 A model problem: the Maxwell equations on a fixed background

To illustrate the various aspects of the construction of evolution equations for

the conformal Einstein field equations, it is convenient to analyse the analogous

problem for the Maxwell equations on a fixed background.

In the remainder of this section, let U denote an open region of a spacetime

(M, g). It will be assumed that U is covered by a non-singular congruence of

curves with tangent vector τ satisfying the normalisation condition g(τ , τ ) = 2.

The vector τ does not need to be hypersurface orthogonal. Let τAA′
denote the

spinorial counterpart of τa. As discussed in Section 4.2.5, the spinor τAA′
gives

rise to a Hermitian structure, and, accordingly, one can introduce a space spinor

formalism. Let {εAA} denote a spin basis such that

τAA′
= ε0

Aε0′A
′
+ ε1

Aε1′A
′
, (13.1)

and with {eAA′} its associated null frame. At every point p ∈ U a basis of the

subspace 〈τ 〉⊥|p ⊂ T |p(U) orthogonal to τ is given by eAB = τ(B
A′

eA)A′ . In

terms of local coordinates x = (xμ) in U one writes

eAB = eAB
μ∂μ. (13.2)

In principle, it is possible for the frame vectors eAB to have components with

respect to the time coordinate. The frame components eAB
μ satisfy the reality

conditions

e01
μ = e01μ, e00

μ = −e11μ. (13.3)

All spinorial objects will be expressed with respect to the spin basis {εAA}.
In particular, the spinorial Maxwell Equation (9.15) is written as

∇Q
A′ϕBQ = 0. (13.4)

In what follows, it will be convenient to introduce the zero quantity

ωA′B ≡ ∇Q
A′ϕBQ,

so that (13.4) can be expressed as ωA′B = 0. Here and in the remainder of this

chapter, zero quantities such as ωA′B serve as convenient bookkeeping devices

to denote the various field equations.
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13.1 A model problem: the Maxwell equations on a fixed background 333

13.1.1 Space spinor description of the Maxwell equations

and hyperbolic reductions

The space spinor version of Equation (13.4) leads to a decomposition into

evolution and constraint equations. Following the discussion of Chapter 4 one

considers the unprimed zero quantity ωBA ≡ τB
A′

ωA′A. One then has that

ωBA = ∇Q
BϕAQ =

1

2
εQAPϕBQ +DQ

AϕBQ

= −1

2
PϕAB +DQ

AϕBQ,

where P is the covariant directional derivative along τ , DAB is the Sen covariant

derivative implied by ∇AA′ and ∇AB ≡ τB
A′∇AA′ . In the above expressions,

the decomposition

∇AB =
1

2
εABP +DAB (13.5)

has been used; see Section 4.3.1. The spinor ωBA can, in turn, be decomposed

in irreducible parts as

ωBA =
1

2
εBAω + ω(AB),

with

ω ≡ ωQ
Q = DPQϕPQ, ω(AB) = −1

2
PϕAB +DQ

(AϕB)Q.

Thus, the Maxwell Equations (13.4) imply the equations

ω = DPQϕPQ = 0, (13.6a)

−2ω(AB) = PϕAB −DQ
(AϕB)Q = 0. (13.6b)

The decomposition of the spinorial Maxwell equation given by (13.6a) and

(13.6b) shows that Equation (13.4) is overdetermined. Equation (13.6a) will

be interpreted as a constraint equation on the orthogonal subspaces of the

distribution generated by the vector field τ , while (13.6b) will be regarded as

suitable evolution equations for the symmetric spinorial field ϕAB.

13.1.2 The symmetric hyperbolicity of the Maxwell

evolution equations

To apply the theory of Chapter 12 one needs to verify that the evolution

Equations (13.6b) give rise to a symmetric hyperbolic system for the independent

components of ϕAB. One considers the slightly modified version(
2

A+B

)(
PϕAB −DQ

(AϕB)Q

)
= 0, (13.7)
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334 Hyperbolic reductions

where the binomial coefficient in front of the equation has been included to

make the expression manifestly symmetric hyperbolic. The principal part of

Equation (13.7) can be written as(
2

A+B

)(
τμ∂μϕAB − eQ(A

μ∂|μ|ϕB)Q

)
.

As a result of the symmetry of ϕAB, the above principal part contains three

independent expressions. These can be arranged in the matricial expression

Aμ∂μϕ ≡

⎛
⎝ τμ + e10

μ −e00
μ 0

e11
μ 2τμ e00

μ

0 e11
μ τμ − e01

μ

⎞
⎠ ∂μ

⎛
⎝ ϕ0

ϕ1

ϕ2

⎞
⎠ ,

with

ϕ0 ≡ ϕ00, ϕ1 ≡ ϕ01, ϕ2 ≡ ϕ11.

Thus, making use of the reality conditions (13.3), it follows that the matrices

Aμ are Hermitian. Moreover, the matrix

Aμτμ =

⎛
⎝ 2 0 0

0 4 0

0 0 2

⎞
⎠

clearly is positive definite. Thus, Equation (13.7) implies a symmetric hyperbolic

system for the independent components of ϕAB. Finally, a direct computation

shows that given an arbitrary covector ξμ,

det(Aμξμ) = 2(τμξμ)
(
τντλ + e00

νe11
λ − e01

νe10
λ
)
ξνξλ

= 4(τμξμ)(g
νλξνξλ),

where in the last line Equation (4.14) for the 1+3 decomposition of the

spacetime metric has been used. Thus, g-null hypersurfaces are characteristics

of Equation (13.7) – these types of characteristics are often called physi-

cal characteristics. By contrast, the factor (τμξμ) is associated to gauge

characteristics.

For completeness, it is observed that the principal part of the constraint

equation is given, explicitly, by

e00
μ∂μϕ0 + e01

μ∂μϕ1 + e11
μ∂μϕ2,

so that, in general, it will contain derivatives in the time direction. More

generally, if the vector τ is not hypersurface orthogonal, then the constraint

equation ω = 0 will not be intrinsic to the leaves of a foliation.

https://doi.org/10.1017/9781009291347.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.017


13.1 A model problem: the Maxwell equations on a fixed background 335

13.1.3 The subsidiary system for the spinorial Maxwell equations

The hyperbolic reduction for the Maxwell equations discussed in Section 13.1.1

splits Equation (13.4) into three evolution equations and one constraint equation.

Thus, if one wants to obtain a solution to Equation (13.4) through a Cauchy

initial value problem, one uses, in first instance, the theory of Chapter 12 to

show the existence of a unique solution to the evolution equations. In a second

stage, one has to show that if the constraint equation is satisfied initially, then,

by virtue of the evolution equations, it must be satisfied also at later times.

This last argument requires the construction of a suitable hyperbolic evolution

equation for ω.

To obtain an equation for the zero quantity ω one considers the expression

∇AA′
ωA′A. Using that ωA′A = −τQA′ωQA one has that

∇AA′
ωA′A = −∇AA′(

τQA′ωQA

)
= ∇AQωQA − (∇AA′

τQA′)ωQA.

Now, using Equation (4.17), a calculation yields

∇AA′
τQA′ = −

√
2χA

P
PQ, (13.8)

so that

∇AA′
ωA′A = ∇AQωQA +

√
2χA

P
PQωQA.

Thus, the split (13.5) leads to the expression

Pω + 2DABω(AB) + 2
√
2χA

P
PQωQA = 2∇AA′

ωA′A.

If the evolution equations hold – that is, ω(AB) = 0 – then ωAB = 1
2εABω and

one obtains

Pω +
√
2χAB

ABω = 2∇AA′
ωA′A.

The next step is to evaluate ∇AA′
ωA′A in an alternative manner. Using the

definition of the zero quantity one has that

∇AA′
ωA′A = ∇AA′∇Q

A′ϕAQ.

From the commutator

∇AA′∇BB′ϕCD −∇BB′∇AA′ϕCD = −RP
CAA′BB′ϕPD −RP

DAA′BB′ϕCP ,

suitably contracting indices one obtains

∇AA′∇Q
A′ϕAQ = −2RP

A
AA′Q

A′ϕPQ − 2RP
Q

AA′Q
A′ϕAP .
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336 Hyperbolic reductions

Thus, combining the above equation with the decomposition

RABCC′DD′ = ΨABCDεC′D′ + LBC′DD′εCA − LBD′CC′εDA, (13.9)

where ΨABCD and LBC′DD′ denote, respectively, the spinorial counterparts of

the Weyl and Schouten tensors, one concludes that ∇AA′∇Q
A′ϕAQ = 0. Hence,

the evolution equation for ω takes the form

Pω +
√
2χAB

ABω = 0 if ω(AB) = 0.

The form of this equation implies, in together with Corollary 12.1, that if ω = 0

on some spacelike hypersurface S� in U , then ω = 0 on lens-shaped domains

having S� as base.

13.2 Hyperbolic reductions using gauge source functions

In this section hyperbolic reduction procedures for the conformal Einstein field

equations based on the notion of gauge source functions are considered.

Gauge source functions naturally arise in the analysis of frame formulations

of the conformal Einstein field equations written in terms of the Levi-Civita

connection ∇ of an unphysical metric g. The present analysis will be restricted

to the spinorial version of the conformal field equations: Equations (8.36a) and

(8.36b) or, alternatively, Equations (8.38a) and (8.38b).

Basic set up and assumptions

As in the analysis of the Maxwell equations in Section 13.1, all the calculations

will be performed in an open subset U ⊂ M of an unphysical spacetime (M, g)

which is conformally related to a spacetime (M̃, g̃) satisfying the Einstein field

equations. On U one considers some local coordinates x = (xμ) and an arbitrary

frame {ca} which may or may not be a coordinate frame. Let {αa} denote

the dual coframe so that 〈αa, cb〉 = δb
a. In what follows, let ∇ denote the

Levi-Civita covariant derivative of the metric g.

It will be assumed that U is covered by a non-singular congruence of curves

with tangent vector τ satisfying the normalisation condition g(τ , τ ) = 2. The

vector τ does not need to be hypersurface orthogonal. Let τAA′
denote the

spinorial counterpart of τa. In what follows, only spin bases {εAA} satisfying

condition (13.1) will be considered. All spinors will be expressed in components

with respect to this spin basis.

Let {eAA′} and {ωAA′} denote, respectively, the null frame and coframe

associated to the spin basis {εAA}. By definition, one has that 〈ωAA′
, eBB′〉 =

εB
AεB′A

′
. At every point p ∈ U a basis of 〈τ 〉⊥|p, the subspace of T |p(U)

orthogonal to τ is given by eAB = τ(B
A′

eA)A′ . The spatial frame can be

expanded in terms of the vectors ca as eAB = eAB
aca. If the basis {ca} is a

coordinate basis, the last expression reduces to the one given in Equation (13.2).
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13.2 Hyperbolic reductions using gauge source functions 337

A model equation

The general strategy behind the procedure of hyperbolic reduction using gauge

functions is best understood through a model equation.

In Section 12.1.3 it has been shown that spinorial equations of the form

∇Q
A′ϕQB′C···D = FA′B′C···D (13.10)

imply a symmetric hyperbolic system for the components of the field ϕQB′C···D
which is not assumed to have any special symmetries. This equation is now

contrasted with the equation

∇AA′ϕBB′C···D −∇BB′ϕAA′C···D = FAA′BB′C···D. (13.11)

Exploiting the antisymmetry in the pairs AA′ and BB′ it follows that

∇Q
(A′ϕ|Q|B′)C···D =

1

2
FQ

A′QB′C···D. (13.12)

Thus, while Equation (13.10) determines the full derivative ∇Q
A′ϕQB′C···D,

Equation (13.12) determines only its symmetric part. More precisely, writing

∇Q
A′ϕQB′C···D = ∇Q

(A′ϕ|Q|B′)C···D − 1

2
εA′B′∇QQ′

ϕQQ′C···D, (13.13)

one has that the first term in the right-hand side is determined by Equa-

tion (13.12), while the divergence ∇QQ′
ϕQQ′C···D remains unspecified. Thus,

in the absence of other equations providing information about this term, the

latter observation suggests completing Equation (13.13) by setting

∇QQ′
ϕQQ′C···D = fC···D(x),

where fC···D ∈ X (M) are smooth freely specifiable functions of the coordinates.

In what follows, functions of this type will be known as gauge source

functions. Thus, from (13.13) one obtains the equation

∇Q
A′ϕQAC···D =

1

2
FQ

A′QB′AC···D − 1

2
εA′B′fAC···D(x),

for which one can extract a symmetric hyperbolic evolution system for the

components of ϕAA′C···D; see the discussion of Section 12.1.3. In particular, the

characteristics of this evolution system are null hypersurfaces of the spacetime

metric g.

As will be seen in the following subsections, several of the conformal Einstein

field equations admit an analysis similar to that of Equation (13.11). A detailed

discussion of the resulting evolution equations exploits the particular symmetries

of the field appearing in the principal part.
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13.2.1 Coordinate gauge source functions

The purpose of this subsection is to analyse the evolution equations arising from

the no-torsion condition in the frame and spinor formulations of the conformal

field equations; see Equations (8.31a), (8.35a), (8.44a) and (8.53a). This leads to

the first class of gauge source functions that will be considered in this chapter:

the coordinate gauge source functions. Following the general discussion of

Chapter 8, the no-torsion condition will be regarded as a differential condition on

the coefficients of the frame {eAA′}. Thus, the ultimate purpose of this section

is to derive a symmetric hyperbolic subsystem for these quantities.

In Section 8.3.2 an expression for the spinorial counterpart of the torsion tensor

ΣAA′CC′
BB′ in terms of the spinorial connection coefficients ΓAA′CC′

BB′ has

been given; see Equation (8.35a). In what follows, it is more convenient to make

use of an expression involving the reduced spin connection coefficients. Using the

relation

ΓAA′CC′
BB′ = ΓAA′CBεB′C

′
+ Γ̄A′A

C′
B′εB

C ,

– compare Equation (3.33) – it can be seen that

ΣAA′QQ′
BB′eQQ′ = [eBB′ , eAA′ ]− ΓBB′QAeQA′ − Γ̄BB′Q

′
A′eAQ′

+ ΓAA′QBeQB′ + Γ̄AA′Q
′
B′eBQ′ . (13.14)

Using the frame {ca} one can write

eAA′ = eAA′aca,

so that for fixed frame spinorial indices AA′ , the coefficients eAA′a have the

natural interpretation of the components of eAA′ with respect to ca. However,

there is an alternative interpretation: for fixed frame index a, the coefficients

eAA′a correspond to the components of the covectors αa with respect to the

coframe ωAA′
. That is, one has

αa = eAA′aωAA′
,

from where it follows that eAA′aωAA′
b = δb

a. In view of this interpretation, it

is convenient to define

∇CC′eBB′a ≡ eCC′bcb(eBB′a)− ΓCC′QBeQB′a − Γ̄CC′Q
′
B′eBQ′a,

(13.15)

so that ∇CC′αa =
(
∇CC′eBB′a

)
ωBB′

. Expression (13.15) corresponds to the

formula one would use to compute the covariant derivative of eBB′a if it were

the components of a tensor – which, of course, it is not.

Intuition into this general discussion is gained by considering the particular

case of a coordinate frame for which eAA′ = eAA′μ∂μ so that

eAA′(xν) = eAA′μ∂μ(x
ν) = eAA′μδμ

ν = eAA′ν .
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Moreover, writing ωAA′
= ωAA′

μdx
μ one has that

dxμ = eAA′μωAA′
.

That is, for fixed coordinate index μ, the coefficients eAA′μ are the components

of the coordinate differential dxμ with respect to the coframe ωAA′
.

Returning to the general discussion, using the identity

[fv,u] = f [v,u]− u(f)v

for v, u ∈ T (M) and f ∈ X (M), together with expression (13.15) one can

rewrite Equation (13.14) as

ΣAA′QQ′
BB′eQQ′c = ∇BB′eAA′c −∇AA′eBB′c − eAA′aeBB′bCa

c
b, (13.16)

where Ca
c
b are the commutation coefficients defined by

[ca, cb] = Ca
c
bcc.

In the case of a coordinate frame one obtains the simpler expression

ΣAA′QQ′
BB′eQQ′μ = ∇BB′eAA′μ −∇AA′eBB′μ,

as [∂μ,∂ν ] = 0.

A final simplification is obtained by exploiting the antisymmetry of Equa-

tion (13.16). Contracting the indices A′ and B′ and symmetrising in AB one

concludes that

∇(A
Q′

eB)Q′a +
1

2
eA

Q′beBQ′cCb
a
c = ΣAB

a, (13.17)

with

ΣAB
a ≡ 1

2
ΣA

Q′CC′
BQ′eCC′a.

As the frame eAA′ is Hermitian, that is, eAA′ = eAA′ , one has that (13.17)

is completely equivalent to Equation (13.16). Moreover, if ΣAB
a = 0, then

ΣAA′CC′
BB′ = 0 and the connection is torsion free.

The structure of Equation (13.17) is similar to that of the model Equation

(13.12), suggesting that by introducing a gauge source function one will

obtain a symmetric hyperbolic system for the frame coefficients eAA′a. Now,

Equation (13.17) does not impose restrictions on the divergences ∇QQ′
eQQ′a so

that one can set

∇QQ′
eQQ′a = Fa(x), (13.18)

where the coordinate gauge source functions Fa(x) are smooth functions of

the coordinates x = (xμ). In the case of a coordinate frame the above expression

reduces to

∇QQ′∇QQ′xμ = Fμ(x), (13.19)

the so-called generalised wave coordinates condition .
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Combining the identity

∇(A
Q′

eB)Q′a = ∇A
Q′

eBQ′a +
1

2
εAB∇PP ′

ePP ′a

with Equations (13.17) and (13.18) one finally obtains, for ΣAB
a = 0, the

equation

∇A
Q′

eBQ′a +
1

2
εABFa(x) +

1

2
eA

Q′beBQ′cCb
a
c = 0,

from which a symmetric hyperbolic system for the frame components of eBQ′a

can be deduced.

Geometric interpretation

The generalised wave coordinate condition (13.19) shows that a particular choice

of coordinate gauge is, implicitly, a choice of coordinates. Equation (13.19) can

always be solved locally by choosing some coordinates x = (x0, xα) on some

fiduciary surface S�. If this surface is described by the condition x0 = 0, then it

is also natural to require that

∂xα

∂x0
= 0, on S�.

Moreover, one needs the coordinate differentials dxμ to be linearly independent

on S�. These conditions ensure the existence of a solution to Equation (13.19)

close to S�.

Conversely, given a particular coordinate choice on a spacetime (M, g), one

can use Equation (13.19) to compute the coordinate gauge source function Fμ(x)

associated with the coordinates. Thus, local coordinates and coordinate gauge

source functions are in a one-to-one correspondence.

Construction of coordinates in perturbations of spacetimes

The discussion of the previous subsection can be applied to the construction

of coordinates in spacetimes (M, g) which are perturbations of a certain exact

background spacetime (M̊, g̊). In this situation, one would expect the spacetime

manifolds M and M̊ to be diffeomorphic to each other so that coordinates in the

background spacetime could be used as coordinates in the perturbed spacetime.

This does not mean that the spacetimes (M, g) and (M̊, g̊) are isometric! The

intuition expressed in this paragraph will now be formalised.

In what follows, assume that one has two spacetimes (M, g) and (M̊, g̊) such

that the manifolds M and M̊ are diffeomorphic. Let ϕ : M → M̊ denote a

diffeomorphism between them. This choice is clearly not unique. The subsequent

discussion will single out a particular type of diffeomorphism betweenM and M̊.

Let x = (xμ) and x̊ = (̊xμ) denote, respectively, local coordinates on M
and M̊. In terms of these local coordinates the diffeomorphism ϕ is given by

x̊μ = x̊μ(x) and its inverse by xμ = xμ(̊x). On M̊ consider a frame {̊ca} and its
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13.2 Hyperbolic reductions using gauge source functions 341

dual coframe {α̊a}. The frame is not necessarily assumed to be g̊-orthonormal.

From this frame and coframe one can introduce a frame {ca} and a coframe

{αa} on M using, respectively, the push-forward and the pull-back implied by

ϕ : M → M̊. More precisely,

c̊a = (ϕ)∗ca, α̊a = (ϕ−1)∗αa.

Thus, writing

αa = αa
μdx

μ, α̊a = α̊a
μdx̊

μ,

one concludes that

αa
μ = α̊a

ν
∂x̊ν

∂xμ
.

Now, observing that 〈αa, eb〉 = δb
a, it follows that ∇cα

a = (∇ceb
a)αb and,

consequently,

∇beb
a = ηcd〈∇cα

a, ed〉 = eb
μ∇bαa

μ = ∇μαa
μ.

The above expression can be used to write the divergence ∇QQ′
eQQ′a appearing

in Equation (13.18) in terms of quantities associated to the diffeomorphism ϕ :

M → M̊.

Treating the coordinates x̊ = (̊xμ) as scalars and recalling that α̊a
ν =

〈α̊a,∂/∂x̊ν〉 so that the coefficients α̊a
ν are also scalars, one finds that

∇να
a
μ = α̊a

λ∇ν

(
∂x̊λ

∂xμ

)
+

∂α̊a
λ

∂xν

∂x̊λ

∂xμ

= α̊a
λ∇ν∇μx̊

λ + ∇̊ρα̊
a
λ
∂x̊ρ

∂xν

∂x̊λ

∂xμ
,

where in the last equality the chain rule has been used. Consequently, one has

∇μαa
μ = α̊a

λ∇μ∇μx̊
λ + gμν∇̊ρα̊

a
λ
∂x̊ρ

∂xν

∂x̊λ

∂xμ
= Fa(x),

or, more suggestively,

∇μ∇μx̊
σ + c̊a

σ

(
gμν∇̊ρα̊

a
λ
∂x̊ρ

∂xν

∂x̊λ

∂xμ
− Fa(x)

)
= 0.

So far, the diffeomorphism ϕ : M → M̊ has been kept completely general.

However, if one sets

gμν∇̊ρα̊
a
λ
∂x̊ρ

∂xν

∂x̊λ

∂xμ
= Fa(x), (13.20)

one finds that

∇μ∇μx̊
σ = 0.

https://doi.org/10.1017/9781009291347.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.017


342 Hyperbolic reductions

That is, under condition (13.20), the diffeomorphism ϕ : M → M̊ given by

x̊μ = x̊μ(x) is a wave map. Wave maps can be regarded as a generalisation of the

geodesic equation. Further discussion on this notion, which plays an important

role in modern research in PDE theory and geometric analysis, can be found in

the review by Tataru (2004).

Now, it is convenient to regard the manifolds M and M̊ as being the same

and let x̊μ = x̊μ(x) be the identity map so that ∂x̊ρ/∂xν = δν
ρ. This amounts

to saying that the coordinates x̊ = (̊xμ) are used as coordinates of the perturbed

spacetime (M, g). In this case condition (13.20) reduces to

∇̊bα̊a
b = Fa(x).

If in the reference spacetime one has ω̊a = α̊a so that α̊a
b ≡ 〈α̊a, c̊b〉 = δb

a,

then

∇̊bα̊a
b = −ηbcΓ̊b

a
c.

Accordingly, the coordinate gauge source function Fa(x) can be expressed in

terms of the connection of the background spacetime via

Fa(x) = −ηbcΓ̊b
a
c,

or, in spinorial terms

Fa(x) = −εABεA
′B′

eAA′beBB′cΓ̊b
a
c.

Space spinor decomposition of the equation for the frame coefficients

The space spinor decomposition of Equation (13.17) provides a systematic

approach to the extraction of the required symmetric hyperbolic system.

Accordingly, one considers the space spinor split of the frame fields given by

eAA′a =
1

2
τAA′ea − τQA′eAQ

a

with

ea ≡ τAA′
eAA′a, eAB

a ≡ τ(A
A′

eB)A′a.

Alternatively, one can write

τB
Q′

eAQ′a =
1

2
εABea + eAB

a.

Using

∇ABτCD′ = −
√
2τDD′χABCD,

– compare Equation (4.17) – together with the decomposition of ∇AB given in

Equation (13.5), it follows from Equation (13.18) that

Pea + 2DPQePQ
a +

√
2eaχPQ

PQ + 2
√
2ePQ

aχP
C

CQ − 2Fa(x) = 0.

(13.21)
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A similar computation for Equation (13.17) yields

ΣAB
a =

1

2
PeAB

a − 1

2
DABea +D(A

QeB)Q
a − 1√

2
eaχ(A|Q|

Q
B)

+
√
2eP (A

aχB)Q
QP − 1

2
(ebeAB

c + eAQ
beB

Qc)Cb
a
c.

A further independent equation can be obtained from the Hermitian conjugate

Σ+
AB

a ≡ τA
A′

τB
B′

Σ̄A′B′a.

Exploiting the identity

τA
A′

τB
B′∇Q

A′eQB′a = ∇Q
A

(
τB

B′
eQB′a

)
− eQB′a∇Q

AτB
B′

,

one arrives at

Σ+
AB

a = −1

2
PeAB

a +
1

2
DABea +D(A

QeB)Q
a +

1√
2
eaχQ

(AB)Q

−
√
2ePQ

aχP
(AB)

Q − 1

2
(ebeAB

c + eAQ
beB

Qc)Cb
a
c.

The required evolution equation complementing (13.21) is then obtained from

ΣAB
a − Σ+

AB
a = 0,

where

ΣAB
a − Σ+

AB
a = PeAB

a −DABea − 1√
2
ea
(
χ(A|Q|

Q
B) + χQ(AB)

Q
)

+
√
2eP (A

aχB)Q
QP +

√
2ePQ

aχP
(AB)

Q

− eceAB
bCb

a
c. (13.22)

A direct inspection shows that Equations (13.21) and (13.22) imply, for fixed

frame index a, a symmetric hyperbolic system of four equations for ea and

the independent components of eAB
a. A further computation shows that the

characteristic polynomial of the system is given by

−4(τμξμ)
2(gλρξλξρ).

As a by-product of the analysis one obtains the constraint equations implied

by (13.17) from

ΣAB
a +Σ+

AB
a = 0,

where

ΣAB
a +Σ+

AB
a = 2DQ

(AeB)Q
a +

1√
2
ea
(
χ(A|Q|

Q
B) + χQ

(AB)Q

)
+
√
2eP (A

aχB)Q
QP −

√
2ePQ

aχP
(AB)

Q

−
(
ebeAB

c + eAQ
beB

Qc
)
Cb

a
c.

Expanding the principal part of this constraint equation, one finds it contains

derivatives in the time direction.
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13.2.2 Frame gauge source functions

After having analysed the gauge source conditions arising from the no-torsion

condition, one can now consider the gauge source functions associated to the Ricci

identity – that is, the condition requiring that the geometric and the algebraic

curvatures coincide. As with the no-torsion condition, the equality between the

two expressions for the curvature is part of the frame and spinorial formulations

of the conformal field equations; compare Equations (8.31b), (8.35b), (8.44b)

and (8.53b).

Rather than working with the full expressions for the curvature spinors, in

the subsequent discussion it will be convenient to make use of the reduced

spinorial counterpart of the Riemann tensor in terms of the reduced connection

coefficients:

RABCC′DD′ +ΣCC′QQ′
DD′ΓQQ′AB

= ∇DD′ΓCC′AB −∇CC′ΓDD′AB

− ΓDD′QAΓCC′QB − ΓCC′QAΓDD′QB, (13.23)

where the definition

∇DD′
(
ΓCC′AB

)
≡ eDD′(ΓCC′AB)− ΓDD′QCΓQC′AB

− Γ̄DD′QCΓQC′AB − ΓDD′QBΓCC′AQ

has been used in order to obtain a more concise expression; see Section 8.3.2

for further details. This last expression is formally the same as the one for the

covariant derivative of a spinor field with the same index structure as ΓCC′AB.

Equation (13.23) is encoded in the zero quantity

ΞABCC′DD′ ≡ RABCC′DD′ − ρABCC′DD′ ,

where RABCC′DD′ and ρABCC′DD′ denote, respectively, the geometric and

algebraic curvatures. One has the symmetries

ΞABCC′DD′ = Ξ(AB)CC′DD′ = −ΞABDD′CC′ .

Exploiting the antisymmetry of Equation (13.23) one obtains the pair of

equations

∇(C
Q′

ΓD)Q′AB + Γ(C
Q′Q

|A|ΓD)Q′QB = RABCD +ΣC
QQ′

DΓQQ′AB,

(13.24a)

∇P
(C′Γ|P |D′)AB + ΓP

(C′Q|AΓP |D′)QB = RABC′D′ +ΣC′QQ′
D′ΓQQ′AB,

(13.24b)

where

RABCD ≡ 1

2
RABCQ′D

Q′
, RABC′D′ ≡ 1

2
RABQC′QD′ ,

ΣC
QQ′

D ≡ 1

2
ΣCP ′QQ′

D
P ′

, ΣC′QQ′
D′ ≡ 1

2
ΣPC′QQ′P

D′ .
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As the field ΓAA′BC is not Hermitian, two reduced equations are necessary to

encode the content of (13.23) – contrast this with the analysis of the no-torsion

Equation (13.14).

From the structure of Equations (13.24a) and (13.24b) one concludes that the

derivative ∇QQ′
ΓQQ′AB is not determined by the equations. Accordingly, one

can set

∇QQ′
ΓQQ′AB = FAB(x), (13.25)

where FAB = F(AB) are smooth arbitrary functions of the coordinates – the

frame gauge source functions.

Geometric interpretation

To gain intuition on the role played by the frame gauge source functions recall

that ΓAA′BC = εBB∇AA′εC
B ; see Equation (3.32). Equation (13.25) can be

rewritten as

εAB∇PP ′∇PP ′εB
B +∇PP ′

εAB∇PP ′εB
B = FA

B(x). (13.26)

This is to be read as a quasilinear wave equation for the spin frame {εBB}. Using
the symmetry of FAB and the wave Equation (13.26) one obtains

∇PP ′∇PP ′
(
εB

BεAB

)
= 0,

so that by choosing

εB
BεAB = δB

A, ∇PP ′
(
εB

BεAB

)
= 0,

on some fiduciary hypersurface S� one obtains a spin frame which is normalised

at later times.

Space spinor decomposition of the equation for the spin connection coefficients

To obtain a suitable space spinor decomposition of Equations (13.24a), (13.24b)

and (13.25), one defines

ΓABCD ≡ τB
A′

ΓAA′CD

and considers the split

ΓABCD =
1

2
εABΓCD + Γ(AB)CD, ΓCD ≡ ΓQ

Q
CD.

Now, from

∇QQ′
ΓQQ′AB = −∇QQ′(

τPQ′ΓQPAB

)
= τSQ′∇Q

Q′ΓQSAB − (∇QQ′
τSQ′)ΓQSAB

= ∇PQΓPQAB +
√
2χP

R
QRΓPQAB,
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it follows, using the split of ∇AB, that

PΓAB + 2DPQΓ(PQ)AB + 2
√
2χP

R
QRΓPQAB = 2FAB(x). (13.27)

In view of its symmetries, the zero quantity ΞABCC′EE′ is decomposed as

ΞABCC′EE′ = ΞABCEεC′E′ + ΞABC′E′εCE ,

with

ΞABCE ≡ 1

2
ΞABCQ′E

Q′
, ΞABC′E′ ≡ 1

2
ΞABQC′QE′ .

In terms of space spinors the latter decomposition can be rewritten as

ΞABCDEF = ΞABCEεDF + Ξ∗
ABDF εCE ,

where

ΞABCDEF ≡ τD
C′

τF
E′
ΞABCC′EE′ ,

ΞABDF ≡ τD
C′

τF
E′
ΞABC′E′ , Ξ∗

ABDF ≡ τD
C′

τF
E′
ΞABC′E′ .

To expand ΞABCE and Ξ∗
ABDF it is observed that

∇(C
Q′

ΓD)Q′AB = −∇(C
Q′(

ΓD)SABτSQ′
)

= −τSQ′∇(C
Q′

ΓD)SAB −∇(C
Q′

τS |Q′|ΓD)SAB

= ∇(C
SΓD)SAB +

√
2χ(C|Q|

SQΓD)SAB

=
1

2
PΓ(CD)AB +D(C

SΓD)SAB +
√
2χ(C|Q|

SQΓD)SAB

and that

τC
C′

τD
D′∇P

(C′Γ|P |D′)AB = ∇P
(CΓ|P |D)AB

= −1

2
PΓ(CD)AB +DP

(CΓ|P |D)AB.

From the above expressions it follows that

ΞABCD =
1

2
PΓ(CD)AB − 1

2
DCDΓAB +

1

2

(
DC

SΓ(DS)AB +DD
SΓ(CS)AB

)
+ Γ(C

PQ
|A|ΓD)PQB − ΣC

PQ
DΓPQAB −RABCD,

Ξ∗
ABCD = −1

2
PΓ(CD)AB +

1

2
DCDΓAB +

1

2

(
DP

CΓ(PD)AB +DP
DΓ(PC)AB

)
+ ΓP

(C
Q

|AΓP |D)QB +Σ+
C

PQ
DΓPQAB −R∗

ABCD.

Constraint equations are obtained from the combination

ΞABCD + Ξ∗
ABCD = 0,
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where

ΞABCD + Ξ∗
ABCD = DP

CΓ(PD)AB +DP
DΓ(PC)AB

+ Γ(C
PQ

|A|ΓD)PQB + ΓP
(C

Q
|AΓP |D)QB

+Σ+
C

PQ
DΓPQAB − ΣC

PQ
DΓPQAB

−RABCD −R∗
ABCD,

while the required evolution equations arise from

ΞABCD − Ξ∗
ABCD = 0,

with

ΞABCD − Ξ∗
ABCD = PΓ(CD)AB −DCDΓAB

+ Γ(C
PQ

|A|ΓD)PQB − ΓP
(C

Q
|AΓP |D)QB

− Σ+
C

PQ
DΓPQAB − ΣC

PQ
DΓPQAB

−RABCD +R∗
ABCD. (13.28)

It can be verified that the system composed by (13.27) and (13.28) leads

to a symmetric hyperbolic system for the independent components of ΓAB

and Γ(CD)AB – up to a suitable normalisation factor. A simple counting

argument shows that the system consists of 12 equations, three coming from

Equation (13.27) and nine from Equation (13.28). The characteristic polynomial

of the system is given by

−64(τμξμ)
6(gνλξνξλ)

3.

13.2.3 The conformal gauge source function

The third type of gauge source function to be considered arises from the analysis

of the Cotton equation; see Equations (8.31e) and (8.35f). The starting point of

the analysis is the spinorial counterpart, Equation (8.37a), associated with the

zero quantity

ΔCDBB′ ≡ ∇(C
Q′

LD)Q′BB′ +∇Q
B′ΞφCDBQ + ΞTCDBB′ .

To deduce a symmetric hyperbolic system from this equation one needs to

complete the symmetrised derivative ∇(C
Q′

LD)Q′BB′ with the divergence

∇QQ′
LQQ′BB′ . Information about this derivative is provided by the contracted

Bianchi identity for the Schouten tensor; compare Equation (8.17). In spinorial

notation one has

∇QQ′
LQQ′BB′ =

1

6
∇BB′R. (13.29)

Thus, using

∇(C
Q′

LD)Q′BB′ = ∇C
Q′

LDQ′BB′ +
1

2
εCD∇QQ′

LQQ′BB′ ,
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one can rewrite the zero quantity ΔCDBB′ as

ΔCDBB′ = ∇C
Q′

LDQ′BB′ +
1

12
εCD∇BB′R

+ΣQ
B′φCDBQ + ΞTCDBB′ , (13.30)

where ΣAA′ ≡ ∇AA′Ξ.

As discussed in Chapter 8, the conformal field equations impose no differential

condition on the unphysical Ricci scalar R. Accordingly, R can be specified freely

as a function of the coordinates. Thus, if the reduced rescaled Cotton spinor

TCDBB′ can be rewritten so that it does not explicitly contain derivatives of the

matter fields, one can deduce a symmetric hyperbolic system for the components

of LAA′BB′ from Equation (13.30).

Geometric interpretation

The particular choice of the Ricci scalar fixes the conformal gauge freedom.

Thus, it is natural to call R(x) the conformal gauge source function. Given

a particular choice of R(x), the transformation law for the Ricci scalar implies a

wave equation for the conformal factor realising the prescribed Ricci scalar; see

Equation (8.30). This equation can always be solved locally if initial data on a

fiduciary hypersurface S� is provided – namely, the values of the conformal factor

and its normal derivative on the hypersurface. Conversely, given an unphysical

spacetime (M, g) and a conformal factor Ξ linking it to a physical spacetime

(M̃, g̃) via the standard relation g = Ξ2g̃, one can compute the corresponding

conformal gauge source function R(x).

Space spinor decomposition of the equation for the components

of the Schouten tensor

The space spinor decomposition of the equations for the Schouten tensor is based

on the expression

LAA′CC′ = ΦAA′CC′ +
1

24
εACεA′C′R(x), (13.31)

where ΦAA′CC′ denotes the spinorial counterpart of the trace-free part of the

Ricci tensor; see Section 3.2.4. The space spinor counterpart of LAA′CC′ is

defined as

LABCD ≡ τB
A′

τD
C′

LAA′CC′ ,

= ΦABCD +
1

24
εACεBDR(x),

where ΦABCD ≡ τB
A′

τD
C′

ΦAA′CC′ so that

ΦABCD = ΦCBAD = ΦADCB,
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as a consequence of the symmetries of ΦAA′CC′ ; see Equation (3.44). A spinor

with these symmetries can be decomposed as

ΦABCD = Φ(ABCD) +
1

2

(
εA(BΦD)C + εC(BΦD)A

)
+

1

3
ΦhACBD, (13.32)

where

ΦAB ≡ Φ(AB)Q
Q, Φ ≡ ΦABCDhACBD.

Now, using that

∇A
Q′

LBQ′CC′ = ∇(A
Q′

LB)Q′CC′ − 1

2
εAB∇QQ′

LQQ′CC′ ,

together with the contracted Bianchi identity (13.29) one can rewrite the zero

quantity ΔABCC′ as

ΔABCC′ = ∇A
Q′

LBQ′CC′ +
1

12
εAB∇CC′R(x) + ΣQ

C′φABCQ + ΞTABCC′ .

(13.33)

Defining

ΔABCD ≡ τD
C′

ΔABCC′ ,

a calculation using (13.33) together with the definitions of the spinors LABCD

and χABCD, yields

ΔABCD = ∇A
QLBQCD +

√
2χAP

QPLBQCD −
√
2χA

QP
DLBQCP

+
1

2
εAB∇CDR(x) + ΣQ

DφABCQ + ΞTABCD,

where ΣAB ≡ τB
Q′

ΣAQ′ . Thus, using the decomposition of the operator ∇AB

one obtains

ΔABCD =
1

2
PLBACD +DA

QLBQCD +
√
2χAP

QPLBQCD

−
√
2χA

PQ
DLBPCQ +

1

2
εAB∇CDR(x) + ΣQ

DφABCQ + ΞTABCD.

To extract the full information of ΔABCC′ one also needs to consider

Δ+
ABCD ≡ τA

P ′
τB

Q′
τC

R′
τD

S′
Δ̄P ′Q′R′S′ .

Proceeding as with ΔABCD one finds that

Δ+
ABCD =

1

2
PLABCD −DQ

ALQBDC +
√
2χQ

A
R

BLQRDC

+
√
2χQ

A
P

CLQBDP − 1

2
εAB∇CDR(x) + Σ+R

Dφ+
ABCR + ΞT+

ABCD.
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Given the above expressions for ΔABCD and Δ+
ABCD, suitable symmetric

hyperbolic evolution equations for the independent components of the fields

Φ(ABCD), ΦAB and Φ can be found from the combinations

Δ(ABCD) +Δ+
(ABCD) = 0, (13.34a)

Δ+
Q

Q
(CD) −ΔQ

Q
(CD) = 0, (13.34b)

ΔQ
Q

P
P +Δ+

Q
Q

P
P = 0, (13.34c)

while constraint equations arise from

ΔABCD −Δ+
ABCD = 0,

Δ+
Q

Q
(CD) +ΔQ

Q
(CD) = 0,

ΔQ
Q

P
P −Δ+

Q
Q

P
P = 0.

The principal parts of Equations (13.34a)–(13.34c) are given, respectively, by

PΦ(ABCD) −D(ABΦCD),

PΦAB + 2DPQΦPQAB − 1

3
DABΦ,

PΦ+DPQΦPQ.

The above expressions imply a symmetric hyperbolic system for the independent

components of the fields Φ(ABCD), ΦAB and Φ. The explicit form of this system

will not be required in the subsequent discussion but can be readily computed.

13.2.4 The hyperbolic reduction of the Bianchi equation

This section discusses the hyperbolic reduction of the spinorial Bianchi identity.

This procedure leads to evolution equations for the components of the rescaled

Weyl spinor and is completely analogous to that for the Maxwell equations;

see Section 13.1.1. In particular, no gauge source functions are required for this

subsystem.

The spinorial Bianchi equation is encoded in the zero quantity

ΛA′BCD ≡ ∇Q
A′φBCDQ + TCDBA′ .

In the following it will be convenient to work with a space spinor version of this

zero quantity, namely,

ΛABCD ≡ ∇Q
AφBCDQ + TCDBA, TCDBA ≡ τA

A′
TCDBA′ .

Using the decomposition (13.5) one can compute that

ΛABCD = −1

2
PφABCD +DQ

AφBCDQ + TCDBA. (13.35)
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Suitable evolution equations are obtained from the above expression by

considering

−2Λ(ABCD) = PφABCD − 2DQ
(AφBCD)Q + T(ABCD) = 0. (13.36)

In what follows, this system of evolution equations will be known as the

standard system. It gives rise to five independent equations for the five

independent components of φABCD. Contracting the indices A and B in

Equation (13.35) one obtains

ΛCD ≡ ΛQ
QCD = DPQφPQCD + TCDQ

Q = 0,

the so-called Bianchi constraints. As in the case of the other constraint

equations discussed in the previous sections, the Bianchi constraints may contain

derivatives in the time direction.

The hyperbolicity of the standard system

The overall structure of Equation (13.36) suggests that it should imply a

symmetric hyperbolic system. In analogy to the Maxwell equations, one considers

a slightly modified version of Equation (13.36) given by

−2

(
4

A+B +C +D

)
Λ(ABCD) = 0.

The principal part of this equation can be written in matricial form as

Aμ∂μφ ≡

⎛
⎜⎜⎜⎜⎝

τμ + 2e01
μ −2e00

μ 0 0 0

2e11
μ 4τμ + 4e01

μ −6e00
μ 0 0

0 6e11
μ 6τμ −6e00

μ 0

0 0 6e11
μ 4τμ − 4e01

μ −2e00
μ

0 0 0 2e11
μ τμ − 2e01

μ

⎞
⎟⎟⎟⎟⎠

× ∂μ

⎛
⎜⎜⎜⎜⎝

φ0

φ1

φ2

φ3

φ4

⎞
⎟⎟⎟⎟⎠ ,

with

φ0 ≡ φ0000, φ1 ≡ φ0001, φ2 ≡ φ0011, φ3 ≡ φ0111, φ4 ≡ φ1111.

Using the reality conditions satisfied by the vectors eAB, it follows that the

matrices of the system are Hermitian. Moreover, one has that Aμτμ is positive

definite. Thus, the standard evolution system implies a symmetric hyperbolic

system for the independent components of φABCD. The characteristic matrix of

the system is given by

https://doi.org/10.1017/9781009291347.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.017


352 Hyperbolic reductions

det(Aμξμ) = 36
(
τμξμ

)(
gνλξνξλ

)(
τρτσ +

2

3
gρσ
)
ξρξσ.

Thus, g-null hypersurfaces are characteristics of the standard system.

13.2.5 The hyperbolic reduction of the equations for the conformal

factor and its concomitants

Finally, one requires evolution equations for the conformal factor Ξ and its

concomitants ΣAA′ and s. The relevant zero quantities are given by

QAA′ ≡ ΣAA′ −∇AA′Ξ, (13.37a)

ZAA′BB′ ≡ ∇AA′ΣBB′ + ΞLAA′BB′ − sεABεA′B′ − 1

2
Ξ3TAA′BB′ , (13.37b)

ZAA′ ≡ ∇AA′s+ LAA′CC′∇CC′
Ξ− 1

2
Ξ2∇CC′

ΞTAA′CC′ . (13.37c)

Their space spinor counterparts are defined by

QAB ≡ τB
A′

QAA′ , ZABCD ≡ τB
A′

τD
C′

ZAA′CC′ , ZAB ≡ τB
A′

ZAA′ .

It is also convenient to make use of the split

ΣAB ≡ τB
A′

ΣAA′ =
1

2
εABΣ+ Σ(AB), Σ ≡ ΣQ

Q.

From the condition QAB = 0 one obtains the equations

PΞ = Σ, DABΣ = Σ(AB),

which are, respectively, an evolution equation for Ξ and a constraint equation.

Next, using the identity

τB
A′

τD
C′∇AA′ΣCC′ = ∇AB

(
τD

C′
ΣCC′

)
−
√
2ΣCPχAB

P
D

and the split of ∇AB it follows that

ZABCD =
1

4
εABεCDPΣ+

1

2
εABPΣ(CD) +

1

2
εCDDABΣ+DABΣ(CD)

+
1√
2
χABCD −

√
2ΣCPχAB

P
D

+ ΞLABCD − sεABεCD − 1

2
TABCD.

Evolution equations for Σ and Σ(AB) are obtained from

2ZAB
AB = 0, ZA

A
(CD) = 0,

https://doi.org/10.1017/9781009291347.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.017


13.2 Hyperbolic reductions using gauge source functions 353

where

2ZAB
AB = PΣ+

√
2χAB

ABΣ− 2
√
2χABP

BΣ(AP ) + ΞLAB
AB − 4s,

ZA
A

(CD) = PΣ(CD) +
1√
2
χA

A
(CD) −

√
2Σ(C|PχA

AP
|D)

+ ΞLA
A

(CD) −
1

2
Ξ3TA

A
(CD).

The corresponding constraints arise from

Z(ABCD) = 0, Z(AB)C
C = 0,

with

Z(ABCD) = D(ABΣCD) +
1√
2
χ(ABCD)Σ−

√
2Σ(C|P |χ|AB

P
D)

+ ΞL(ABCD) −
1

2
Ξ3T(ABCD),

Z(AB)C
C = DABΣ+

1√
2
χ(AB)C

CΣ−
√
2ΣPQχ(AB)

PQ

+ ΞL(AB)C
C − 1

2
Ξ3T(AB)C

C .

Finally, similar calculations lead to the expression

ZAB =
1

2
εABPs+DABs− 1

2
LABC

CΣ+ LABCDΣCD

+
1

4
Ξ2TABC

C − 1

2
Ξ2ΣCDTABCD.

The evolution and constraint equations for s are then given, respectively, by

ZA
A = 0, Z(AB) = 0,

with

ZA
A = Ps− 1

2
LA

A
C

C + LA
A

CDΣCD +
1

4
Ξ2ΣTA

A
C

C

− 1

2
Ξ2ΣCDTA

A
CD,

Z(AB) = DABs− 1

2
L(AB)C

CΣ+ L(AB)CDΣCD +
1

4
Ξ2ΣT(AB)C

C

− 1

2
Ξ2ΣCDT(AB)CD.

Remark. It should be observed that all the evolution equations obtained in

this section are transport equations – that is, they involve only the directional

derivative P. Accordingly the characteristic polynomial of each of them is just

τμξμ.
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13.3 The subsidiary equations for the standard

conformal field equations

After having discussed a set of evolution equations implied by the conformal

field Equations (8.38a) and (8.38b), one is now in the position of analysing

the construction of the associated subsidiary system. The subsidiary equations

constitute a system of evolution equations for the zero quantities encoding the

conformal field equations. To prove the propagation of the constraints it

is necessary that these subsidiary evolution equations are homogeneous in the

various zero quantities. If this is the case, then Corollary 12.1 implies a unique

vanishing solution to the subsidiary equations if the zero quantities are zero ini-

tially. The construction of the subsidiary system involves lengthy computations,

parts of which are best carried out with spinorial expressions, while others are

more conveniently described in tensorial terms. The basic strategy behind the

analysis can be understood by first discussing some model equations.

General setup

The general setup for the construction of the subsidiary equations for the

conformal field equations is similar to the one for the construction of the evolution

equations: one works in an open subset U ⊂ M of the unphysical spacetime

manifold; vector and spinor bases are introduced in a similar manner. The

key difference lies in the fact that the covariant derivative ∇ is, a priori, not

assumed to be the Levi-Civita connection of the metric g. Thus, when considering

the commutator of covariant derivatives, one has to make use of the general

expression involving a non-vanishing torsion tensor. This is because the torsion

tensor is, in itself, a zero quantity of the conformal field equations. On similar

grounds, one cannot regard the algebraic and geometric curvatures as being equal

to each other.

13.3.1 Hyperbolic reduction of model equations

The construction of a system of subsidiary equations for the conformal Einstein

equations leads to spinorial equations whose tensorial counterparts are of one of

the following forms

∇[aMb]K = NabK, (13.38a)

∇[aPbc]L = QabcL, (13.38b)

where MaK and PabL are some zero quantities with

NabK = N[ab]K, PabL = P[ab]L, QabcL = Q[abc]L,

and K and L denote an arbitrary string of indices.

Equations (13.38a) and (13.38b) arise from the following observations con-

cerning differential forms; see the Appendix to this chapter for a brief discussion
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on this and related notions. The fields MaK and PabK can be regarded as the

components, respectively, of the 1-form and 2-form

MK ≡ MaK ωa, PL ≡ PabL ωa ∧ ωb.

Accordingly, Equations (13.38a) and (13.38b) can be written as

dMK = NabK ωa ∧ ωb, dPL = QabcL ωa ∧ ωb ∧ ωc.

If τ denotes a timelike vector field, then the Lie derivatives of MK and PL along

the direction of τ are given by the so-called Cartan’s formula

£τMK = iτdMK + d(iτMK), £τPL = iτdPL + d(iτPL),

where iτ denotes the operation of contraction between the vector τ and a

differential form; see Frankel (2003). In terms of this notation the evolution

equations are given, respectively, by

iτMK = 0, iτPL = 0,

so that

£τMK = iτdMK, £τPL = iτdPL.

The latter can be read as suitable evolution equations for the zero quantities

MaK and PabL. Their frame component version is given by

∇[0Mb]K = N0bK, ∇[0Pbc]L = Q0bcL.

Detailed analysis of the first model equation

The spinorial analogue of Equation (13.38a) is given by

∇AA′MBB′K −∇BB′MAA′K = 2NAA′BB′K.

Exploiting the antisymmetry one obtains the equivalent expression

∇(A
Q′

MB)Q′K = NA
Q′

BQ′K, NA
Q′

BQ′K = NB
Q′

AQ′K.

Defining the space spinor counterpart MABK ≡ τB
A′

MAA′K and using the

definition of the spinor χABCD together with the decomposition (13.5) of ∇AB

one obtains the expression

PM(AB)K + 2D(A
PMB)PK + 2

√
2χ(A|Q|

PQMB)PK = NA
Q′

BQ′K.

Finally, assuming that the evolution equations implied by the zero quantity

MAA′K are given by MQ
Q

K = 0, it follows that MBPK = M(BP )K and,

moreover, that

PM(AB)K +DA
PM(BP )K +DB

PM(AP )K + 2
√
2χ(A|Q|

PQMB)PK =NA
Q′

BQ′K.
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This last expression is a suitable evolution equation for M(AB)K if NA
Q′

BQ′K
can be expressed as a linear combination of zero quantities. This compu-

tation depends on the particular structure of the conformal equation under

consideration.

Detailed analysis of the second model equation

In what follows, let PAA′BB′L and QAA′BB′CC′L denote, respectively, the

spinorial counterparts of the fields PabL and QabcL. The spinorial counterpart

of Equation (13.38b) can be conveniently written using the spinorial counterpart

of the volume form as

εAA′BB′CC′
DD′∇AA′PBB′CC′L = εAA′BB′CC′

DD′QAA′BB′CC′L. (13.39)

A convenient way of obtaining the space spinor version of this last equation is

to consider, alternatively, the expression

εEFCDGH
AB∇EFPCDGHL,

where, following standard conventions, one defines

PCDGHL ≡ τD
C′

τH
G′

PCC′GG′L,

εEFCDGHAB ≡ τF
F ′
τD

D′
τH

H′
τB

B′
εEF ′CD′GH′AB′ .

A short computation using the expression of the volume form in terms of ε-spinors

yields

εEFCDGHAB = i(εEGεCAεFBεDH − εEAεCGεFHεDB).

Now, exploiting the symmetries of PCDGHL one can write

PCDGHL = PCGLεDH + P ∗
DHLεCG,

where

PCGL ≡ 1

2
PCQG

Q
L, P ∗

DHL ≡ 1

2
PQD

Q
HL.

A calculation shows that the above expressions lead to

εEFCDGH
AB∇EFPCDGHL

= 2i
(
∇A

QP ∗
BQL −∇Q

BPAQL
)

= iP (P ∗
ABL + PABL) + 2iDQ

AP ∗
BQL − 2iDQ

BPAQL.

If the evolution equations associated with the zero quantity PABCDL are given

by the condition

PABL − P ∗
ABL = 0,
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it follows that

PPABL = − i

2
εEFCDGH

(AB)∇EFPCDGHL.

It can be verified that the expression one obtains by working directly with the

left-hand side of Equation (13.39) differs from the above expression by homo-

geneous terms involving PCDGHL and χABCD. To complete the construction

of a suitable subsidiary equation for PABCDL it is necessary to show that the

right-hand side of Equation (13.39) can be expressed as a linear combination of

zero quantities – this computation is specific to each zero quantity.

13.3.2 The subsidiary equations for the equations governing the

conformal factor and its concomitants

The zero quantities QAA′ , ZAA′BB′ and ZAA′ – see Equations (13.37a)–(13.37c)

– lead to subsidiary equations which fall into the class described by the model

Equation (13.38a). Accordingly, one will have suitable subsidiary evolution

equations for the zero quantities QAA′ , ZAA′BB′ and ZAA′ if the derivatives

∇(A
Q′

QB)Q′ , ∇(A
Q′

ZB)Q′CC′ , ∇(A
Q′

ZB)Q′ ,

can be expressed as linear combinations of other zero quantities.

The subsidiary equation for QAA′

A direct computation using the definition of QAA′ shows that

∇(A
Q′

QB)Q′ = ∇(A
Q′

ΣB)Q′ − ΣA
QQ′

BΣQQ′ ,

where the definition of the torsion spinor – see Equation (8.35a) – has been used

to write

∇(A
Q′∇B)Q′Ξ = ΣA

QQ′
BΣQQ′ , ΣA

QQ′
B ≡ 1

2
ΣA

P ′QQ′
BP ′ .

Finally, using the definition of the zero quantity ZAA′BB′ one can eliminate the

term ∇(A
Q′

ΣB)Q′ . Observing that L(A
Q′

B)Q′ = T(A
Q′

B)Q′ = 0 – as these are

the spinorial counterparts of symmetric rank-2 tensors – one finds

∇(A
Q′

ΣB)Q′ = Z(A
Q′

B)Q′ ,

so that one concludes that

∇(A
Q′

QB)Q′ = Z(A
Q′

B)Q′ − ΣA
QQ′

BΣQQ′ ,

which is a linear combination of zero quantities as required.
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The subsidiary equation for ZAA′BB′

A direct computation starting from the definition of ZAA′BB′ yields the

expression

∇(A
Q′

ZB)Q′CC′ = ∇(A
Q′∇B)Q′ΣCC′ +Σ(A

Q′
LB)Q′CC′ + Ξ∇(A

Q′
LB)Q′CC′

+ εC(A∇B)C′s− 3

2
Ξ2Σ(A

Q′
TB)Q′CC′ − Ξ3∇(A

Q′
TB)Q′CC′ .

Using the commutator

∇AA′∇BB′ΣCC′ −∇BB′∇AA′ΣCC′

= −RP
CAA′BB′ΣPC′ − R̄P ′

C′A′ABB′ΣCP ′

− ΣAA′QQ′
BB′∇QQ′ΣCC′ ,

one finds that

∇(A
Q′∇B)Q′ΣCC′ = −RP

C(AB)ΣPC′ − R̄P ′
C′(AB)ΣCP ′

− ΣA
QQ′

B∇QQ′ΣCC′ ,

where

RABCD ≡ 1

2
RABCQ′D

Q′
, R̄A′B′CD ≡ 1

2
R̄A′B′Q′CD

Q′
.

Using the definitions of the zero quantities ΔCDBB′ and ZAA′ to eliminate,

respectively, ∇(A
Q′

LB)Q′CC′ and ∇BC′s, one obtains

∇(A
Q′

ZB)Q′CC′ = −RP
C(AB)ΣPC′ − R̄P ′

C′(AB)ΣCP ′ − ΣA
QQ′

B∇QQ′ΣCC′

+Σ(A
Q′

LB)Q′CC′ + ΞΔABCC′ − ΞΣQ
C′φABCQ

− Ξ2TABCC′ + εC(AZB)C′ − εC(ALB)C′QQ′ΣQQ′

− 1

2
Ξ2ΣQQ′

εC(ATB)C′QQ′ − 3

2
Ξ2Σ(A

Q′
TB)Q′CC′

− 1

2
Ξ3∇(A

Q′
TB)Q′CC′ .

Next, one uses the zero quantity ΞABCC′DD′ to eliminate the geometric

curvature terms RP
C(AB) and R̄P ′

C′(AB). Taking into account the expression

of the algebraic curvature in terms of the Schouten tensor and the rescaled Weyl

tensor one obtains

∇(A
Q′

ZB)Q′CC′ = −ΞP
C(AB)ΣPC′ − Ξ̄P ′

C′(AB)ΣCP ′ − ΣA
QQ′

B∇QQ′ΣCC′

+ ΞΔABCC′ − Ξ2TABCC′ + εC(AZB)C′

− 1

2
Ξ2ΣQQ′

εC(ATB)C′QQ′ − 3

2
Ξ2Σ(A

Q′
TB)Q′CC′

− 1

2
Ξ3∇(A

Q′
TB)Q′CC′ ,
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where

ΞABCD ≡ 1

2
ΞABCQ′D

Q′
, Ξ̄A′B′CD ≡ 1

2
Ξ̄A′B′Q′CD

Q′
.

Finally, observing that the definition of the rescaled Cotton tensor implies that

TABCC′ = − 1
2Ξ∇(A

Q′
TB)Q′CC′ and exploiting the trace-freeness of the energy-

momentum tensor one ends up with the expression

∇(A
Q′

ZB)Q′CC′ = −ΞP
C(AB)ΣPC′ − Ξ̄P ′

C′(AB)ΣCP ′ − ΣA
QQ′

B∇QQ′ΣCC′

+ ΞΔABCC′ + εC(AZB)C′ ,

which, as required, is a linear combination of zero quantities.

The subsidiary equation for ZAA′

In this case one needs to evaluate ∇(A
Q′

ZB)Q′ . Making use of the definition of

ZAA′ one finds that

∇(A
Q′

ZB)Q′ = ∇(A
Q′∇B)Q′s+∇(A

Q′
LB)Q′PP ′ΣPP ′

+∇(A
Q′

ΣPP ′
LB)Q′PP ′

− ΞΣ(A
Q′

ΣPP ′
TB)Q′PP ′ − 1

2
Ξ2∇(A

Q′
ΣPP ′

TB)Q′PP ′

− 1

2
Ξ2ΣPP ′∇(A

Q′
TB)Q′PP ′ .

Using the definition of the torsion tensor in the form

∇(A
Q′∇B)Q′s = ΣA

QQ′
B∇QQ′s,

and the definitions of ΔABCC′ and ZAA′BB′ to eliminate, respectively,

∇(A
Q′

LB)Q′PP ′ and ∇A
Q′

ΣPP ′
one obtains – after some simplifications

involving the symmetries of LAA′BB′ and TAA′BB′ –

∇(A
Q′

ZB)Q′ = Σ(A
QQ′

B)∇QQ′s+ΔABPP ′ΣPP ′
+ Z(A

Q′PP ′
LB)Q′PP ′

− 1

2
Ξ2Z(A

Q′PP ′
TB)Q′PP ′ .

This expresion is a linear combination of zero quantities.

13.3.3 Subsidiary equation for the no-torsion condition

Following the general discussion of Section 13.3.1, one defines

ΣABCD
a ≡ τB

A′
τD

C′
ΣAA′QQ′

CC′eQQ′a.

One can write

ΣABCD
a = −ΣAC

aεBD − Σ+
BD

aεAC ,

so that, if the evolution equation ΣAB
a − Σ+

AB
a = 0 holds, then

PΣAB
a = − i

2
∇EFΣCDGH

aεEFCDGH
(AB). (13.40)
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To conclude the argument one needs to express the right-hand side of the above

equation as a linear combination of zero quantities. To this end, one makes use

of the first Bianchi identity (2.10) to write

∇[aΣb
d
c] = −Ξd

[cab] − ρd[cab] − Σ[a
e
bΣc]

d
e,

where the zero quantity Ξd
cab ≡ Rd

cab − ρdcab. By construction, the algebraic

curvature has the same algebraic symmetries as the Riemann tensor of a Levi-

Civita connection so that, in particular, ρd[cab] = 0 and one has that

∇[aΣb
d
c] = −Ξd

[cab] − Σ[a
e
bΣc]

d
e.

This expression shows that the right-hand side of Equation (13.40) can be written

as a linear combination of zero quantities.

13.3.4 Subsidiary equation for the Ricci identity

It follows from the general discussion of Section 13.3.1 that, if the evolution

equations ΞABCD − Ξ∗
ABCD = 0 are satisfied, then

PΞABCD = − i

2
∇EFΞCDGHεEFCDGH

(AB). (13.41)

To express the right-hand side of this last equation as a linear combination of

zero quantities one makes use of the second Bianchi identity (2.11) to obtain

εf
abc∇[aΞ

d
|e|bc] = εf

abc∇[aR
d
|e|bc] − εf

abc∇[aρ
d
|e|bc]

= −εf
abcΣ[a

g
bR

d
|e|c]g − εf

abc∇[aρ
d
|e|bc]. (13.42)

The first term in the right-hand side of the last equation already has the desired

form. The second term needs to be examined in more detail. One considers

εf
abc∇[aρ

d
|e|bc] = εf

abc∇aρ
d
ebc

= Ξεf
abc∇ad

d
ebc + εf

abc∇aΞd
d
ebc + 2εf

abcSeb
dh∇aLch,

where in the last line the expression of the algebraic curvature in terms of the

Weyl tensor and the Schouten tensor has been used. Now, a computation using

the properties of the Hodge dual and the definition of the zero quantity Λabc

shows that

εf
abc∇ad

d
ebc = −εf

abc∇a
∗d∗debc = −2∇a

∗d∗∗def
a

= 2∇a
∗ddef

a = 2∇ad
∗
f
ad

e

= εe
dgh∇ad

a
fgh = εe

dgh(Λfgh + Tfgh). (13.43)

Using the above expression together with the definition of the zero quantities

Δabc and Qa to eliminate ∇[aLc]f and ∇aΞ, respectively, one finds that

εf
abc∇[aρ

d
|e|bc] = εf

abcQad
d
ebc + Ξεe

dghΛfgh + εf
abcSeb

dhΔach.
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Substituting this last expression into Equation (13.42) one obtains the required

expression for∇[aΞ
d
|e|bc] as a linear combination of zero quantities. The spinorial

counterpart of this expression differs from the right-hand side of Equation (13.41)

by terms homogeneous in zero quantities involving the spinor χABCD.

13.3.5 The subsidiary equations for the Cotton equation

Applying the general discussion of Section 13.3.1 to the zero quantity

ΔAA′BB′CC′ associated with the unphysical Bianchi identity leads to the

expression

1

2
P
(
Δ+

ABKL +ΔABKL

)
+DQ

AΔ+
BQKL −DQ

BΔAQKL

= − i

2
εEFCDGH

AB∇EFΔCDGHKL. (13.44)

To make use of the evolution equations in the above expression it is observed

that

ΔABCD = Δ(ABCD) +
1

3
hABCDΔPQ

PQ +
1

2
εCDΔABQ

Q.

Thus, using the evolution equations for the various components of the Schouten

tensor one obtains

PΔ(ABKL) = − i

2
∇EFΔCDGH(ABεEFCDGH

KL),

PΔPQ
PQ = − i

2
εEFCDGHKL∇EFΔCDGHKL,

PΔABQ
Q = − i

2
εEFCDGH

AB∇EFΔCDGHQ
Q.

To analyse the right-hand sides of the above equations it is more convenient

to analyse εAA′BB′CC′DD′∇BB′ΔCC′DD′EE′ . This expression differs from the

right-hand side of Equation (13.44) by terms involving the spinor χABCD. For

conciseness, the analysis is carried out using tensorial notation. One has that

εf
ecd∇eΔcdb = εf

ecd
(
2∇e∇[cLd]b −∇eΣad

a
bcd − Σa∇ed

a
bcd

−∇eΞTcdb − Ξ∇eTcdb

)
. (13.45)

The first term on the right-hand side of the above equation is manipulated using

the commutator of covariant derivatives by observing that

2εf
ecd∇e∇[cLd]b = 2εf

ecd∇[e∇c]Ldb

= −2εf
ecd
(
2Rs

(d|ec|Lb)s − Σe
s
c∇sLdb

)
= −2εf

ecd
(
2Ξs

(d|ec|Lb)s + εf
ecdρsbecLds +Σe

s
c∇sLdb

)
,

where in the third line the identity ρa[bcd] = 0 has been used. The second

term in the last equation does not contain zero quantities. The third term in
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Equation (13.45) is now cast in a suitable form using the properties of Hodge

dual; compare the analogous argument leading to (13.43). One finds that

εf
ecd∇edabcd = −εab

gh(Λfgh + Tfgh).

Substituting the above two identities into Equation (13.45) and using the zero

quantity Zab to eliminate ∇aΣb one obtains

2εf
ecd∇e∇[cLd]b

= −4εf
ecdΞs

(d|ec|Lb)s − 2Σe
s
c∇sLfb

− Σaεab
ghΛfgh − εf

ecdZead
a
bcd

−
{
εf

ecd

(
1

2
Ξ3Tead

a
bcd +∇eΞTcdb − Ξ∇eTcdb

)
− εab

ghΣaTfgh

}
,

(13.46)

where the explicit expression of the algebraic curvature has been used to show

that

εf
ecd
(
ΞdabcdLea − 2ρsbecLds

)
= 0.

Expression (13.46) is, up to the matter terms in curly brackets, a linear

combination of zero quantities. Whether the terms in curly brackets can be

expressed as a linear combination of (matter) zero quantities depends on the

particular features of the matter model under consideration.

13.3.6 The subsidiary equations for the Bianchi identity

The construction of the subsidiary equation for the Bianchi identity is similar

to that of the subsidiary equation for the Maxwell equations. In this case the

relevant zero quantity is given by

ΛA′BCD ≡ ∇Q
A′φBCDQ + TCDBA′ ,

for which one computes ∇BB′
ΛB′BCD in two different manners.

First, making use of the space spinor zero quantity ΛABCD ≡ τA
A′

ΛA′BCD

one has that

∇BB′
ΛB′BCD = −∇BB′(

τPB′ΛPBCD

)
= ∇ABΛABCD −

(
∇BA′

τAA′
)
ΛABCD.

Using Equation (13.8) for the derivative of the spinor τAA′ and the split of ∇AB

one obtains

PΛCD − 2DABΛABCD − 2
√
2χB

P
PAΛABCD = −2∇BB′

ΛB′BCD,
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where it is recalled that ΛCD ≡ ΛQ
QCD. Now, a calculation shows that the

symmetry ΛABCD = ΛA(BCD) implies the decomposition

ΛABCD = Λ(ABCD) −
3

4
εA(BΛCD),

so that

PΛCD − 2DP
(CΛD)P − 2DABΛ(ABCD) − 2

√
2χB

P
PAΛ(ABCD)

+
3√
2
χB

P
PAεA(BΛCD) = −2∇BB′

ΛB′BCD. (13.47)

As a second way of evaluating ∇BB′
ΛB′BCD one makes use of the definition

of the zero quantity so that

∇BB′
ΛB′BCD = ∇BB′∇Q

B′φBCDQ +∇BB′
TCDBB′ .

The first term of the right-hand side is manipulated using the commutator

∇AA′∇BB′φCDEF −∇BB′∇AA′φCDEF

= −RS
CAA′BB′φSDEF −RS

DAA′BB′φSCEF −RS
EAA′BB′φSCDF

−RS
FAA′BB′φSCDE +ΣAA′PP ′

BB′∇PP ′φCDEF .

Observe that the torsion ΣAA′PP ′
BB′ , being one of the unknowns in the

subsidiary system, needs to be included in the commutator. Also, the curvature

terms in the above expression are understood to be those of the geometric

curvature. Contracting the expression of the commutator leads to

2∇BB′∇Q
B′φBCDQ = −RS

C
BA′Q

A′φSDBQ −RS
D

BA′Q
A′φSCBQ

−RS
B

BA′Q
A′φSCDQ −RS

Q
BA′Q

A′φSCDB

+ΣAA′SS′Q
A′∇SS′φCDAQ.

Using the zero quantity

ΞC
DAA′BB′ = RC

DAA′BB′ − ρCDAA′BB′ ,

to eliminate the geometric curvature and the decomposition (13.9) one obtains

an expression which is homogenous in zero quantities:

2∇BB′∇Q
B′φBCDQ = −ΞS

C
BA′Q

A′φSDBQ − ΞS
D

BA′Q
A′φSCBQ

− ΞS
B

BA′Q
A′φSCDQ − ΞS

Q
BA′Q

A′φSCDB

+ΣAA′SS′Q
A′∇SS′φCDAQ. (13.48)

In particular, all the terms coming from the algebraic curvature cancel out.
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Combining Equations (13.47) and (13.48) one obtains the required subsidiary

equation. Namely, one has that if Λ(ABCD) = 0, then

PΛQ
QCD − 2DP

(CΛQ
D)PQ +

3√
2
χB

P
PAεA(BΛQ

CD)Q

= ΞS
C

BA′Q
A′φSDBQ + ΞS

D
BA′Q

A′φSCBQ

+ ΞS
B

BA′Q
A′φSCDQ + ΞS

Q
BA′Q

A′φSCDB

− 2ΣAA′SS′Q
A′∇SS′φCDAQ − 2∇BB′

TCDBB′ ,

which is homogeneous in zero quantities if the matter term ∇BB′
TCDBB′ can

be expressed, in turn, as a homogeneous expression of matter zero quantities.

Alternatively, one can perform the computation with tensorial objects. In this

case one looks at

∇bΛbcd = ∇b∇ad
a
bcd −∇bTcdb.

Again, using the properties of the Hodge dual one can write

∇b∇ad
a
bcd = −∇a∇bdabcd

= ∇a∇b∗d∗abcd =
1

4
εabef εghcd∇b∇adefgh

=
1

4
εabef εghcd

(
Rs

eabdfsgh +Rs
gabdhsef − 1

2
Σa

s
b∇sdefgh

)
=

1

4
εabef εghcd

(
Ξs

eabdfsgh + Ξs
gabdhsef − 1

2
Σa

s
b∇sdefgh

)
.

Hence, one concludes that ∇bΛbcd, except for the matter term ∇bTcdb can be

written as a linear combination of zero quantities.

13.3.7 Summary

In most applications, the detailed form of the evolution and subsidiary equations

is not required; general structural properties suffice. These properties are

summarised in the following propositions.

It is convenient to group the independent components of the unknowns

appearing in the spinorial formulation of the conformal field equations in the

following manner:

σ independent components of Ξ, ΣAA′ , s;

υ independent components of eμAA′ , ΓAA′BC , ΦAA′BB′ ;

φ independent components of φABCD;

ϕ independent components of matter fields.

Moreover, let e and Γ denote, respectively, the independent components of the

frame components and the connection coefficients. In terms of these objects one

has the following:
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Proposition 13.1 (properties of the conformal evolution equations)

Given arbitrary smooth gauge source functions

Fa(x), FAB(x), R(x),

such that

∇QQ′
eQQ′a = Fa(x), ∇QQ′

ΓQQ′AB = FAB(x),

∇QQ′
LQQ′BB′ =

1

6
∇BB′R(x),

and assuming that the components of the matter tensors Tab and Tabc can be

written in such a way that they do not contain derivatives of the matter fields,

then the conformal Einstein field equations

Qa = 0, Zab = 0, Za = 0, Σa
c
b = 0, Ξc

dab = 0,

Δabc = 0, Λabc = 0,

imply a symmetric hyperbolic system of equations for the independent components

of the geometric fields (σ,υ,φ) of the form(
I+A0(e)

)
∂τφ+Aα(e)∂αφ = B(Γ)φ+C(σ,υ,ϕ),(

I+D0(e)
)
∂τυ +Dμ(e)∂μυ = E(Γ)υ + F(σ,υ,φ,ϕ),

∂τσ = G(Γ)σ +H(σ,υ,ϕ),

where I denotes the identity matrix of the required dimensions,

Aμ(e), Dμ(e)

are smooth matrix-valued functions of the components of the frame components,

B(Γ), E(Γ), G(Γ)

are smooth matrix-valued functions of the connection coefficients and

C(σ,υ,ϕ), F(σ,υ,φ,ϕ), H(σ,υ,ϕ)

are smooth vector-valued functions with polynomial dependence on their argu-

ments. The characteristics of this system satisfy a characteristic polynomial

involving factors of the form

τμξμ, gνλξνξλ,

(
τρτσ +

2

3
gρσ
)
ξρξσ.

Remarks

(i) In the presence of matter, the symmetric hyperbolic system given in the

above proposition needs to the supplemented by a symmetric hyperbolic

system for the matter fields. As the rescaled Cotton tensor Tabc (and hence

also the spinor TABCC′) is made up of derivatives of the energy-momentum

tensor, the matter evolution equations will need to include equations for the

matter field derivatives appearing in the geometric evolution equations.

https://doi.org/10.1017/9781009291347.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.017


366 Hyperbolic reductions

(ii) The choice of the gauge source functions is dictated by the particular analysis

under consideration.

With regards to the subsidiary system one has the following:

Proposition 13.2 (properties of the subsidiary evolution system)

Assume that the evolution equations implied by the conformal Einstein field

equations are satisfied and that the energy-momentum tensor Tab is such that

the quantities

Mcd ≡ ∇bTcdb,

Nbf ≡ εf
ecd

(
1

2
Ξ3Tead

a
bcd +∇eΞTcdb − Ξ∇eTcdb

)
− εab

ghΣaTfgh,

can be written as homogeneous expressions of the geometric and matter zero

quantities. Then the zero quantities encoding the constraint equations implied by

the conformal Einstein equations under the hyperbolic reduction procedure leading

to Proposition 13.1 satisfy a symmetric hyperbolic system which is a homogeneous

expression of zero quantities.

13.4 Hyperbolic reductions using conformal Gaussian systems

This section discusses a hyperbolic reduction procedure based on the properties

of congruences of conformal geodesics. The approach discussed in this section

makes use of the formulation of the conformal field equations in terms of Weyl

connections – the so-called extended conformal field equations. As will be seen,

this procedure leads to simpler evolution equations than the ones obtained by

the reduction procedure discussed in Section 13.2.

For conciseness of the presentation, the discussion in the rest of this section is

restricted to the vacuum case.

13.4.1 Basic set up

In what follows, it is assumed one has a region U of a spacetime (M̃, g̃) which

is covered by a congruence of conformal geodesics (ẋ(τ),β(τ)). For convenience,

the vector field tangent to the congruence will be denoted by τ . As discussed in

Section 5.5, a canonical representative g of the conformal class [g̃] is singled out

by the requirement

g(τ , τ ) = 1,

so that g = Θ2g̃ where the conformal factor Θ satisfies a third-order ordinary

differential equation along the congruence of conformal geodesics; see Equa-

tion (5.53b). In the case of a vacuum spacetime this equation can be explicitly

solved yielding a formula for Θ as a quadratic polynomial in the parameter τ .

The conformal factor is completely determined by the three coefficients Θ�, Θ̇�,

Θ̈� specified, say, on an initial hypersurface S̃�.
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In the following, {ea} will denote a g-orthonormal frame which is Weyl-

propagated along the conformal geodesics and such that e0 = τ . As discussed

in Section 5.5, to every congruence of conformal geodesics one can associate a

Weyl connection ∇̂. This Weyl connection satisfies the relations

∇̂τea = 0, L̂(τ , ·) = 0,

where L̂ denotes the Schouten tensor of ∇̂; see Equation (5.41). In terms of

frame components, the above conditions can be rewritten as

Γ̂0
a
b = 0, L̂0a = 0. (13.49)

In particular, it follows that the covector f which defines the Weyl connection

∇̂ satisfies

f0 = 0.

The gauge choice can be refined further by choosing the parameter of the

conformal geodesics τ as the time coordinate. Thus, one has the additional gauge

condition

e0 = ∂τ , so that e0
μ = δ0

μ. (13.50)

In most applications, initial data for the congruence of conformal geodesics will

be prescribed on the initial hypersurface S�. On S� choose some local coordinates

(xα). Assuming that each curve of the congruence of conformal geodesics

intersects S� only once, one can extend coordinates on S� off the hypersurface by

requiring them to be constant along the conformal geodesic which intersects S�

at the point with coordinates (xα); see Figure 13.1. The spacetime coordinates

(τ, xα) one obtains by this procedure are known as conformal Gaussian

coordinates. More generally, the collection of the conformal factor Θ, Weyl-

propagated frame vectors {ea} and coordinates (τ, xα) extended off some initial

hypersurface S� using a congruence of conformal geodesics will be known as a

conformal Gaussian gauge system.

S

conformal geodesic

(0,xα)

(τ,xα)

Figure 13.1 Schematic depiction of the construction of conformal Gaussian
coordinates. The coordinates (xα) of a point p ∈ S� are propagated off the
hypersurface along the unique conformal geodesic passing through p; see the
main text for further details.
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Remarks

(i) The specific choice of the data for the conformal Gaussian gauge system

on an initial hypersurface S is dictated by the particular geometric setting

under consideration.

(ii) The discussion in this section can be adapted, with minor changes, to the

case of a congruence of so-called conformal curves in non-vacuum spacetimes;

see, for example, Lübbe and Valiente Kroon (2012) for further details.

13.4.2 Hyperbolic reduction of a model equation

The general ideas behind the procedure of hyperbolic reduction using conformal

Gaussian systems are best illustrated with a model equation. All the extended

conformal equations, except for the unphysical Bianchi identity, are of the

form

∇̂aMbK − ∇̂bMaK = NabK, (13.51)

where MaK and NabK = N[ab]K denote the components of some tensorial

quantities with respect to the frame {ea} and K denotes an arbitrary set of

tensor indices. To derive an evolution equation along the direction given by the

congruence of curves, one sets a = 0 so that

∇̂0MbK − ∇̂bM0K = N0bK,

or, more explicitly,

e0(MbK)− eb(M0K) = N0bK + Γ̂0
c
bMcK + Γ̂0

L
KMbL − Γ̂b

c
0McK − Γ̂b

L
KM0L.

If the gauge conditions (13.49) are taken into account and coordinates are chosen

such that e0 = ∂τ , then the above equation reduces to

∂τMbK − eb(M0K) = N0bK − Γ̂b
c
0McK − Γ̂b

L
KM0L. (13.52)

This last equation is not a completely satisfactory evolution equation for the

components MaK as it does not yield information about ∂τM0K – notice that by

setting a = b = 0 in (13.51) both sides of the equation vanish as a result of the

skew symmetry of the equation. To read Equation (13.52) as a suitable evolution

equation one needs to know the value of the time component M0K either as

a result of symmetries of the tensor MaK or through some gauge condition.

In any of these cases, Equation (13.52) is just a transport equation along

the congruence of conformal curves, and, accordingly, it trivially gives rise to a

symmetric hyperbolic subsystem of equations.
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Analysis in terms of spinors

In view of subsequent applications, the properties of the spinorial counterpart of

Equation (13.51) are now analysed. In this case one has

∇̂AA′MBB′K − ∇̂BB′MAA′K = NAA′BB′K, (13.53)

where K denotes an arbitrary string of spinorial indices. In view of its anti-

symmetry, Equation (13.53) is completely equivalent to the pair of contracted

equations

∇̂(A|P ′|MB)
P ′

K =
1

2
N(A|P ′|B)

P ′
K, (13.54a)

∇̂P (A′MB′)
P

K =
1

2
NP (A′PB′)K. (13.54b)

Thus, not unsurprisingly, one has arrived at a situation similar to the one

analysed in Section 13.2. Namely, one has equations containing a symmetrised

spinorial curl. A symmetric hyperbolic system can then be obtained if suitable

information about the divergence ∇̂PPMPP ′K is available.

The next step in the procedure consists of introducing the space spinor version

of MAA′K, namely, MBB′K = −τPB′MBPK so that

τP
A′

τQ
B′∇̂AA′MBB′K = −τP

A′
τQ

B′(
τRB′∇̂AA′MBRK +MBRK∇̂AA′τRB′

)
= ∇̂APMBQK −

√
2MBRK χ̂AP

R
Q,

where it has been used that
√
2χ̂ABCD ≡ τB

A′
τD

C′∇̂AA′τCC′ consistent with

formula (4.17). From the above identity together with Equations (13.54a) and

(13.54b) one obtains

∇̂(A|P |MB)
P

K =
1

2
N(A|P |B)

P
K −

√
2M(A

R
|K| χ̂B)PR

P ,

∇̂A(PMA
Q)K =

1

2
NA(P

A
Q)K +

√
2MA

RK χ̂A(P
R

Q).

Using the decomposition

∇̂AB =
1

2
εABP̂ + D̂AB,

with P̂ ≡ τAA′∇̂AA′ and D̂AB ≡ τ(A
A′∇̂B)A′ – compare Equation (4.16) – and

writing MABK as

MABK =
1

2
εABmK +mABK

where mK ≡ MQ
Q

K and mABK ≡ M(AB)K, one obtains

1

2
P̂mABK − 1

2
D̂ABmK − D̂P (AmB)

P
K

= −1

2
N(A|P |B)

P
K +

√
2M(A

R
|K| χ̂B)PR

P
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1

2
P̂mPQK − 1

2
D̂PQmK + D̂A(PmA

Q)K

=
1

2
NA(P

A
Q)K +

√
2MA

RK χ̂A(P
R

Q).

Taking linear combinations of the latter equations one finally arrives at

P̂mABK − D̂ABmK = EABK, (13.55a)

D̂P (AmP
B)K = CABK, (13.55b)

where EABK and CABK are some expressions not involving derivatives of

MABK whose precise form is not relevant for the subsequent discussion.

Equation (13.55a) can be read as an evolution equation for the spatial components

mABK if the time component mK is known. Observe that the reduction procedure

does not produce an equivalent equation for mK consistent with the discussion

of Equation (13.51).

13.4.3 The evolution equations in the frame formalism

To obtain some intuition into the structural properties of the evolution equations,

it is convenient to look first at the form of the equations in a tensor frame

formalism. Accordingly, one considers the vacuum extended conformal field

equations as given in Section 8.4.1; see Equations (8.46).

The required evolution equations for the frame components, connection

coefficients and components of the Schouten tensor are obtained from the

conditions

Σ̂0b = 0, Ξ̂c
d0b = 0, Δ̂0bc = 0.

In particular, the evolution equation for the covector f defining the Weyl

connection is given by

Ξ̂c
c0b = 0.

Using the definitions of the zero quantities given in Equations (8.44a)–(8.44c),

recalling that in the vacuum case Tcdb = 0, and making use of the gauge

conditions (13.49) and (13.50), one obtains the evolution equations

∂τeb
μ = −Γ̂b

f
0ef

μ,

∂τ Γ̂b
c
d = −Γ̂f

c
dΓ̂b

f
0 + δ0

cL̂bd + δd
cL̂b0 − η0dη

fcL̂bf +Θdcd0b,

∂τ L̂bc = −Γ̂b
f
0L̂fc + dfd

f
c0b.

These equations contain derivatives only in the τ direction – that is, they are

transport equations along the conformal geodesics.

The evolution equations for the components of the rescaled Weyl tensor are

obtained by resorting to an electric-magnetic decomposition; see Section 11.1.2.

Using Equations (11.9) and (11.10) for the decomposition of a Weyl candidate

in the equations
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∇adabcd = 0, ∇ad∗abcd = 0,

one obtains the expressions

Λ∗
(b|0|d) = e0(Ebd) +DaBc(bεd)

ac + 2aaε
ac

(bBd)c − 3χ(b
cEd)c

− εb
acεd

efEacχcf + χEbd = 0,

Λ(b|0|d) = e0(Bbd)−DaEc(bεd)
ac − 2aaε

ac
(bEd)c − 3χa

(bBd)a

− εb
acεd

efBacχcf + χBbd = 0,

where

hab ≡ gab − τaτb, χab = ha
c∇cτb, χ = habχab, aa ≡ τb∇bτa.

The above form of the equations is completely general. In the particular case

of a conformal Gaussian gauge system one has e0 = ∂τ .

13.4.4 The evolution equations in the spinorial formalism

To discuss the spinorial version of the evolution equations one makes use of the

extended conformal field equations

Σ̂AA′BB′ = 0, Ξ̂C
DAA′BB′ = 0, Δ̂CC′DD′BB′ = 0, Λ̂BB′CD = 0,

with the zero quantities as given in (8.53a)–(8.53e). These equations are regarded

as differential conditions on the fields

eAA′μ, Γ̂AA′BC , L̂AA′BB′ , φABCD.

Moreover, one considers the spinor τAA′
– the counterpart of the vector τ , with

normalisation τAA′τAA′
= 2. In terms of a spinor dyad {εAA} adapted to τAA′

one has

τAA′
= ε0

Aε0′A
′
+ ε1

Aε1′A
′
.

In what follows, all spinorial objects will be expressed with respect to this basis.

In particular, the components of τAA′
with respect to {εAA} will be denoted

by τAA′
.

The gauge conditions (13.49) and (13.50) in the spinorial formalism take the

form

τAA′
eAA′ =

√
2∂τ , τAA′

Γ̂AA′BC = 0, τAA′
L̂AA′BB′ = 0. (13.56)

For future use, it is recalled that the reduced spin Weyl connection coefficients

Γ̂CC′AB can be written in terms of the unphysical Levi-Civita connection

coefficients ΓCC′AB and the covector fAA′ as

Γ̂CC′AB = ΓCC′AB − εACfBC′ .
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Combining the above with the gauge conditions one obtains

τCC′
ΓCC′AB = −τA

C′
fBC′ (13.57)

and, furthermore, that

Γ̂CC′AB = ΓCC′AB − εACτQQ′
ΓQQ′PBτPC′ .

In the gauge given by conditions (13.56) the connection coefficients Γ̂CC′AB

can be fully expressed in terms of the coefficients ΓCC′AB, and vice versa.

Comparing Equation (13.57) with the definition in Equation (4.17), one sees

that the spinor fAA′ encodes the acceleration of the congruence of conformal

geodesics. In particular, if fAA′ = 0, then the congruence consists of standard

geodesics and one obtains a Gaussian gauge system.

The reduced symmetric hyperbolic system of evolution equations can be

deduced from the following contractions of the conformal field equations

τAA′
Σ̂AA′PP ′

BB′ePP ′μ = 0, τCC′
Ξ̂ABCC′DD′ = 0,

τAA′
Δ̂AA′BB′CC′ = 0, τ(A

A′
Λ̂|A′|BCD) = 0.

Explicitly, for the first three equations one has
√
2∂τeAA′μ =−

(
Γ̂AA′QBτBQ′

+
¯̂
ΓA′A

Q′
B′τQB′)

eQQ′μ,
√
2∂τ Γ̂AA′BC =−

(
Γ̂AA′PQΓ̂PQ′BC +

¯̂
ΓAA′P

′
Q′ Γ̂QP ′BC

)
τQQ′

+ L̂AA′CQ′τBQ′
+ΘφB

CQAτQA′ ,
√
2∂τ L̂AA′BB′ =−

(
Γ̂AA′PQL̂PQ′BB′ +

¯̂
ΓA′A

P ′
Q′L̂QP ′BB′

)
τQQ′

− dPP ′
(φPAQBεP ′B′τQA′ + φ̄P ′A′Q′B′εPBτA

Q′
).

Following the same procedure discussed in Section 13.2.4 one finds, for the

Bianchi identity, that

PφABCD − 2D(A
QφBCD)Q = 0. (13.58)

Observe that this last expression is, for convenience, expressed in terms of the

Levi-Civita connection ∇.

The space spinor split of the evolution equations

A more detailed version of the evolution equations is obtained by resorting to

the space spinor formalism, and, in particular, to the split of the connection

coefficients as given in Section 4.3.1.

Following the general strategy behind the space spinor formalism, it is

convenient to define

Γ̂ABCD ≡ τB
A′

Γ̂AA′CD, ΓABCD ≡ τB
A′

ΓAA′CD, fAB ≡ τB
A′

fAA′ ,

ΘABCD ≡ τB
A′

τD
C′

L̂AA′CC′
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In particular, one has

Γ̂ABCD = ΓABCD − εCAfDB.

As a consequence of the gauge conditions (13.56) it follows that

fAB = f(AB), ΓQ
Q

AB = −fAB, L̂Q
Q

AB = 0.

Defining, as in Section 4.3.1, the spinors χABCD and ξABCD via

χABCD ≡ − 1√
2

(
ΓABCD + Γ+

ABCD

)
, ξABCD ≡ 1√

2
(ΓABCD − Γ+

ABCD),

one obtains from the metricity of the connection ∇ that

ΓABCD =
1√
2
(ξABCD − χABCD)

=
1√
2
(ξABCD − χ(AB)CD)− 1

2
εABfCD.

Exploiting the gauge conditions, the spinor ΘABCD can be decomposed into

ΘABCD = ΘAB(CD) +
1

2
εCDΘABQ

Q.

In addition, it is convenient to introduce the electric and magnetic parts

of the rescaled Weyl spinor φABCD via

ηABCD ≡ 1

2
(φABCD + φ+

ABCD), μABCD ≡ − i

2
(φABCD − φ+

ABCD).

A calculation using the above definitions yields the detailed system:

∂τeAB
0 = −χ(AB)

PQePQ
0 − fAB, (13.59a)

∂τeAB
α = −χ(AB)

PQePQ
α, (13.59b)

∂τ ξABCD = −χ(AB)
PQξPQCD +

1√
2
(εACχ(BD)PQ + εBDχ(AC)PQ)fPQ

−
√
2χ(AB)(C

EfD)E − 1

2
(εACΘBDQ

Q + εBDΘACQ
Q)

− iΘμABCD, (13.59c)

∂τfAB = −χ(AB)
PQfPQ +

1√
2
ΘABQ

Q, (13.59d)

∂τχ(AB)CD = −χ(AB)
PQχPQCD −ΘAB(CD) +ΘηABCD, (13.59e)

∂τΘCD(AB) = −χ(CD)
PQΘPQ(AB) − ∂τΘηABCD

+ i
√
2dP (AμB)CDP , (13.59f)

∂τΘABQ
Q = −χ(AB)

EFΘEFQ
Q +

√
2dPQηABPQ. (13.59g)

Remark. The term ∂τΘ in the second term of the left-hand side of Equa-

tion (13.59f) arises from the fact that, in a conformal Gaussian system, the

time component of the covector d is given by Θ̇; see Proposition 5.1.
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374 Hyperbolic reductions

Setting

φ0 ≡ φ0000, φ1 ≡ φ0001, φ2 ≡ φ0011, φ3 ≡ φ0111, φ4 ≡ φ1111,

the standard Bianchi system, Equation (13.58), explicitly reads

(
√
2 + 2e01

0)∂τφ0 − 2e11
0∂τφ1 + 2e01

α∂αφ0 − 2e11
α∂αφ1

= −6Γ1111φ2 + (4Γ1110 + 8Γ0111)φ1 + (2Γ1100 − 8Γ0101)φ0,

(
√
2 + 2e01

0)∂τφ1 − 2e11
0∂τφ2 − 2e11

α∂αφ2 + 2e01
α∂αφ1

= −4Γ1111φ3 + (6Γ(01)11 − 3f11)φ2

+ (4Γ1100 − 4Γ(01)01 + 2f01)φ1 − (2Γ(01)00 + f00)φ0,√
2∂τφ2 − e11

0∂τφ3 + e00
0∂τφ1 − e11

α∂αφ3 + e00
α∂αφ1

= −Γ1111φ4 − 2(Γ1101 + f11)φ3 + 3(Γ0011 + Γ1100)φ2

− 2(Γ0001 − f00)φ1 − Γ0000φ0,

(
√
2− 2e01

0)∂τφ3 + 2e00
0∂τφ2 − 2e01

α∂αφ3 + 2e00
α∂αφ2

= −(2Γ(01)11 + f11)φ4 + (2Γ0011 − 4Γ(01)01 − 2f01)φ3

+ (6Γ(01)00 + 3f00)φ2 − 4Γ0000φ1,

(
√
2− 2e01

0)∂τφ4 + 2e00
0∂τφ3 − 2e01

α∂αφ4 + 2e00
α∂αφ3

= (2Γ0011 − 8Γ1010)φ4 + (4Γ0001 + 8Γ1000)φ3 − 6Γ0000φ2.

For completeness, the constraints

ΛAB ≡ DPQφPQAB = 0

are also given in explicit form:

e11
0∂τφ4 − 2e01

0∂τφ3 + e00
0∂τφ2 + e11

α∂αφ4 − 2e01
α∂αφ3 + e00

α∂αφ2

= −(2Γ(01)11 − 4Γ1110)φ4 + (2Γ0011 − 4Γ(01)01 − 4Γ1100)φ3

+ 6Γ(01)00φ2 − 2Γ0000φ1,

e11
0∂τφ3 − 2e01

0∂τφ2 + e00
0∂τφ1 + e11

α∂αφ3 − 2e01
α∂αφ2 + e00

α∂αφ1

= Γ1111φ4 − (4Γ(01)11 − 2Γ1101)φ3 + 3(Γ0011 − Γ1100)φ2

− (2Γ0001 − 4Γ(01)00)φ1 − Γ0000φ0,

e11
0∂τφ2 − 2e01

0∂τφ1 + e00
0∂τφ0 + e11

α∂αφ2 − 2e01
α∂αφ1 + e00

α∂αφ0

= 2Γ1111φ3 − 6Γ(01)11φ2 + (4Γ0011 + 4Γ(01)01 − 2Γ1100)φ1

− (4Γ0001 − 2Γ(01)00)φ0.

These constraint equations contain time derivatives of the components of the

Weyl spinor. Furthermore, as the congruence of conformal curves is, in general,

not hypersurface orthogonal, the constraint equations are not intrinsic to the

leaves of a foliation.
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The boundary adapted system

The standard system (13.36) is not the only symmetric hyperbolic evolution

system that can be extracted from the Bianchi equation. In certain applications,

such as the ones involving evolution domains with a timelike boundary, another

form of the evolution equations is more convenient. In what follows, the system

extracted from

−2Λ(0000) = 0, −2Λ(0001) −
1

2
C00 = 0, −2Λ(0011) = 0, (13.60a)

−2Λ(0111) +
1

2
C11 = 0, −2Λ1111 = 0, (13.60b)

will be known as the boundary adapted system. In the following, it will

be shown that it is, indeed, symmetric hyperbolic. The principal part of the

boundary adapted system can be written as

Aμ∂μφ =

⎛
⎜⎜⎜⎜⎝

τμ + 2e01
μ −2e00

μ 0 0 0

2e11
μ 2τμ −2e00

μ 0 0

0 2e11
μ 2τμ −2e00

μ 0

0 0 2e11
μ 2τμ −2e00

μ

0 0 0 2e11
μ τμ − 2e01

μ

⎞
⎟⎟⎟⎟⎠ ∂μ

⎛
⎜⎜⎜⎜⎝

φ0

φ1

φ2

φ3

φ4

⎞
⎟⎟⎟⎟⎠ ,

(13.61)

so that the matrices Aμ are Hermitian, and, in particular, Aμτμ is positive

definite. The characteristic polynomial is given by

det(Aμξμ) = 4
(
τμξμ

)(
gνλξνξλ

)(
lρσξρξσ

)
,

where lρσ ≡ τρτσ + e00
(ρe11

σ). In Chapter 14, it will be seen that when

τμ is tangent to a timelike hypersurface, then the pull-back of lμν gives the

components of the intrinsic three-dimensional Lorentzian metric implied by g on

the hypersurface.

Explicitly, the boundary adapted system takes the form

(
√
2 + 2e01

0)∂τφ0 − 2e11
0∂τφ1 + 2e01

α∂αφ0 − 2e11
α∂αφ1

= −6Γ1111φ2 + (4Γ1110 + 8Γ0111)φ1 + (2Γ1100 − 8Γ0101)φ0,√
2∂τφ1 − e11

0∂τφ2 + e00
0∂τφ0 − e11

α∂αφ2 + e00
α∂αφ4

= −2Γ1111φ3 − 3f11φ2 + (2Γ1100 + 4Γ0011 + 2f01)φ1 − (4Γ0001 − f00)φ0,√
2∂τφ2 − e11

0∂τφ3 + e00
0∂τφ1 − e11

α∂αφ3 + e00
α∂αφ1

= −Γ1111φ4 − 2(Γ1101 + f11)φ3 + 3(Γ0011 + Γ1100)φ2

− 2(Γ0001 − f00)φ1 − Γ0000φ0,√
2∂τφ3 − e11

0∂τφ4 + e00
0∂τφ2 − e11

α∂αφ4 + e00
α∂αφ2

= −(4Γ1110 + f11)φ2 + (2Γ0011 + 4Γ1100 − 2f01)φ3 + 3f00φ2 − 2Γ0000φ1,

(
√
2− 2e01

0)∂τφ4 + 2e00
0∂τφ3 − 2e01

α∂αφ4 + 2e00
α∂αφ3

= (2Γ0011 − 8Γ1010)φ4 + (4Γ0001 + 8Γ1000)φ3 − 6Γ0000φ2.
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13.4.5 The construction of a subsidiary system

This section addresses the construction of a system of subsidiary equations for

the evolution equations discussed in the previous section. The particular problem

at hand consists of constructing evolution equations for the zero quantities

Σ̂a
c
b, Ξ̂c

dab, Δ̂abc, Λabc,

encoding the extended conformal field equations. In addition, in the present

hyperbolic reduction procedure, one also needs to construct evolution equations

for the additional zero quantities

δa, γab, ςab,

which play the role of constraints of the conformal equations; see Equations

(8.47a)–(8.47c) for their definitions. The necessity of these extra zero quantities

can be traced back to Proposition 8.3.

As in the case of the analysis of the subsidiary equations for the hyperbolic

reduction procedure using gauge source functions, the subsidiary equations need

to be homogeneous in zero quantities so that the vanishing of the latter on

an initial hypersurface readily implies a unique vanishing solution. The basic

assumption in the construction of the subsidiary system is that the evolution

equations associated to the extended conformal field equations are satisfied. That

is, one assumes that

Σ̂0
c
b = 0, Ξ̂c

d0b = 0, Δ̂0bc = 0,

hold, together with either the standard or the boundary adapted system for the

components of the Weyl spinor. The aforementioned evolution equations have

been constructed using the gauge conditions

f0 = 0, Γ̂0
b
c = 0, L̂0b = 0,

which, therefore, can also be used in the construction of the subsidiary system.

Note also, that in the present gauge d0 = Θβ0 = ∇0Θ so that one has

δ0 = 0.

Similarly,

γ0b = L̂0b − ∇̂0βb −
1

2
S0b

efβeβf + λΘ−2η0b = 0

by virtue of the gauge conditions and the evolution equation

∇̃0βa + β0βa − 1

2
η0a(βeβ

e − 2λΘ−2) = 0, (13.62)

for the covector βa. Finally, one has

ς0b = −L̂b0 − ∇̂0fb + Γ̂b
e
0fe = 0,

as a result of the evolution equation for the covector f .

https://doi.org/10.1017/9781009291347.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.017


13.4 Hyperbolic reductions using conformal Gaussian systems 377

The construction of subsidiary equations is similar in spirit to the one discussed

in Section 13.3. There are, however, certain differences. The most conspicuous

one is the fact that one is now working with a connection which is non-metric.

The subsidiary equation for the no-torsion condition

To construct the subsidiary equation for the no-torsion condition one considers

the totally antisymmetric covariant derivative ∇̂[aΣ̂b
d
c] and observes that

3∇̂[0Σ̂b
d
c] = ∇̂0Σ̂b

d
c + ∇̂bΣ̂c

d
0 + ∇̂cΣ̂0

d
b

= ∇̂0Σ̂b
d
c − Γ̂b

e
0Σ̂c

d
e − Γ̂c

e
0Σ̂e

d
b. (13.63)

On the other hand, from the first Bianchi identity, Equation (2.10), and the

definition of Ξ̂d
cab one obtains

∇̂[aΣ̂b
d
c] = −Ξ̂d

[cab] − Σ̂[a
e
bΣ̂c]

d
e, (13.64)

where it has been used that ρ̂d[cab] = 0 by construction. The desired evolution

equation is obtained from combining Equations (13.63) and (13.64). More

precisely, one has

∇̂0Σ̂b
d
c = −1

3
Γ̂c

e
0Σ̂e

d
b −

1

3
Γ̂c

e
0Σ̂e

d
b − Ξ̂d

0bc.

This evolution equation has the required homogeneous form.

The subsidiary equation for the Ricci identity

In this case, one considers the totally symmetrised covariant derivative

∇̂[aΞ̂
d
|e|bc]. A direct computation shows that

3∇̂[0Ξ̂
d
|e|bc] = ∇̂0Ξ̂

d
ebc + ∇̂bΞ̂

d
ec0 + ∇̂cΞ̂

d
e0b

= ∇̂0Ξ̂
d
ebc − Γ̂b

f
0Ξ̂

d
ecf − Γ̂c

f
0Ξ̂

d
efb.

Using the second Bianchi identity, Equation (2.11), and the definition of Ξ̂d
ebc

one arrives at the expression

∇̂[aΞ̂
d
|e|bc] = −Σ̂[a

f
bR̂

d
|e|c]f − ∇̂[aρ̂

d
|e|bc].

The first term on the right-hand side is already of the required form. The second

one needs to be analysed in more detail. It is recalled that

ρ̂debc ≡ Cd
ebc + 2Se[b

df L̂c]f .

Thus,

∇̂[aρ̂
d
|e|bc] = ∇̂[aC

d
|e|bc] + 2Se[b

df ∇̂aL̂c]f .
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In order to further expand this expression one considers εf
abc∇̂aρ̂

d
ebc. A direct

calculation shows that

∇̂[aC
d
|e|bc] = ∇[aC

d
|e|bc] + δ[a

df|fC
f
e|bc] + ηe[af

fCd
|f |bc]. (13.65)

Moreover, one has

εf
abc∇aC

d
ebc = −εf

abc∇a
∗C∗d

ebc

= −2∇a
∗Cd

ef
a = 2∇aC

∗a
f
d
e

= −εe
dgh∇aC

a
fgh.

Thus, using that Cc
dab = Θdcdab and the definition of the zero quantity Λabc

one concludes that

εf
abc∇̂aC

d
ebc = Θεe

dghΛfgh + 2∇gΘd∗defg + 2Θfgd∗gef
d + 2Θfgd∗dgfe.

A similar computation using the definition of Δ̂abc yields

2εf
abcSeb

dgΔ̂acg = 2Θβgd
∗g

ef
d − 2Θβgd

∗gd
fe.

Thus, using the symmetries of d∗cdab and the definition of δa one concludes that

εf
abc∇̂aρ̂

d
ebc = Θεe

dghΛfgh − 2Θδgd∗defg + εf
abcSeb

dgΔ̂acg.

Alternatively, using the properties of the generalised Hodge duals † and ‡ defined

in Equation (2.24), one can write

∇̂[aρ̂
d
|e|bc] =

1

6
Θεfabcεe

dghΛfgh − 1

3
Θεfabcδ

gd∗defg − Se[b
dgΔ̂ac]g.

Combining the expressions, one obtains the required evolution equation.

Namely, one has

∇̂0Ξ̂
d
ebc = Γ̂b

f
0Ξ̂

d
ecf + Γ̂c

f
0Ξ̂

d
efb − Σ̂b

f
cR̂

d
e0f − 1

2
Θεf0bcεe

dghΛfgh

+ εf0bcδ
gd∗defg + 3Se0

dgΔ̂cbg,

which is homogeneous in the zero quantities.

The subsidiary equation for the Cotton equation

In this case one considers the skew derivative ∇̂[aΔ̂bc]d. A direct computation

yields

3∇̂[0Δ̂bc]d = ∇̂0Δ̂bcd + ∇̂bΔ̂c0d + ∇̂cΔ̂0bd

= ∇̂0Δ̂bcd − Γ̂b
e
0Δ̂ced − Γ̂c

e
0Δ̂ebd.
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On the other hand, using the definition of Ξ̂e
cab and the symmetries of ρ̂ecab

one obtains

∇̂[aΔ̂bc]d = 2∇̂[a∇̂bL̂c]d − ∇̂[ad|ed
e
d|bc] − de∇̂[ad

e
|d|bc]

= −Ξ̂e
[cab]L̂ed − Ξ̂e

d[abL̂c]e − ρ̂ed[abL̂c]e + Σ̂[a
e
b∇̂|e|L̂c]d

− ∇̂[ad|ed
e
d|bc] − de∇̂[ad

e
|d|bc].

Using the definition of δa and γab one finds that

∇̂[ad|ed
e
d|bc] = −Θδ[aβ|ed

e
d|bc] −Θγ[a|ed

e
d|bc] −Θf[aβ|ed

e
d|bc] +ΘL̂[a|ed

e
d|bc].

Finally, a calculation similar to the one carried out in the previous subsection

shows that

εf
abc∇ad

e
dbc = εd

egh∇ad
a
fgh,

so that using Equation (13.65) and the properties of the generalised duals † and
‡ – see Equation (2.24) – one finds that

∇̂[ad
e
|d|bc] =

1

6
εabc

f εd
eghΛfgh + δ[a

ef|fd
f
d|bc] + ηd[af

fde|f |bc].

Combining the above expressions and using the properties of the decomposi-

tion of ρ̂ddab one obtains the expression

∇̂[aΔ̂bc]d = −Ξ̂e
[cab]L̂ed − Ξ̂e

d[abL̂c]e + Σ̂[a
e
b∇̂|e|L̂c]d

+Θδ[aβ|ed
e
d|bc] +Θγ[a|ed

e
d|bc] −

1

6
εabc

f εd
eghΛfghβe,

and, finally, the evolution equation

∇̂0Δ̂bcd = Γ̂b
e
0Δ̂ced + Γ̂c

e
0Δ̂ebd − Ξ̂e

0bcL̂ed + δbded
e
dc0 + δcded

e
d0b

+Θγbed
e
dc0 +Θγced

e
d0b −

1

2
ε0bc

f εd
eghΛfghβe,

which is homogeneous in zero quantities as required.

The subsidiary equations for the physical Bianchi identity

The argument to show the propagation of the Bianchi identity in the present

context is similar to the one discussed in Section 13.3.6. In particular, the zero

quantity ΛABCD satisfies Equation (13.47). It remains to compute ∇bΛbcd and

express it in terms of zero quantities associated with the extended conformal

field equations. A calculation using the commutator of the covariant derivative

∇ yields

2∇bΛbcd = 2∇b∇adabcd = 2∇[b∇a]dabcd

= 2Re
[c
badd]eab − 2Re

a
badebcd +Σb

e
a∇ed

ab
cd.
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Now, it is recalled that if ∇̂ − ∇ = S(f), then Σ̂a
c
b = Σa

c
b. Moreover,

using the formula relating the curvature tensors of the connections ∇̂ and ∇,

Equation (5.25b), the definitions of the zero quantities Ξ̂c
dab and ςab and the

symmetries of dabcd, one concludes that

∇bΛbcd = Ξ̂e
[c
badd]eab − Ξ̂e

a
badebcd +

1

2
Σ̂b

e
a∇ed

ab
cd + ςabdabcd.

This expression is homogeneous in zero quantities and, thus, also its spinorial

counterpart ∇AA′
ΛA′ACD. Consequently, if the standard evolution equations

hold, it follows from Equation (13.47) and the calculations in the previous

paragraph that

PΛAB −D(A
PΛB)P − 3√

2
χP

Q
SQεS(AΛBP ) = 2∇QQ′

ΛQQ′AB

is homogeneous in zero quantities.

Finally, in the case of the boundary adapted system, one obtains a symmetric

hyperbolic system of evolution equations of the form

PΛ00 +D00Λ01 = U00, (13.66a)

PΛ01 +D00Λ11 −D11Λ00 = U01, (13.66b)

PΛ11 −D11Λ01 = U11, (13.66c)

where U00, U01 and U11 are expressions homogeneous in zero quantities.

The subsidiary equations for the auxiliary zero quantities

Direct computations show that

2∇̂[0δb] = ∇̂0δb + Γ̂b
e
0δe,

2∇̂[0γb]c = ∇̂0γbc + Γ̂b
e
0γec,

3∇̂[0ςbc] = ∇̂0ςbc − Γ̂b
e
0ςce − Γ̂c

e
0ςeb.

For δa one finds, using the definitions of the various zero quantities, that

∇̂[aδb] = ∇̂aβb − ∇̂afb −Θ−1∇̂[a∇̂b]Θ

= −γ[ab] + ςab −
1

2
Θ−1Σa

e
b∇̂eΘ.

A lengthier computation yields

2∇̂[aγb]c = 2∇̂[aL̂b]c − 2∇̂[a∇̂b]βc + 2Sc[a
efβ|e|∇̂b]βf

− 2λΘ−3∇̂[aΘηb]c − 2λΘ−2f[aηb]c

= Δ̂abc + βeΞ̂
e
cab − Σ̂a

e
b∇̂eβc + 2βcγ[ab] − 2β[aγb]c + ηc[aβ

eγb]e

+ 2λΘ−2δ[aηb]c + β[aηb]cβeβ
e − 2λΘ−2ηc[aβb].

https://doi.org/10.1017/9781009291347.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.017


13.4 Hyperbolic reductions using conformal Gaussian systems 381

Similarly, using de[cab] = 0, one obtains

∇̂[aςbc] = ∇̂[[aL̂b]c] − ∇̂[[a∇̂b]fc]

=
1

2
Δ̂[abc] −

1

2
ded

e
[cab] +

1

2
R̂e

[cab]fe −
1

2
Σ̂[a

e
b∇̂|e|fc]

=
1

2
Δ̂[abc] +

1

2
Ξ̂e

[cab]fe −
1

2
Σ̂[a

e
b∇̂|e|fc].

Hence, one obtains the evolution equations

∇̂0δi = γi0 − Γ̂i
e
0δe,

∇̂0γic = −γjcΓ̂i
j
0 − β0γic − βcγi0 + η0c(β

eγie − 2λΘ−2δi),

∇̂0ςjk = Γ̂j
e
0ςke + Γ̂k

e
0ςej +

1

2
Δ̂jk0 +

1

2
Ξ̂e

0jkfe +
1

2
Σ̂j

e
kΓ̂e

f
0ff ,

where, in the last equation relation, (13.62) has been used to get further

cancellation of terms.

13.4.6 Summary of the analysis

It is convenient to group the independent components of the spinorial fields in

the extended conformal field equations as:

υ̂ independent components ofeAA′μ, Γ̂AA′BC , L̂AA′BB′ ,

φ independent components ofφABCD.

Also, let e and Γ̂ denote, respectively, the independent components of the frame

and connection coefficients. In terms of the above definitions one has:

Proposition 13.3 (properties of the conformal evolution equations) The

extended conformal vacuum Einstein field equations

Σ̂a
c
b = 0, Ξ̂c

dab = 0, Δ̂abc = 0, Λabc = 0,

expressed in terms of a conformal Gaussian gauge imply a symmetric hyperbolic

system for the components of (υ̂,φ) of the form

∂τ υ̂ = Kυ̂ +Q(Γ̂)υ̂ + L(x)φ,(
I+A0(e)

)
∂τφ+Aα(e)∂αφ = B(Γ̂)φ,

where I is the 5×5 unit matrix, K is a constant matrix, Q(Γ̂) is a smooth matrix-

valued function, L(x) is a smooth matrix-valued function of the coordinates,

Aμ(e) are Hermitian matrices depending smoothly on the frame coefficients e

and B(Γ̂) is a smooth matrix-valued function of the connection coefficients. In

the case of the standard Bianchi system, the characteristic polynomial consists

of the factors

τμξμ, gμνξμξν ,

(
τμτν +

2

3
gμν
)
ξμξν ,
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while for the boundary-adapted Bianchi system one has the factors

τμξμ, gμνξμξν ,
(
τμτν + e00

(μe11
ν)
)
ξμξν .

Remark. It is important to emphasise the relative simplicity of the evolution

system provided by Proposition 13.3 compared with the one given in Proposition

13.1. This structure reinforces the intuition that the Weyl tensor encodes the

degrees of freedom of the gravitational field.

With regards to the subsidiary system one obtains a result analogous to

Proposition 13.2:

Proposition 13.4 (properties of the subsidiary evolution) Assume that

the conditions

Σ̂0
c
b = 0, Ξ̂c

d0b = 0, Δ̂0bc = 0,

hold and that the associated evolution equations are expressed in terms of a

conformal Gaussian gauge system. Moreover, let the independent components

of the rescaled Weyl spinor satisfy either the standard or the boundary-adapted

evolution system. Then, the independent components of the zero quantities

Σ̂a
c
b, Ξ̂c

dab, Δ̂abc, Λabc, δa, γab, ςab,

which are not determined by either the evolution equations or gauge conditions

satisfy a symmetric hyperbolic system which is homogeneous in zero quantities.

Controlling the conformal Gaussian gauge

The conformal Gaussian hyperbolic reduction procedure is based on the

assumption of the existence of a non-singular (i.e. non-intersecting) congruence

of conformal geodesics. While this assumption may be valid close to an initial

hypersurface, it may fail at later times. To analyse the potential breakdown of

the gauge, one appends to the evolution system given in Proposition 13.4 an

evolution equation for the components of the deviation vector of the congruence;

see Section 5.5.7.

In what follows, let z denote a separation vector for the congruence of

conformal geodesics. Accordingly, one has

[ẋ, z] = 0.

Thus, writing z = zaea where {ea} is a Weyl propagated frame such that

e0 = ẋ, it follows that

e0(z
a)ea = za[ea, e0].

Using the conformal field equation Σ̂a
c
b = 0 and using that, in the present

gauge, e0 = ∂τ and Γ̂0
c
b = 0, the above expression can be rewritten as

∂τz
a = Γ̂b

a
0z

b.
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Now, let zAA′ denote the spinorial counterpart of za. Defining the space spinor

counterpart zAB ≡ τB
A′

zAA′ and using the split

zAB =
1

2
zεAB + z(AB),

a computation similar to the one used to derive the evolution equations yields

the following evolution equations for the irreducible components of zAB:

∂τz = fABz(AB), (13.67a)

∂τz(AB) = χCD(AB)z
(CD). (13.67b)

The congruence of conformal geodesics will be non-intersecting as long as

z(AB) �= 0.

13.5 Other hyperbolic reduction strategies

The hyperbolic reduction procedures discussed in Sections 13.2 and 13.4 do not

exhaust the possible strategies to extract evolution equations from the conformal

Einstein field equations. Indeed, other approaches have been put forward in the

literature.

13.5.1 Hyperbolic reductions for the metric conformal field equations

Numerical evaluations of solutions to the vacuum conformal Einstein field

equations have been carried out in Hübner (1999a,b, 2001a) using the metric

formulation of the equations; see Equations (8.28a)–(8.28e). As the metric

conformal field equations contain no equation which can be read as a differential

equation for the components of the unphysical metric g, one needs to supplement

the equations in some manner. Assuming that suitable evolution equations can be

found for the components of the conformal fields Ξ, Σa, s, Lab and dabcd in some

local coordinates x = (xμ), the conformal metric g can be computed from the

components of the Schouten tensor, Lμν , using generalised wave coordinates;

see the Appendix to this chapter for the vacuum Einstein field equations and the

remark at the end of Section 8.2.5. More precisely, the components gμν of g are

given as the solutions to the equations

�gμν − 2∇(μFν) − 2gλρg
στΓσ

λ
μΓτ

ρ
ν − 4Γλ

σ
ρg

λτgσ(μΓν)
ρ
τ

= −4Lμν − 1

3
R(x)gμν ,

�xμ = −Fμ(x), that is, Γμ = Fμ(x),

where Fμ(x) are some suitable coordinate gauge source functions and it

has been used that Rab = 2Lab +
1
6R(x)gab. Observe that in the right-hand side

of the first of the above equations one has the Ricci scalar R, which, following

the discussion from previous sections, is to be treated as a further gauge source

function.
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From an analytic point of view, the approach described in the previous

paragraphs leads to an evolution system with equations of mixed order. This

type of system requires a more general notion of hyperbolicity than the one

discussed in Chapter 12: the so-called Leray hyperbolicity ; see, for example,

Choquet-Bruhat (2008) and Rendall (2008).

13.5.2 Wave equations for the conformal fields

One way of avoiding mixed-order evolution systems is to construct wave

equations for the components of the conformal fields Ξ, Σa, s, Lab and dabcd. This

strategy has been pursued in Paetz (2015) for the metric (vacuum) conformal

Einstein field equations. More precisely, it has been shown that by introducing

suitable gauge source functions, the conformal field equations can be rewritten

as a system of quasilinear wave equations for the conformal fields. An alternative

reformulation can be obtained using spinors; see Gaspeŕın and Valiente Kroon

(2015). This approach is briefly discussed in the remainder of this section.

Wave equations for the concomitants of the conformal factor

Wave equations for the fields Ξ, ΣAA′ and s can be obtained from the following

derivatives of the relevant zero quantities:

∇AA′
QAA′ = 0, ∇AA′

ZAA′BB′ = 0, ∇AA′
ZAA′ = 0.

A direct computation renders the equations

�Ξ−∇AA′
ΣAA′ = 0,

�ΣBB′ +ΣAA′
LAA′BB′ + Ξ∇AA′

LAA′BB′ −∇BB′s = 0,

�s+ΣCC′∇AA′
LAA′CC′ +∇AA′

ΣCC′
LAA′CC′ = 0.

The wave equation satisfied by the rescaled Weyl spinor

Recalling the definition of the zero quantity ΛB′BCD, one has

∇A
B′

ΛB′BCD = ∇A
B′∇Q

B′φBCDQ

= −∇(A
B′∇Q)B′φBCD

Q +
1

2
εAQ∇PP ′∇PP ′φBCD

Q

= �AQφBCD
Q − 1

2
�φABCD,

where �AB denotes the box operator discussed in Section 3.2.5. A further

calculation shows that

�AQφBCD
Q = 6ΞφPQ

(ABφCD)PQ − 1

4
R(x)φABCD.
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Thus, the condition −2∇A
Q′

ΛBQ′CD = 0 implies the wave equation

�φABCD − 12ΞφPQ
(ABφCD)PQ +

1

2
R(x)φABCD = 0

for the components of the rescaled Weyl spinor as long as the conformal gauge

source function R(x) is explicitly provided.

The wave equation satisfied by the components of the Schouten spinor

To construct an equation for the Schouten spinor, one considers the expression

−2∇C
C′ΔCDBB′ = 0,

as given by Equation (13.30) together with the decomposition (13.31) for

the Schouten tensor in terms of the spinor ΦAA′BB′ and the Ricci scalar.

Accordingly, one has

2∇C
C′ΔCDBB′ = ∇C

C′∇C
Q′

ΦDQ′BB′ +
1

2
εDB∇C

C′∇CB′R(x)

+∇C
C′ΣQ

B′φCDBQ +ΣQ
B′∇C

C′φCDBQ,

where

∇C
C′∇C

Q′
ΦDQ′BB′ = −∇C

(C′∇|C|Q′)ΦD
Q′

BB′

− 1

2
εC′Q′∇C

P ′∇C
P ′

ΦD
Q′

BB′

= −�̄C′Q′ΦD
Q′

BB′ − 1

2
�ΦDC′BB′ ,

∇C
C′∇CB′R(x) =

1

2
εC′B′�R(x).

Thus, using that

�̄C′Q′ΦD
Q′

BB′ = ΦPQ′
BB′ΦDC′PQ′ +ΦD

Q′P
B′ΦBC′PQ′

+ Ξφ̄C′Q′B′S′ΦD
Q′

B
S′

− 1

8
R(x)ΦDC′BB′ − 1

24
R(x)ΦDB′BC′ ,

one obtains the desired wave equation for the components of ΦAA′BB′ . Finally, a

suitable subsidiary equation to ensure that the conformal gauge source function

R(x) is, indeed, the Ricci scalar of the connection ∇ can be obtained from the

contracted Bianchi identity (13.29).

13.6 Further reading

The original references for the hyperbolic reduction procedure based on the use of

spinors and gauge source functions are Friedrich (1983, 1991) – in particular, the

latter reference contains a discussion of the hyperbolic reduction of the Einstein-

Yang-Mills equations. The hyperbolic reduction procedure using a conformal

Gaussian system was first discussed in Friedrich (1995, 1998c); extensions of

https://doi.org/10.1017/9781009291347.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.017


386 Hyperbolic reductions

these ideas to the non-vacuum case using conformal curves have been given

in Lübbe and Valiente Kroon (2012). An alternative discussion of hyperbolic

reductions of the conformal field equations using space spinors can be found in

Frauendiener (1998a,b). A gauge source function-based hyperbolic reduction of

the conformal Einstein-Euler system for a perfect fluid with a radiation equation

of state has been described in Lübbe and Valiente Kroon (2013b). A discussion

of the hyperbolic reduction of the conformal Einstein-scalar field system using

gauge source functions is given in Hübner (1995).

A general discussion of the procedure of hyperbolic reduction of the standard

Einstein field equations in the vacuum and matter case can be found in

Friedrich and Rendall (2000), where, for example, the case of the Einstein-

Dirac system is discussed. A related reference is Reula (1998). More specific

discussions of hyperbolic reductions for the vacuum Einstein field equations and

their associated subsidiary evolution systems can be found in Friedrich (1996,

2005). A Lagrangian hyperbolic reduction for the Einstein-Euler system has been

discussed in Friedrich (1998b). Extensions of this Lagrangian approach have

been obtained for the equations of relativistic magnetohydrodynamics coupled to

gravity – the so-called Einstein-Euler-Maxwell system – in Pugliese and Valiente

Kroon (2012) and for the Einstein-charged scalar field system in Pugliese and

Valiente Kroon (2013).

Readers interested in the hyperbolic reductions of the Einstein field equations

used in numerical relativity are referred to the monographs by Alcubierre (2008)

and Baumgarte and Shapiro (2010) as an entry point to the extensive literature.

Appendix A.1: the reduced Einstein field equations

This chapter has been primarily focused on hyperbolic reductions for the

conformal Einstein field equations in their spinorial formulation. In order to

put the discussion into a more general context, it is useful to briefly consider

the hyperbolic reduction procedure of the (standard) Einstein field equations

using generalised wave coordinates. This procedure is essentially the one

used in the seminal work by Fourès-Bruhat (1952) where the well-posedness of

the Cauchy problem in general relativity was first established.

For simplicity, in the following, the discussion is restricted to the vacuum case

so that the Einstein field equations are equivalent to

R̃ab = 0. (13.68)

Given general coordinates x = (xμ), the Ricci tensor can be explicitly written in

terms of the components of the metric tensor g̃ and its first and second partial

derivatives as

R̃μν = −1

2
g̃λρ∂λ∂ρg̃μν + ∇̃(μΓ̃ν)

+ g̃λρg̃
στ Γ̃σ

λ
μΓ̃τ

ρ
ν + 2Γ̃λ

σ
ρg̃

λτ g̃σ(μΓ̃ν)
ρ
τ , (13.69)
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where it is recalled that the Christoffel symbols Γ̃μ
ν
λ can be written in terms of

partial derivatives of the metric tensor as

Γ̃μ
ν
λ =

1

2
g̃νρ(∂μg̃ρλ + ∂λg̃μρ − ∂ρg̃μλ),

and one has defined

Γ̃ν ≡ g̃μλΓ̃μ
ν
λ,

the so-called contracted Christoffel symbols. The principal part of the

vacuum Einstein field equation (13.68) is given by the terms

−1

2
g̃λρ∂λ∂ρg̃μν + ∇̃(μΓ̃ν).

The first term in the above expression is hyperbolic as it coincides with

the principal part of the D’Alambertian operator �̃ ≡ ∇̃μ∇̃μ acting on the

components g̃μν . If the second term in the principal part can be removed one

would obtain a system of non-linear wave equations for g̃μν .

Generalised wave coordinates

A systematic approach to the construction of coordinates x = (xμ) is to require

the coordinates to satisfy the equation

�̃xμ = −Fμ(x), (13.70)

where the coordinate gauge source functions Fμ(x) are arbitrary smooth

functions of the coordinates x. In the particular case where Fμ(x) = 0 one talks of

wave coordinates, called harmonic coordinates in older accounts. In order

to unravel the consequences of Equation (13.70), one treats the coordinates xμ

as scalar fields over M̃. Accordingly, a direct computation gives

∇̃νx
μ = ∂νx

μ = δν
μ,

∇̃λ∇̃νx
μ = ∂λδν

μ − Γ̃λ
ρ
νδρ

μ = −Γ̃ν
μ
λ,

so that

�̃xμ = g̃νλΓ̃ν
μ
λ = −Γ̃μ. (13.71)

A natural way of prescribing initial conditions for Equation (13.70) on a

hypersurface S̃� with normal νa is to set x0 = 0 with νμ∂μx
0 = 1 while setting

the spatial coordinates (xα) to be equal to some given coordinates on S̃� and

requiring that νμ∂μx
α = 0. Given this data, the general theory of hyperbolic

differential equations ensures the existence of a solution to Equation (13.70),

and as a result of Equation (13.71), one concludes that

Γ̃μ = Fμ(x). (13.72)

Moreover, if the coordinate differentials dxμ are chosen initially to be pointwise

independent on the initial hypersurface S̃�, then they will also remain pointwise

https://doi.org/10.1017/9781009291347.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.017


388 Hyperbolic reductions

independent close to S̃�. Thus, by a suitable choice of coordinates, the contracted

Christoffel symbols can be made to agree, locally, with any prescribed set of

functions Fμ(x). These coordinate gauge source functions and the data for

Equation (13.71) uniquely determine the coordinates. Conversely, given any

metric g̃, any coordinate system is characterised by some suitable gauge source

function and initial data. The domain on which the coordinates x = (xμ) form a

good coordinate system depends on the initial data, the coordinate gauge source

functions and the metric g̃ itself. Consequently, there is little that can be said,

a priori, about the domain of existence of the coordinates.

The reduced Einstein equation and the subsidiary evolution equation

Substituting Equation (13.72) into the Einstein field equations in the form given

by (13.69) one finds that

− 1

2
g̃λρ∂λ∂ρg̃μν + ∇̃(μFν)(x) + g̃λρg̃

στ Γ̃σ
λ
μΓ̃τ

ρ
ν

+ 2Γ̃λ
σ
ρg̃

λτ g̃σ(μΓ̃ν)
ρ
τ = 0, (13.73)

where Fμ(x) ≡ gμνF
ν(x). This equation is a system of quasilinear wave equations

for the components of the metric tensor g̃. For this system, the local Cauchy

problem with data on a spacelike hypersurface S̃� is well posed – one can show

the existence and uniqueness of solutions and their continuous dependence on

the data; see, for example, Friedrich and Rendall (2000). Equation (13.73) is

known as the reduced Einstein field equation.

The introduction of a specific system of coordinates via the gauge source

functions Fμ(x) breaks the tensoriality of the Einstein field equation (13.68).

Given a solution to the reduced Einstein field equation (13.73) the latter will

imply a solution to the actual Einstein field equations as long as the coordinates

x = (xμ) satisfy Equation (13.71) for the chosen coordinate source function

Fμ(x) appearing in the reduced equation. To prove that this is the case one

needs to construct a suitable subsidiary evolution equation.

A suitable subsidiary equation for the hyperbolic reduction procedure under

consideration can be obtained by observing that the reduced Einstein field

equation, Equation (13.73), can be written as

R̃μν = ∇̃(μQν), Qμ ≡ Γ̃μ − Fμ(x), (13.74)

where Γ̃μ = g̃μν Γ̃
ν . Now, from the contracted Bianchi identity in the form

∇̃μ

(
R̃μν − 1

2
R̃g̃μν

)
= 0,

it follows, by substituting Equation (13.74), that

�̃Qν + R̃μ
νQμ = 0.
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From the homogeneity on Qμ of this wave equation, it follows that if Qν = 0 and

∇̃μQν = 0 on some initial hypersurface and if g̃μν satisfies the reduced Einstein

field equations, then Γ̃μ = Fμ(x) at later times.

Appendix A.2: differential forms

Let M be a four-dimensional manifold. A p-form α on M is a totally

antisymmetric covariant tensor of rank p. Thus, if αi1···ip is the abstract index

version of α, one has that

αi1···ip = α[i1···ip].

Given q ∈ M, the space of p-forms at q is denoted by Λp|q(M), while the bundle

of p-forms overM is denoted by Λp(M). In particular, 0-forms are scalar fields so

that Λ0(M) = X (M) and 1-forms are covectors – accordingly, Λ1(M) = T ∗(M).

A counting argument readily shows that dim Λp|q(M) = 4!/p!(4− p)! – thus, in

four dimensions any 4-form is proportional to the volume form. Given a p-form

α and a q-form β, their wedge product α ∧ β is defined, using abstract index

notation, as

(α ∧ β)a1···apb1···bq ≡ (p+ q)!

p!q!
α[a1···ap

βb1···bq ].

Given local coordinates x = (xμ) inM, a 1-form α can be written as α = αμdx
μ.

More generally, for a p-form one has the expansion

α = αμ1···μp
dxμ1 ∧ · · · ∧ dxμp .

It can be verified that

dxμ ∧ dxν = dxμ ⊗ dxν − dxν ⊗ dxμ.

Given a p-form α and a vector v = vμ∂μ, one defines the contraction ivα

as the (p− 1)-form

ivα ≡ vνανμ1···μp−1
dxμ1 ∧ · · · ∧ dxμp−1 .

The exterior derivative dα is the (p+ 1)-form defined via the relation

dα ≡ ∂[μ1
αμ2···μp+1]dx

μ1 ∧ · · · ∧ dxμp+1 .

It follows from the commutativity of partial derivatives that d2α = 0.

Finally, it observed that the Lie derivative of a p-form can be computed using

Cartan’s formula :

£vα = ivdα+ divα.

Further details on the above expressions can be found in, for example, Frankel

(2003).

https://doi.org/10.1017/9781009291347.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.017

