13

Hyperbolic reductions

This chapter discusses several methods for the construction of symmetric
hyperbolic evolution systems out of the conformal Einstein field equations. Once
suitable evolution systems have been obtained, the methods of Chapter 12
allow, in turn, one to make statements about the existence of solutions to
the equations. Direct inspection of the conformal field equations reveals that
these are overdetermined — there are more equations than unknowns, even if the
symmetries of the various tensorial and spinorial fields are taken into account.
Thus, the process of hyperbolic reduction for the conformal field equations
necessarily requires discarding some of the equations. The discarded equations
are then treated as constraints. It is a remarkable structural property of the
conformal field equations that these constraints satisfy a system of evolution
equations — a so-called subsidiary evolution system — from where it can be
concluded that the constraint equations will be satisfied if they hold at some
initial hypersurface and the evolution equations are imposed. This construction
is called the propagation of the constraints. The solution of the evolution
system together with the propagation of the constraints yields the required
solution of the conformal Einstein field equations.

In this chapter, two different procedures for the hyperbolic reduction of the
conformal Einstein field equations are considered. The first method, based on the
notion of gauge source functions, exploits the fact that certain derivatives of
the conformal fields are not directly determined by the equations and, thus, can
be freely specified. In the spinorial formulation of the equations, once the required
gauge source functions have been specified, the irreducible decomposition of the
various zero quantities leads to the required evolution equations. The equations
obtained by this procedure include the conformal factor as an unknown.

The second hyperbolic reduction procedure presented in this chapter exploits
the properties of congruences of conformal geodesics to construct conformal
Gaussian gauge systems. As discussed in Chapter 5, the connection coeffi-
cients and components of the Schouten tensor with respect to a frame which is
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Weyl propagated along the congruence satisfy certain relations which lead to a
particularly simple system of equations in which the evolution of all the geometric
unknowns, save for the components of the rescaled Weyl spinor, are either fixed
by the gauge or given by transport equations along the congruence. Moreover,
as a consequence of the properties of the conformal geodesics one gains an a
priori knowledge of the location of the conformal boundary; see Proposition 5.1.
Despite these attractive features, this method is less flexible than the one based
on the use of gauge functions and may not be readily extended to non-vacuum
situations.

13.1 A model problem: the Maxwell equations on a fixed background

To illustrate the various aspects of the construction of evolution equations for
the conformal Einstein field equations, it is convenient to analyse the analogous
problem for the Maxwell equations on a fixed background.

In the remainder of this section, let & denote an open region of a spacetime
(M, g). It will be assumed that U is covered by a non-singular congruence of
curves with tangent vector 7 satisfying the normalisation condition g(7,7) = 2.
The vector T does not need to be hypersurface orthogonal. Let 744" denote the

. . . . . . ’ .
spinorial counterpart of 7¢. As discussed in Section 4.2.5, the spinor 744" gives
rise to a Hermitian structure, and, accordingly, one can introduce a space spinor

formalism. Let {ea“} denote a spin basis such that

A4 = gheo? + elAele/, (13.1)
and with {ea -} its associated null frame. At every point p € U a basis of the
subspace (T)*|, C T|,(U) orthogonal to T is given by eap = 7™
terms of local coordinates x = (z#) in U one writes

’
€ayA’- In

eap = eABﬂaw (13.2)

In principle, it is possible for the frame vectors eap to have components with
respect to the time coordinate. The frame components eap” satisfy the reality
conditions

601“ = 601'“, 600” = 7611”. (133)

All spinorial objects will be expressed with respect to the spin basis {e44}.
In particular, the spinorial Maxwell Equation (9.15) is written as

Ve 4 9Bg = 0. (13.4)
In what follows, it will be convenient to introduce the zero quantity
wag =V9a0Ba,

so that (13.4) can be expressed as wa'g = 0. Here and in the remainder of this
chapter, zero quantities such as wy’p serve as convenient bookkeeping devices
to denote the various field equations.
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13.1.1 Space spinor description of the Maxwell equations
and hyperbolic reductions

The space spinor version of Equation (13.4) leads to a decomposition into
evolution and constraint equations. Following the discussion of Chapter 4 one
considers the unprimed zero quantity wpa = TBA/(UA/A. One then has that

1
wpa =V9ppag = §€QAP<PBQ +D%avBq
1
= —§P<PAB + DQAQOBQa

where P is the covariant directional derivative along 7, D4 p is the Sen covariant
derivative implied by Va4 and Vap = TBA,VAA/. In the above expressions,
the decomposition

1
Vas = §€ABP+DAB (13.5)

has been used; see Section 4.3.1. The spinor wg4 can, in turn, be decomposed
in irreducible parts as

WBA = 5€BAW + wAB);

with
w=wg®?®=D"%pq, WAB) = —%P@AB + D% a¢B)q-
Thus, the Maxwell Equations (13.4) imply the equations
w=DFRypg =0, (13.6a)
—2waB) = Ppas — D2 a¢m)g = 0. (13.6b)

The decomposition of the spinorial Maxwell equation given by (13.6a) and
(13.6b) shows that Equation (13.4) is overdetermined. Equation (13.6a) will
be interpreted as a constraint equation on the orthogonal subspaces of the
distribution generated by the vector field 7, while (13.6b) will be regarded as
suitable evolution equations for the symmetric spinorial field pap.

13.1.2 The symmetric hyperbolicity of the Maxwell
evolution equations

To apply the theory of Chapter 12 one needs to verify that the evolution
Equations (13.6b) give rise to a symmetric hyperbolic system for the independent
components of pap. One considers the slightly modified version

2
(A n B) (Poas — D avmiQ) =0, (13.7)
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where the binomial coefficient in front of the equation has been included to

make the expression manifestly symmetric hyperbolic. The principal part of
Equation (13.7) can be written as

2
( At B) (T"O0upap — € (a"0¥B)Q) -

As a result of the symmetry of g, the above principal part contains three
independent expressions. These can be arranged in the matricial expression

7" +e10"  —ego 0 ®o
A“@ucp = 611” 2TH 600” 6# ¥1 ,
0 et T —ep” P2

with

®Yo = ¥oo, Y1 = Po1, Y2 = P11-

Thus, making use of the reality conditions (13.3), it follows that the matrices
A* are Hermitian. Moreover, the matrix

2 0 0
Atr,=| 0 4 0
00 2

clearly is positive definite. Thus, Equation (13.7) implies a symmetric hyperbolic
system for the independent components of pap. Finally, a direct computation
shows that given an arbitrary covector &,

det(AFE,) = 2(T#&,) (T + e0o”e11™ — €01”€10™) Evén

2
A(T€,) (976060,

where in the last line Equation (4.14) for the 143 decomposition of the
spacetime metric has been used. Thus, g-null hypersurfaces are characteristics
of Equation (13.7) — these types of characteristics are often called physi-
cal characteristics. By contrast, the factor (7/¢,) is associated to gauge
characteristics.

For completeness, it is observed that the principal part of the constraint
equation is given, explicitly, by

€00’ 0,00 + €01"0up1 + 11" Ouipo,
so that, in general, it will contain derivatives in the time direction. More

generally, if the vector 7 is not hypersurface orthogonal, then the constraint
equation w = 0 will not be intrinsic to the leaves of a foliation.
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13.1.3 The subsidiary system for the spinorial Mazxzwell equations

The hyperbolic reduction for the Maxwell equations discussed in Section 13.1.1
splits Equation (13.4) into three evolution equations and one constraint equation.
Thus, if one wants to obtain a solution to Equation (13.4) through a Cauchy
initial value problem, one uses, in first instance, the theory of Chapter 12 to
show the existence of a unique solution to the evolution equations. In a second
stage, one has to show that if the constraint equation is satisfied initially, then,
by virtue of the evolution equations, it must be satisfied also at later times.
This last argument requires the construction of a suitable hyperbolic evolution
equation for w.

To obtain an equation for the zero quantity w one considers the expression
VAA,oJA/A. Using that warq = —TQAroJQA one has that

VAX g g = —VAY (12 1 a)
= VARuga — (VA4 7R 4 )wga.
Now, using Equation (4.17), a calculation yields
vAA Q= —V2xApFe, (13.8)

so that

VAAIwA/A = VAQwQA + \/iXAPPQCUQA-
Thus, the split (13.5) leads to the expression

Pw + 2DABu 4 gy + 2V2x A pFRwga = 2VA4 w41 4.

If the evolution equations hold — that is, w4y = 0 — then wap = %EAB(U and
one obtains

Pw+ V2xap?Bw =2VA% 04 4.

The next step is to evaluate vAA, A’A in an alternative manner. Using the

definition of the zero quantity one has that
VAY Gara = VAV 4 040.

From the commutator

VaaVepvcp — Ve Vaavep = —RPcaasperp — R paa s vcp,

suitably contracting indices one obtains

VAAYYCQ g pag = —2RF 4242 4ppg — 2RP QA4 Q4 0 ap.
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Thus, combining the above equation with the decomposition
Ragce'pp’ =VYaeepeéce'n' + Lee'pp'éca — Lep'ccepa, (13.9)

where VY apep and Lpe'pp’ denote, respectively, the spinorial counterparts of
the Weyl and Schouten tensors, one concludes that vAA'yQ ,, vaq = 0. Hence,
the evolution equation for w takes the form

Pw + \/§XABAB(U =0 if wapy =0.

The form of this equation implies, in together with Corollary 12.1, that if w =0
on some spacelike hypersurface S, in U, then w = 0 on lens-shaped domains
having S, as base.

13.2 Hyperbolic reductions using gauge source functions

In this section hyperbolic reduction procedures for the conformal Einstein field
equations based on the notion of gauge source functions are considered.
Gauge source functions naturally arise in the analysis of frame formulations
of the conformal Einstein field equations written in terms of the Levi-Civita
connection V of an unphysical metric g. The present analysis will be restricted
to the spinorial version of the conformal field equations: Equations (8.36a) and
(8.36b) or, alternatively, Equations (8.38a) and (8.38b).

Basic set up and assumptions

As in the analysis of the Maxwell equations in Section 13.1, all the calculations
will be performed in an open subset & C M of an unphysical spacetime (M, g)
which is conformally related to a spacetime (M, g) satisfying the Einstein field
equations. On U one considers some local coordinates = (z*) and an arbitrary
frame {c,} which may or may not be a coordinate frame. Let {a®} denote
the dual coframe so that (a®, cp) = 6p®. In what follows, let V denote the
Levi-Civita covariant derivative of the metric g.

It will be assumed that U is covered by a non-singular congruence of curves
with tangent vector T satisfying the normalisation condition g(7,7) = 2. The
vector 7 does not need to be hypersurface orthogonal. Let 744" denote the
spinorial counterpart of 7%. In what follows, only spin bases {e4“} satisfying
condition (13.1) will be considered. All spinors will be expressed in components
with respect to this spin basis.

Let {eaa '} and {wA4} denote, respectively, the null frame and coframe
associated to the spin basis {e4“}. By definition, one has that (w44’ egp/) =
epep?’. At every point p € U a basis of (T)1|,, the subspace of T'|,(U)
orthogonal to T is given by eap = T(BA/eA)A/. The spatial frame can be
expanded in terms of the vectors ¢, as eap = eap®cq. If the basis {c,} is a
coordinate basis, the last expression reduces to the one given in Equation (13.2).
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A model equation

The general strategy behind the procedure of hyperbolic reduction using gauge
functions is best understood through a model equation.
In Section 12.1.3 it has been shown that spinorial equations of the form

Ve s vopc.p=Fapc.p (13.10)

imply a symmetric hyperbolic system for the components of the field pgp'c...»0
which is not assumed to have any special symmetries. This equation is now
contrasted with the equation

Vaavspc.p— VBB ¥Yaac.p=Faaspc. b (13.11)

Exploiting the antisymmetry in the pairs 44 and gp- it follows that
Q L @
V= avqQBHc..D = iF A'QB'C---D- (13.12)

Thus, while Equation (13.10) determines the full derivative VQA/(,OQB/C...D,
Equation (13.12) determines only its symmetric part. More precisely, writing

1

Veavopc..p=V%avaqn)c. p— §6A’B/VQQ

vQqc-p, (13.13)
one has that the first term in the right-hand side is determined by Equa-
tion (13.12), while the divergence VQQIQOQQ/C”.D remains unspecified. Thus,
in the absence of other equations providing information about this term, the
latter observation suggests completing Equation (13.13) by setting

Ve vooc..p = fo..plx),

where fc..p € X(M) are smooth freely specifiable functions of the coordinates.
In what follows, functions of this type will be known as gauge source
functions. Thus, from (13.13) one obtains the equation

1
Ve avqac..p = iFQ

A'QB'AC--D — §6A'B/fAc-~D(CE)7

for which one can extract a symmetric hyperbolic evolution system for the
components of w4 4/¢...p; see the discussion of Section 12.1.3. In particular, the
characteristics of this evolution system are null hypersurfaces of the spacetime
metric g.

As will be seen in the following subsections, several of the conformal Einstein
field equations admit an analysis similar to that of Equation (13.11). A detailed
discussion of the resulting evolution equations exploits the particular symmetries
of the field appearing in the principal part.
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13.2.1 Coordinate gauge source functions

The purpose of this subsection is to analyse the evolution equations arising from
the no-torsion condition in the frame and spinor formulations of the conformal
field equations; see Equations (8.31a), (8.35a), (8.44a) and (8.53a). This leads to
the first class of gauge source functions that will be considered in this chapter:
the coordinate gauge source functions. Following the general discussion of
Chapter 8, the no-torsion condition will be regarded as a differential condition on
the coefficients of the frame {ea a+}. Thus, the ultimate purpose of this section
is to derive a symmetric hyperbolic subsystem for these quantities.

In Section 8.3.2 an expression for the spinorial counterpart of the torsion tensor
YaaCC gp in terms of the spinorial connection coefficients I' 4 4/ CC' o p has
been given; see Equation (8.35a). In what follows, it is more convenient to make
use of an expression involving the reduced spin connection coefficients. Using the

relation
Taa“C B =Taa e ® +Taa® pes®,
— compare Equation (3.33) — it can be seen that

QQ Q

’ — !
BB'€QqQ = leBp,ean] — T aega —Tep? areaq

Q/B/eBQ/. (1314)

Yaa
+Taa%gegn +Taa
Using the frame {cg} one can write
eaa =eaa“cCa,

so that for fixed frame spinorial indices 44/, the coefficients eg 4/* have the
natural interpretation of the components of e 4 with respect to ¢,. However,
there is an alternative interpretation: for fixed frame index 4, the coefficients
eaa® correspond to the components of the covectors a® with respect to the
coframe w?4’. That is, one has

’
a® = BAA/aU)AA ,

from where it follows that e 44 w34, = §,%. In view of this interpretation, it

is convenient to define

Q Q

! a
B€eBQ ",
(13.15)

Vecepp® =ecoleplesp®) —Teo®Begr® —Toor

so that Voora® = (Vcc/eBBf“)wBB,. Expression (13.15) corresponds to the
formula one would use to compute the covariant derivative of egg/®
the components of a tensor — which, of course, it is not.

Intuition into this general discussion is gained by considering the particular
case of a coordinate frame for which e44» = e44/#0, so that

if it were

eAA/(x”) = eAA/”au(x”) = eAA/‘u(SNV = €AAID.
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o, . ’ !
Moreover, writing w44 = w44 pdx* one has that

!’
dzt = eqatw??.

That is, for fixed coordinate index *, the coefficients e4 4/ are the components
of the coordinate differential dz* with respect to the coframe wAA’
Returning to the general discussion, using the identity

[fv,u] = flv,u] —u(f)v
for v,u € T(M) and f € X(M), together with expression (13.15) one can
rewrite Equation (13.14) as

QQ

’
Yaa®? Bpego®=Vepeaa®—Vaaerp© —eanennCa, (13.16)

where C,, are the commutation coefficients defined by
[Caa cb] = C'a,cbcc-

In the case of a coordinate frame one obtains the simpler expression

QQ

!’
Yaa~" Bpegq" =Vepeaat —Vaaepp”,

as [0,,0,] =0.

A final simplification is obtained by exploiting the antisymmetry of Equa-
tion (13.16). Contracting the indices 4 and g and symmetrising in 4p one
concludes that

/ 1 /
V(AQ €B)Qla + §€AQ beBQ,chac = EABa7 (1317)
with
1 P
ZABG' = iEAQ cc BQ/@CCla.

As the frame e4 4/ is Hermitian, that is, €447 = eg4/, one has that (13.17)
is completely equivalent to Equation (13.16). Moreover, if Xap® = 0, then
Y aaCC gp = 0 and the connection is torsion free.

The structure of Equation (13.17) is similar to that of the model Equation
(13.12), suggesting that by introducing a gauge source function one will
obtain a symmetric hyperbolic system for the frame coefficients e a/®. Now,
Equation (13.17) does not impose restrictions on the divergences VQQleQQ/“ S0

that one can set
Veen0 % = F(z), (13.18)

where the coordinate gauge source functions F@(x) are smooth functions of
the coordinates = (z#). In the case of a coordinate frame the above expression
reduces to

VR Vg = FH(z), (13.19)

the so-called generalised wave coordinates condition.
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Combining the identity
’ ’ ]_ ’
Va9ep)g®=VaQepg®+ §€ABVPP epp®

with Equations (13.17) and (13.18) one finally obtains, for ¥ 45* = 0, the
equation

’ 1 1 ’
VAQ eBQ/a + §€ABFG($) + §6AQ beBQ/chac =0,

from which a symmetric hyperbolic system for the frame components of egg/®
can be deduced.

Geometric interpretation

The generalised wave coordinate condition (13.19) shows that a particular choice
of coordinate gauge is, implicitly, a choice of coordinates. Equation (13.19) can
always be solved locally by choosing some coordinates z = (2°,2%) on some
fiduciary surface S,. If this surface is described by the condition z° = 0, then it
is also natural to require that

920
OxV

Moreover, one needs the coordinate differentials dz* to be linearly independent

=0, on S,.

on S,. These conditions ensure the existence of a solution to Equation (13.19)
close to S,.

Conversely, given a particular coordinate choice on a spacetime (M, g), one
can use Equation (13.19) to compute the coordinate gauge source function F*(x)
associated with the coordinates. Thus, local coordinates and coordinate gauge
source functions are in a one-to-one correspondence.

Construction of coordinates in perturbations of spacetimes

The discussion of the previous subsection can be applied to the construction
of coordinates in spacetimes (M, g) which are perturbations of a certain exact
background spacetime (M, g). In this situation, one would expect the spacetime
manifolds M and M to be diffeomorphic to each other so that coordinates in the
background spacetime could be used as coordinates in the perturbed spacetime.
This does not mean that the spacetimes (M, g) and (M, §) are isometric! The
intuition expressed in this paragraph will now be formalised.

In what follows, assume that one has two spacetimes (M, g) and (./\/l, g) such
that the manifolds M and M are diffeomorphic. Let ¢ : M — M denote a
diffeomorphism between them. This choice is clearly not unique. The subsequent
discussion will single out a particular type of diffeomorphism between M and M.

Let © = (2#) and & = (2*) denote, respectively, local coordinates on M
and M. In terms of these local coordinates the diffeomorphism ¢ is given by
@1 = #*(x) and its inverse by z# = z# (). On M consider a frame {&q} and its
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dual coframe {&®}. The frame is not necessarily assumed to be g-orthonormal.
From this frame and coframe one can introduce a frame {c,} and a coframe
{a®} on M using, respectively, the push-forward and the pull-back implied by
p: M— M. More precisely,

Thus, writing

a® =a®,dz", a® =a%,dz",
one concludes that
oz”
a _ ca
ay =65
Now, observing that (a®,ep) = 82, it follows that V.a® = (V.ep®)ab and,

consequently,
VPer® = n°HV.a®, eq) = eb“Vboz“u = Vta®,.

The above expression can be used to write the divergence VQQ/eQQ/a appearing
in Equation (13.18) in terms of quantities associated to the diffeomorphism ¢ :
M — M.

Treating the coordinates & = (#*) as scalars and recalling that &%, =
(a*,8/81") so that the coefficients &%, are also scalars, one finds that

ca o H&*y O™
Veeln =60V ((’9:5) Da our
o oxP di*
_ ca oA °ca
=a"\V, V2" +V,& )‘7833” el

where in the last equality the chain rule has been used. Consequently, one has

. . ., O0iP ot
V“aau = aa,\V”VHxA + g“"VpaaAw@ = Fa(.T),
or, more suggestively,

. OxP O
“w o0 o o nv ca I nl* _
VIV 27 + €a (g \Ye N9t Doh F (gc)> =0.

So far, the diffeomorphism ¢ : M — M has been kept completely general.
However, if one sets

oxP 93

nuryT 2 a
gV 0\
r Oxv Oz

= F%(x), (13.20)
one finds that

VAV 37 =0.
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That is, under condition (13.20), the diffeomorphism ¢ : M — M given by
ZH = zH(x) is a wave map. Wave maps can be regarded as a generalisation of the
geodesic equation. Further discussion on this notion, which plays an important
role in modern research in PDE theory and geometric analysis, can be found in
the review by Tataru (2004).

Now, it is convenient to regard the manifolds M and M as being the same
and let 2# = z#(z) be the identity map so that 0z°/0x" = 6,”. This amounts
to saying that the coordinates & = (&*) are used as coordinates of the perturbed
spacetime (M, g). In this case condition (13.20) reduces to

VP&, = F2(2).
If in the reference spacetime one has w® = a® so that &%, = (a®, ¢p) = 52,
then
6bdab _ 7,’7bcfwbac.
Accordingly, the coordinate gauge source function F'*(x) can be expressed in
terms of the connection of the background spacetime via

Fa(l’) _ 777bcl-\bac’
or, in spinorial terms

’ ’ o
F“(x) = —EABEA B 6AA/beBB/chac.

Space spinor decomposition of the equation for the frame coefficients

The space spinor decomposition of Equation (13.17) provides a systematic
approach to the extraction of the required symmetric hyperbolic system.
Accordingly, one considers the space spinor split of the frame fields given by

1
can® = sTane® — 79

1€ a
5 A'EAQ

with
’ ’
e =14 e ", eaB® =1a* epya®.
Alternatively, one can write

' 1
89 eaq® = §€ABea +eaB®.
Using
D
VasTep = —V2r°pxaBep,

— compare Equation (4.17) — together with the decomposition of V ap given in
Equation (13.5), it follows from Equation (13.18) that

Pe® + QDPQGPQG' + \@GGXPQPQ + 2\/§GPQO'XPCCQ — 2Fa(x) =0.
(13.21)
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A similar computation for Equation (13.17) yields

1 1 1
YaB® = 5736,43“ - §DAB€a +Da%epo® — —=¢*X (410 °B)

N

1
+V2epa®xm)°F - §(€beABc +eaq%eB9%)Ch®e.

A further independent equation can be obtained from the Hermitian conjugate
ZXBG' = TAA TBB EA/B/G'.

Exploiting the identity

Ta? BB VO preqp® = VQA<TBB eqp'®) — eqp “Veats?,

one arrives at

1 1 1
Sag® = _§P6A3a + §DABea +Da%)e" + —=¢*x%aB)q

V2
- ﬁBPQaXP(AB)Q - %( beaB® +eag®es?)Cp%.
The required evolution equation complementing (13.21) is then obtained from
Sap® — Yhp* =0,
where
Yap® - Yhp® =Peap® — Dape® — %ea(X(A\Q\QB) +Xq(an)?)

+V2epa*xB)@°F + V2epq*xF (ap)?

— e®eap®Che.. (13.22)
A direct inspection shows that Equations (13.21) and (13.22) imply, for fixed

a

frame index ®, a symmetric hyperbolic system of four equations for e* and

the independent components of e4p®. A further computation shows that the
characteristic polynomial of the system is given by

—A(T1€,)* (976nEp)-

As a by-product of the analysis one obtains the constraint equations implied
by (13.17) from

YaB®+3h5% =0,
where
SaB® +Shp® = 2D sepQ® + %6” (x(a1@®B) +x%aB)Q)
+V2epa®xB)1@°F — V2epq*xF (aB)?
— (PeaB® + €a@eB°) Cv%e.

Expanding the principal part of this constraint equation, one finds it contains
derivatives in the time direction.
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13.2.2 Frame gauge source functions

After having analysed the gauge source conditions arising from the no-torsion
condition, one can now consider the gauge source functions associated to the Ricci
identity — that is, the condition requiring that the geometric and the algebraic
curvatures coincide. As with the no-torsion condition, the equality between the
two expressions for the curvature is part of the frame and spinorial formulations
of the conformal field equations; compare Equations (8.31b), (8.35b), (8.44b)
and (8.53b).

Rather than working with the full expressions for the curvature spinors, in
the subsequent discussion it will be convenient to make use of the reduced
spinorial counterpart of the Riemann tensor in terms of the reduced connection
coefficients:

QY hpTogas

Rapcc'pp + Xcc
=VppTlccaB—Vecl'ppas
~TI'pp®alccgp —Teo®albpoB, (13.23)
where the definition
Vop (F'ccras) =epp(Tcca) — oo ®clgc an
~Tpp%Tocas —T'pp®Blocag
has been used in order to obtain a more concise expression; see Section 8.3.2
for further details. This last expression is formally the same as the one for the
covariant derivative of a spinor field with the same index structure as I'ccraB-
Equation (13.23) is encoded in the zero quantity
EaBcc'pp’' = Rapce'pp’ — paBcc' DD,
where Rapcce'pp’ and papcc'pp’ denote, respectively, the geometric and
algebraic curvatures. One has the symmetries
ZABCcC'DD’ = Z(AB)CC'DD’ = “ZABDD'CC'-
Exploiting the antisymmetry of Equation (13.23) one obtains the pair of

equations

Vic®Tpyoas +Tc??alpoos =Rapcp +£c?? plog as.

(13.24a)
VP T \pipyas +TF (2 alpiphes = Rasce'p + ¢ °? pToq as,
(13.24b)
where
1 Q' 1 Q
Rascp = iRABCQ’D , Rapc'p = iRABQC’ D’
’ 1 ’ ’ ’ ]_ ’
%99 p = EZCP’QQ p", 2?9 p = §EPC’QQ Pp.
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As the field I'g o4’ B¢ is not Hermitian, two reduced equations are necessary to
encode the content of (13.23) — contrast this with the analysis of the no-torsion
Equation (13.14).

From the structure of Equations (13.24a) and (13.24b) one concludes that the
derivative VQQ/FQQ/ Ap is not determined by the equations. Accordingly, one
can set

VQQIFQQ/AB == FAB (l‘), (1325)
where Fap = Fiap) are smooth arbitrary functions of the coordinates — the
frame gauge source functions.

Geometric interpretation

To gain intuition on the role played by the frame gauge source functions recall
that TaaBo = €BpVaaec?; see Equation (3.32). Equation (13.25) can be
rewritten as

EABVPPIVPP/GBB + VPP/EABVPPIEBB = FAB(CE). (1326)

This is to be read as a quasilinear wave equation for the spin frame {eg?}. Using
the symmetry of Fap and the wave Equation (13.26) one obtains

VPP Vpp (egPep) =0,
so that by choosing
egPep = op™, Vepp (e6”e*p) =0,
on some fiduciary hypersurface S, one obtains a spin frame which is normalised
at later times.

Space spinor decomposition of the equation for the spin connection coefficients

To obtain a suitable space spinor decomposition of Equations (13.24a), (13.24b)
and (13.25), one defines

_ A
IF'aBep =8 Taaco

and considers the split

1
TF'aBep = §€ABFCD +T'aB)cD; I'cp =Tq%b.
Now, from

V@9Tqqap = -V (1PqTqran)

=799V Tesas — (V9 %0 )Tgsan

= VPClpgan + V2XF R F T poas,
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it follows, using the split of V op, that
PLag + 2DPT pgyan + 2V2XF RO T poas = 2Fap (). (13.27)

In view of its symmetries, the zero quantity Zapccgg’ 18 decomposed as
)

ZEABCC'EE’ = ZABCECC'E' + EABC'E/€CE;

with

—_

’
:ABCQ'EQ , ZABC'E' = ;=ABQC’

[1]

N | =

ABCE = QE’~

[\

In terms of space spinors the latter decomposition can be rewritten as

—_ —_ —k
ZABCDEF — ZABCEEDF + ZABDFECE,

where

_ Cc' _ E—
ZABCDEF =TD TF ZABCC'EE’;
= — . C __Erx = — . C _ E=
—ABDF =TD TF ZABC'E’ =ABDF =TD TF =ABC'E'-
To expand Eapck and E% gpp it is observed that

V(CQ/FD)Q’AB = _V(CQ/ (Tpysas™q’)
= _TSQ’V(CQ/FD)SAB - V(CQITS\QWFD)SAB
=Vc®I'pysas + V2x(ciQ°°Tp)sas
1
= §PF(CD)AB +Dc°T'pysas + V2x(ciq°T'p)san
and that
TCCITDD,VP(C’F\P|D/)AB = V¥ cT\pip)an

= —%PF(CD)AB +DP cl'\piD)aB.

From the above expressions it follows that

— 1 1 1

ZEABCD = §PT(CD)AB - §DCDFAB + §(DCSF(DS)AB +Dp°T(cs)aB)
+T«c"?alpypes — 2c¥®plPoas — RaBep,

EaBcD = —%PF(CD)AB + %DCDFAB + %(DPCF(PD)AB +DPpl'(pc)aB)
+ FP(CQ\AFP|D)QB +325P9ppgas — Rapep-

Constraint equations are obtained from the combination

ZEaBcp +E4ep =0,
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where

Eapcep + Eapep = PPel(ppyas + PP bl (poyas
+TcP?alpypes + I (c? Al PiD)0B
+ 2P pTpgan — 2P ®pTpoan
— Rascp — Ragep,
while the required evolution equations arise from
EABCD — Ef4BCD =0,
with

EaBcp —Eapep = PlepjaB — Peplas
LicPQal —TP Q4T
+ 1L« " 1al DypoB (c Al PD)gB
— EEPQDFPQAB ~¥cP9plpgan

— RaBcp + Rapep- (13.28)

It can be verified that the system composed by (13.27) and (13.28) leads
to a symmetric hyperbolic system for the independent components of I'ap
and ['cpyap — up to a suitable normalisation factor. A simple counting
argument shows that the system consists of 12 equations, three coming from
Equation (13.27) and nine from Equation (13.28). The characteristic polynomial
of the system is given by

_64(7H§u)6(gu}\§l/§>\)3-

13.2.3 The conformal gauge source function

The third type of gauge source function to be considered arises from the analysis
of the Cotton equation; see Equations (8.31e) and (8.35f). The starting point of
the analysis is the spinorial counterpart, Equation (8.37a), associated with the
zero quantity

Acppp =Vc? Lpygep + Vs EécpBg + ElcDBE -

To deduce a symmetric hyperbolic system from this equation one needs to
complete the symmetrised derivative V(CQlL D)@'’ Wwith the divergence
VQQlLQQ/ BB’ - Information about this derivative is provided by the contracted
Bianchi identity for the Schouten tensor; compare Equation (8.17). In spinorial
notation one has

, 1
Ve Log e = VBB R (13.29)

Thus, using

’ ’ 1 ’
V(CQ Lpyg'Bp = Ve® Lpgee + §€CDVQQ Lgog'BB',
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one can rewrite the zero quantity Acpgp’ as

/ 1
Acpep =Ve® Lposp + E€CDVBB’R

+3%p¢cpBo +ElcpBB (13.30)

where X 44 =V a4/ 2.

As discussed in Chapter 8, the conformal field equations impose no differential
condition on the unphysical Ricci scalar R. Accordingly, R can be specified freely
as a function of the coordinates. Thus, if the reduced rescaled Cotton spinor
Tcpep’ can be rewritten so that it does not explicitly contain derivatives of the
matter fields, one can deduce a symmetric hyperbolic system for the components
of Laa g’ from Equation (13.30).

Geometric interpretation

The particular choice of the Ricci scalar fixes the conformal gauge freedom.
Thus, it is natural to call R(x) the conformal gauge source function. Given
a particular choice of R(z), the transformation law for the Ricci scalar implies a
wave equation for the conformal factor realising the prescribed Ricci scalar; see
Equation (8.30). This equation can always be solved locally if initial data on a
fiduciary hypersurface S, is provided — namely, the values of the conformal factor
and its normal derivative on the hypersurface. Conversely, given an unphysical
spacetime (M, g) and a conformal factor = linking it to a physical spacetime
(M, g) via the standard relation g = Z2g, one can compute the corresponding
conformal gauge source function R(x).

Space spinor decomposition of the equation for the components
of the Schouten tensor

The space spinor decomposition of the equations for the Schouten tensor is based
on the expression

1
Laacc =Paace + ﬂﬁAcéA/C/R(x), (13.31)

where ® 4 4/cc’ denotes the spinorial counterpart of the trace-free part of the
Ricci tensor; see Section 3.2.4. The space spinor counterpart of Laaccr is
defined as

___A_cC
Lapcp =B 7D~ Laacc,
1
=®aBcp + ﬂfAcﬁBDR(x)a

A

! ’
where (DABCD =T7TB TDC (I)AA’C’C’ so that

Papep = PecBap = Papces,
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as a consequence of the symmetries of ® 4 4'cc’; see Equation (3.44). A spinor
with these symmetries can be decomposed as

1 1
®agcp = PaBep) + §(€A(B<I)D)C +ec(B®pya) + g‘I’hACBD, (13.32)
where
dap = Pap)Q”. ® = P apcph™*©PP.

Now, using that
’ ’ 1 !
Va® Legcc =V? Legcoc — §€ABVQQ Logccs

together with the contracted Bianchi identity (13.29) one can rewrite the zero
quantity Apapcc’ as

, 1 —
Aapco =Va® Lo oo + EEABVCC’R(CE) +%9c¢aBco + ETapcco
(13.33)
Defining
Aapep =% Aapeo,

a calculation using (13.33) together with the definitions of the spinors Lapcp
and xaBcD, yields

Aaep = Va®Leoep +V2xap?F Legep — V2xa®FpLleoce

1 _
+ §€ABVCDR(x) +Y9poaBco +ETaBcD,

where Y ap = TBQ/EAQ/. Thus, using the decomposition of the operator Vap
one obtains

1
AaBcp = §7DLBACD +Da®Leoep + V2xapr®F Leoep
1 —
~V2xaP9Lepcg + §€ABVCDR($) +X9poaBco +ETaBcD.

To extract the full information of A 4o’ one also needs to consider

/ ’ ’ -
AJABC’D = TAP TBQ TCR TDS Ap/Q/Rlsl.

Proceeding as with A apcp one finds that

1
Alpep = §PLABCD —D%aLgepc + V2x?a®BLorDC

1 -
+ \/ﬁXQAPCLQBDP - §€ABVCDR(37) + EJFRDQSZBCR + :TZBCD'
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Given the above expressions for Agpcp and AXBCD, suitable symmetric
hyperbolic evolution equations for the independent components of the fields
®aBcD); Pap and @ can be found from the combinations

AaBcp) + AEFABCD) =0, (13.34a)
AZSQ(CD) - AQQ(CD) =0, (13.34b)
AQ%p" + 25907 =0, (13.34c)

while constraint equations arise from
Aagep — Ahgop =0,
A% ep) + 2% D) =0,
AQ®pF — ALY =0.

The principal parts of Equations (13.34a)—(13.34c) are given, respectively, by
P® aBcp) — DaB®cD);
1
Pdap +2DPpgap — gDAB@,
Po + DFPQpg.

The above expressions imply a symmetric hyperbolic system for the independent
components of the fields ® 4gcp), Pap and ®. The explicit form of this system
will not be required in the subsequent discussion but can be readily computed.

13.2.4 The hyperbolic reduction of the Bianchi equation

This section discusses the hyperbolic reduction of the spinorial Bianchi identity.
This procedure leads to evolution equations for the components of the rescaled
Weyl spinor and is completely analogous to that for the Maxwell equations;
see Section 13.1.1. In particular, no gauge source functions are required for this
subsystem.

The spinorial Bianchi equation is encoded in the zero quantity

Aapep =V a¢Bepg +Teppar-

In the following it will be convenient to work with a space spinor version of this
zero quantity, namely,

Aacep =V®adsepg + TepBa, Teppa =7a* Teppar-

Using the decomposition (13.5) one can compute that

1
AaBcp = *§P¢ABCD + DQAd)BCDQ +TcpBA- (13.35)
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Suitable evolution equations are obtained from the above expression by
considering

—2MaBcp) = PéaBcp — 2D? adBep)q + Tiasep) = 0. (13.36)

In what follows, this system of evolution equations will be known as the
standard system. It gives rise to five independent equations for the five
independent components of ¢apcp. Contracting the indices 4 and g in
Equation (13.35) one obtains

Acp = A%gep = DP9poep + Tepg® =0,

the so-called Bianchi constraints. As in the case of the other constraint
equations discussed in the previous sections, the Bianchi constraints may contain
derivatives in the time direction.

The hyperbolicity of the standard system

The overall structure of Equation (13.36) suggests that it should imply a
symmetric hyperbolic system. In analogy to the Maxwell equations, one considers
a slightly modified version of Equation (13.36) given by

4
=2 (A +B+C+ D)A(ABCD) =0

The principal part of this equation can be written in matricial form as

™ + 2601# 72600# 0 0 0
2611# 47H + 4601H 76600# 0 0
A“@Nqb = 0 6611“ 67+ *6600“ 0
0 0 6611” 4rH — 4601” —2600/’1’
0 0 0 2611” T — 2601“
bo
b1
X a/_t ¢2 )
b3
P4

with
®0 = ¢o000, P1 = Pooo1, @2 = doo11, @3 = Poi11, P4 = P1111-

Using the reality conditions satisfied by the vectors eap, it follows that the
matrices of the system are Hermitian. Moreover, one has that A*7, is positive
definite. Thus, the standard evolution system implies a symmetric hyperbolic
system for the independent components of ¢ 4 gcp. The characteristic matrix of
the system is given by
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1% o 2 leg
det(Aufu) = 36(7_u§u) (g )\gug)\) (TpT + ggp )gpga-
Thus, g-null hypersurfaces are characteristics of the standard system.

13.2.5 The hyperbolic reduction of the equations for the conformal
factor and its concomitants

Finally, one requires evolution equations for the conformal factor = and its
concomitants ¥ 4 4- and s. The relevant zero quantities are given by

QAA’ EEAAlvaA/E, (1337&)

- 1_
ZaaBe =VaaXpp +ELaaBp — s€aBea'B — §:3TAA/BB'7 (13.37b)

’ 1 ’
Zaa =Vaa s+ LAA/CC”VCC 2 - -52vCC ETancco - (13.37(3)

[\

Their space spinor counterparts are defined by
Qap =78" Qaa, Zapep =78 0% Zaacco, Zap =78" Zaa.
It is also convenient to make use of the split
a4 1 . Q
YaB=7B" Yaa = 56,413E +XaB), Y=3Yq".
From the condition Q 4 = 0 one obtains the equations
PE=%, DaBY = ¥(aB),

which are, respectively, an evolution equation for = and a constraint equation.
Next, using the identity

84 0% VaaXce = Vas(p Scc) — V2Zcpxastp

and the split of V 24p it follows that

1 1 1
ZaBcD = ZéABecDPE + §€ABPZ(CD) + §6CDDABE +DaBX(cD)

1
+ EXABCD - \@ECPXABPD
+ZELABcD — S€ABECD — §TABCD-

Evolution equations for ¥ and ¥4 p) are obtained from

2Za*E =0, Za*cp) =0,
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where
2ZABAB =PX+ \@XABABE — 2\/§XABPBE(AP) + ELABAB —4s,

1
ZAA(CD) =PXcp) + EXAA(CD) - \/§E(C|PXAAP\D)

+ZLa*cp) — %E?)TAA(CD)-
The corresponding constraints arise from
ZaBcp) =0, Ziap)c® =0,
with
ZaBcp) = DaBXcp) + %X(ABCD)Z — V25 cipixja8” D)

- 1_
+EZLaBcD) — §:3T(ABCD)a

1
Ziap)c® =Dapt + EX(AB)CCZ — V28 poxap T2
- 1_
+ELaB)cC — §:3T(AB)CC-

Finally, similar calculations lead to the expression

1 1
ZaB = §€AB7’S +Daps — §LABCCE + LapcpX©P
1_ 1_
+ Z:2TABCC - §:2ZCDTABCD-

The evolution and constraint equations for s are then given, respectively, by

Za* =0,  Zap) =0,

with
1 1
ZAA =Ps— §LAACC + LAACDECD + ZEQZTAACC
1_
- EZQECDTAACDv

1 1_
ZaB) =Daps — §L(AB)CCZ + LiapcpE°P + Z:2ET(AB)CC

. EEQECD

T .
5 (AB)CD

Remark. It should be observed that all the evolution equations obtained in
this section are transport equations — that is, they involve only the directional
derivative P. Accordingly the characteristic polynomial of each of them is just

THE,.
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13.3 The subsidiary equations for the standard
conformal field equations

After having discussed a set of evolution equations implied by the conformal
field Equations (8.38a) and (8.38b), one is now in the position of analysing
the construction of the associated subsidiary system. The subsidiary equations
constitute a system of evolution equations for the zero quantities encoding the
conformal field equations. To prove the propagation of the constraints it
is necessary that these subsidiary evolution equations are homogeneous in the
various zero quantities. If this is the case, then Corollary 12.1 implies a unique
vanishing solution to the subsidiary equations if the zero quantities are zero ini-
tially. The construction of the subsidiary system involves lengthy computations,
parts of which are best carried out with spinorial expressions, while others are
more conveniently described in tensorial terms. The basic strategy behind the
analysis can be understood by first discussing some model equations.

General setup

The general setup for the construction of the subsidiary equations for the
conformal field equations is similar to the one for the construction of the evolution
equations: one works in an open subset 4/ C M of the unphysical spacetime
manifold; vector and spinor bases are introduced in a similar manner. The
key difference lies in the fact that the covariant derivative V is, a priori, not
assumed to be the Levi-Civita connection of the metric g. Thus, when considering
the commutator of covariant derivatives, one has to make use of the general
expression involving a non-vanishing torsion tensor. This is because the torsion
tensor is, in itself, a zero quantity of the conformal field equations. On similar
grounds, one cannot regard the algebraic and geometric curvatures as being equal
to each other.

13.3.1 Hyperbolic reduction of model equations

The construction of a system of subsidiary equations for the conformal Einstein
equations leads to spinorial equations whose tensorial counterparts are of one of
the following forms

ViaMpx = Nabic, (13.38a)
ViaPoec = Qabver, (13.38Db)

where Mg and Pgp, are some zero quantities with
Nabc = N[ab]lCu Popr = P[ab]£7 Qabcﬁ = Q[abc]£7

and x and , denote an arbitrary string of indices.
Equations (13.38a) and (13.38b) arise from the following observations con-
cerning differential forms; see the Appendix to this chapter for a brief discussion
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on this and related notions. The fields My and Pypic can be regarded as the
components, respectively, of the I-form and 2-form

M;(;EMG;CUJG, PﬁzPabgwa/\wb.
Accordingly, Equations (13.38a) and (13.38b) can be written as
dM = Napic w“/\wb, dP; = Qaber W A wb A wC.

If 7 denotes a timelike vector field, then the Lie derivatives of M x and P, along
the direction of 7 are given by the so-called Cartan’s formula

LrMy =irdMy + d(i‘erC), £LrPr=i;dPg + d(i‘l'Pﬁ)a

where i, denotes the operation of contraction between the vector T and a
differential form; see Frankel (2003). In terms of this notation the evolution
equations are given, respectively, by

My =0, i+rPr =0,
so that
LMy =idMy, £rPr=1i.dP, .

The latter can be read as suitable evolution equations for the zero quantities
Max and Pgpr. Their frame component version is given by

Vio My = Nobks VioPoe)c = Qober-

Detailed analysis of the first model equation
The spinorial analogue of Equation (13.38a) is given by
VaaMppx —VeeMaax =2NaaBpk.
Exploiting the antisymmetry one obtains the equivalent expression
V(AQ,MB)Q’IC = NAQ/BQ'K, NAQ/BQ’IC = NBQIAQ’IO

Defining the space spinor counterpart Mapx = A M aa'x and using the
definition of the spinor x apcp together with the decomposition (13.5) of Vap
one obtains the expression

PMap)k + 2Da” Mpypic +2V2x(a1Q " * Mp)prc = NAQ/BQ’IC-

Finally, assuming that the evolution equations implied by the zero quantity
Maaxc are given by MQQ;C = 0, it follows that Mppx = Mpp)x and,
moreover, that

PMapyc + PaPMppyc + D" Map)x +2V2x (410 P Mp)px = NAQ/BQ/)O
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This last expression is a suitable evolution equation for M(4p)k if IV A9 BQ'K
can be expressed as a linear combination of zero quantities. This compu-
tation depends on the particular structure of the conformal equation under
consideration.

Detailed analysis of the second model equation

In what follows, let Paa'Bp/r and Qaa' BB cc’rs denote, respectively, the
spinorial counterparts of the fields Pup, and Qapers. The spinorial counterpart
of Equation (13.38b) can be conveniently written using the spinorial counterpart
of the volume form as

(AA'BB'CC’ FAA'BB'CC’

pp'VaaPepcer pp'Qaaspccc. (13.39)

A convenient way of obtaining the space spinor version of this last equation is
to consider, alternatively, the expression

EFCDGH
€ ABVErPcpGHL,

where, following standard conventions, one defines

c_ a
Pcpearc =™ 7H - Pccca'c,
’

___F__D__H__B
€EFCDGHAB =TF TD TH TB €EF'CD'GH'AB’-
A short computation using the expression of the volume form in terms of e-spinors

yields

€EEFCDGHAB — i(EEGEC’AEFBEDH - 6EA€CGEFH5DB)-

Now, exploiting the symmetries of Pcpgpc one can write

*
Pcperr = Pceeepa + Pprreca,

where
1 Q 1

Pcgr = ylcac e, Pprc = §PQDQHL-

A calculation shows that the above expressions lead to

EFCDGH
€ AaBVErPcpgH:

2i (VAQPEQL ~V®9pPagr)
iP (Pap, + Papc) + 2iD% aPhg, — 2iD9pPaqe.

If the evolution equations associated with the zero quantity Popcp, are given
by the condition

Par — Pag, =0,
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it follows that
i
PPaBc = —§€EFCDGH(AB)VEFPCDGHL-

It can be verified that the expression one obtains by working directly with the
left-hand side of Equation (13.39) differs from the above expression by homo-
geneous terms involving Popagr,s and xapep. To complete the construction
of a suitable subsidiary equation for Popcp, it is necessary to show that the
right-hand side of Equation (13.39) can be expressed as a linear combination of
zero quantities — this computation is specific to each zero quantity.

13.3.2 The subsidiary equations for the equations governing the
conformal factor and its concomitants

The zero quantities Q aa’, Zaa' g and Za 4 — see Equations (13.37a)—(13.37c¢)
— lead to subsidiary equations which fall into the class described by the model
Equation (13.38a). Accordingly, one will have suitable subsidiary evolution
equations for the zero quantities Qa 4/, Zaa'Bp’ and Z4 4 if the derivatives

V(AQIQB)QH V(AQ,ZB)Q’CCH V(AQ/ZB)QH

can be expressed as linear combinations of other zero quantities.

The subsidiary equation for Qaa’

A direct computation using the definition of Q 4 4 shows that
Via? Qo = Va? Ep)o — 4% 5Zqq

where the definition of the torsion spinor — see Equation (8.35a) — has been used
to write

Va® Vo= =549 52qq, Ya®9 = -0, g,

| —

Finally, using the definition of the zero quantity Z4 4'gpg’ one can eliminate the
term V(AQIEB)Q/. Observing that L(AQ/B)Q/ = T(AQ/B)Q/ = 0 — as these are
the spinorial counterparts of symmetric rank-2 tensors — one finds

Va®Epg =249 o,
so that one concludes that

_ EAQQ'

Va9 Qo = 249 o BYXQq'

which is a linear combination of zero quantities as required.
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The subsidiary equation for Zaa g

A direct computation starting from the definition of Zs4/gp’ yields the
expression

Va® Zpyocor =Via® VegZco + 24 Leygcor + EVa® Lpygoc
3,_ / —_ ’
+ecaVBycrs — 5522(AQ Tpyg oo —Z2Va? Tpygcor-
Using the commutator

Vaa'VepYXcc — VBB VaaXce

P P
=—-R"caaBpYXpc — R craraBBXcp

~ Y4499 BB VogTcc
one finds that
Va? VeeSce = —RP capEpc — RY capEcp
~ Y499 Voo Tco,
where
1 Q' _ 1 - Q'
RaBcp = §RABCQ’D , Rapcp = §RA’B/Q’CD .

Using the definitions of the zero quantities Acppp’ and Za 4’ to eliminate,
respectively, V(AQILB)Q/CC/ and V gcrs, one obtains
— ZAQQ/

V(AQ/ZB)Q’CC’ = —RPcap)Spcr — RP/C’(AB)ZCP/ - BVYqqXcc

+ 24 Lpygcor + EAapcc — E8%c daBcq

—E2Tapcc +ecaZpycr — calpycroo B9
1_ / 3 /

— 5:,22QQ GC(ATB)C/QQ/ — 5:22(AQ TB)Q/CC/

]_'_‘ !

§ZBV(AQ TB)Q’CC’-

Next, one uses the zero quantity Zapcc'pp’ to eliminate the geometric
curvature terms RP c(ap) and RFP ,C/( AaB)- Taking into account the expression
of the algebraic curvature in terms of the Schouten tensor and the rescaled Weyl

tensor one obtains

Va? Zpgco = —EP ciapSrc — EF crapZcep — 2499 5Voqg Scc
+EAaBcc — ETascc + ccaZpyc

_ ooy

3_ ,
ecaATB)c'Qq — 5222(,4@ Tyq cc’

]__ ’
- §:3V(AQ Teyq'cc's
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Q/

where
A'B'Q'CD -

—_ 1 —_ / = —_
ZABCD = §:ABCQ’DQ s ZA'B'CD = 55
Finally, observing that the definition of the rescaled Cotton tensor implies that

TaBcc' = —%EV(AQ/TB)Q,CC/ and exploiting the trace-freeness of the energy-

momentum tensor one ends up with the expression
:PC(AB)EPC' - EP C'(AB)ECP’ - EAQQ BVQQ’ECC’

—=

Va® Zpygoo =
+ZAaBcc +€caZB)cs

which, as required, is a linear combination of zero quantities.

The subsidiary equation for Zaa:

In this case one needs to evaluate V(AQ/ZB)Q/. Making use of the definition of

Z s one finds that
V(AQIVB)Q/S + V(AQ/LB)Q/PP/EPP/ + V(AQ/ZPPILB)Q/PP/

V(AQ/ZB)Q/ =
—_— ! / 1,_ ’ ’
- :E(AQ EPP TB)Q’PP’ — 5:2V(AQ EPP TB)Q’PP’

1_ , ,
- 5:22131) V(AQ TB)Q’PP’-
Using the definition of the torsion tensor in the form
V(AQ/VB)Q/S = EAQQ/BVQQ/S,

and the definitions of Aapccr and Zaa'gp’ to eliminate, respectively,
V(AQ,LB)Q/pp/ and VAQ SPP" one obtains — after some simplifications

involving the symmetries of Laa'pp’ and Taa'Bp —
Va® Zpyg = 5a°? B)Vaaqs + Aappp ST + Z 42 PP Lpjg pp

1_ ' pp
— *.ZQZ(AQ PP TB)Q’PP"

2
This expresion is a linear combination of zero quantities.

13.3.3 Subsidiary equation for the no-torsion condition

Following the general discussion of Section 13.3.1, one defines
Sapep® =84 109 44 %Y coreqo

One can write
YaBcp® = -Yac%sp — X BD%€AC

so that, if the evolution equation ¥ 45% — X7 45% = 0 holds, then

i
PYag® = *ivEFZCDGHa6
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To conclude the argument one needs to express the right-hand side of the above
equation as a linear combination of zero quantities. To this end, one makes use
of the first Bianchi identity (2.10) to write

VieZs%e = —E%cab) — 1% cab) — ZabEe %

where the zero quantity 2906 = R%ab — pdcab. By construction, the algebraic
curvature has the same algebraic symmetries as the Riemann tensor of a Levi-
Civita connection so that, in particular, pd[cab} = 0 and one has that

V[azbdc] = _Ed[cab] - E[aebzc]de'

This expression shows that the right-hand side of Equation (13.40) can be written
as a linear combination of zero quantities.

13.3.4 Subsidiary equation for the Ricci identity

It follows from the general discussion of Section 13.3.1 that, if the evolution
equations Eapcp — 24 gop = 0 are satisfied, then

— 1 —
P=ZaBcD = _§VEF:CDGH6EFCDGH(AB). (13.41)

To express the right-hand side of this last equation as a linear combination of
zero quantities one makes use of the second Bianchi identity (2.11) to obtain

€1 ViaZeppe] = €% ViaR eppe] — €7 V1ap® jejbel

= 76fabcz[agde|e|c]g - EfabCV[apd|e|bc]. (13.42)

The first term in the right-hand side of the last equation already has the desired
form. The second term needs to be examined in more detail. One considers

£ Viap?eipe = €5 Vapepe
= Eefabcvaddebc + 6fabcva.Eddebc + 2€fabCSebdhvaLch7
where in the last line the expression of the algebraic curvature in terms of the

Weyl tensor and the Schouten tensor has been used. Now, a computation using
the properties of the Hodge dual and the definition of the zero quantity Agpe

shows that
efabcvaddebc _ _efabcva*d*debc _ _2va*d**defa
— QVa*ddefa _ 2vad*fade
= Eedghvu.dafgh = 6edgh(Afgh, + ngh)- (1343)

Using the above expression together with the definition of the zero quantities
Agpbe and Qg to eliminate Vg Ly and V4=, respectively, one finds that

€+ Viap?ieibe] = €2°°°Qad%ebe + Zee™ " Apgh + €4 Sep™ Agen.
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Substituting this last expression into Equation (13.42) one obtains the required
expression for V[aEd|e|bc] as a linear combination of zero quantities. The spinorial
counterpart of this expression differs from the right-hand side of Equation (13.41)
by terms homogeneous in zero quantities involving the spinor xaBcb.

13.3.5 The subsidiary equations for the Cotton equation

Applying the general discussion of Section 13.3.1 to the zero quantity
Aaa BB cc’ associated with the unphysical Bianchi identity leads to the
expression

1

§P(A;BKL + AaBkL) + DQAAEQKL ~ DA QKL

i
= —§6EFCDGHABVEFACDGHKL~ (13.44)
To make use of the evolution equations in the above expression it is observed
that
Q

1 1
AaBcp = Aasep) + ghABCDAPQPQ + §€CDAABQ .

Thus, using the evolution equations for the various components of the Schouten
tensor one obtains

i
PAABKL) = —§VEFACDGH(AB€EFCDGHKL)7
1
PApT? = —§€EFCDGHKLVEFACDGHKL7
1
PAapo? = *gﬁEFCDGHABVEFACDGHQQ

To analyse the right-hand sides of the above equations it is more convenient
BB/CC/DD/VBBIACCIDD/EEI. This expression differs from the
right-hand side of Equation (13.44) by terms involving the spinor xapcp. For

conciseness, the analysis is carried out using tensorial notation. One has that

to analyse €4 4/

€£°UWVeAcap = €°°4(2VeV eLap — VeLad®bed — LaVed bed
— VeETeap — EVeTean). (13.45)

The first term on the right-hand side of the above equation is manipulated using
the commutator of covariant derivatives by observing that

2%V eVieLap = 265"V Vo) Lav
= —2efeCd(2Rs(d|ec|Lb)s - EescvsLdb)
= —2¢4°°Y (22" (ajec| Lvys + €4°*'P"becLaa + Te"eVaLab),

where in the third line the identity p®peqy = 0 has been used. The second
term in the last equation does not contain zero quantities. The third term in
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Equation (13.45) is now cast in a suitable form using the properties of Hodge
dual; compare the analogous argument leading to (13.43). One finds that

6J"eaiveda,b(:li = _Eabgh(Afgh + ngh)-

Substituting the above two identities into Equation (13.45) and using the zero
quantity Zgp to eliminate V42 one obtains
2€f60dveV[CLd]b

= _4€feCdEs(d|ec|Lb)s - 2EeSchLfb

h d
— X% ap 9" A pgh — €£°°“ Zead®bed

1_ a _ — a
- {efeCd (2:3Tead bed + VeZTeap — :veTcdb> - EabghE ngh}a

(13.46)

where the explicit expression of the algebraic curvature has been used to show
that

efeCd(Edabchea — 2psbechs) = 0.

Expression (13.46) is, up to the matter terms in curly brackets, a linear
combination of zero quantities. Whether the terms in curly brackets can be
expressed as a linear combination of (matter) zero quantities depends on the
particular features of the matter model under consideration.

13.3.6 The subsidiary equations for the Bianchi identity

The construction of the subsidiary equation for the Bianchi identity is similar
to that of the subsidiary equation for the Maxwell equations. In this case the
relevant zero quantity is given by

Aapep =V a¢Bepg +Teppar,

for which one computes VBB'Ap gep in two different manners.
First, making use of the space spinor zero quantity Aqgcp = TAA/AA/BCD
one has that

BB’ BB'(_P
V%% Apgep = VPP (1" mApBeD)

= VA8 A spep — (VB4 74 4))AaBep.

Using Equation (13.8) for the derivative of the spinor 74 4+ and the split of Vap
one obtains

PAcp — 2D*PAagep — 2V2xBpP*Aapep = —2VBB Appep,
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where it is recalled that A¢gp = AQQCD. Now, a calculation shows that the
symmetry Aapcp = Aa(Bcp) implies the decomposition
3
AaBcp = AaBep) — ZGA(BACD)»
so that
PAcp — 2D (cApyp — 2D*P A apcep) — 2V2xPpPA A aBCD)

3 /
+ 7XBPPA€A(BACD) = —QVBB AB’BCD~ (1347)

V2

As a second way of evaluating VBB ‘A B’BcD one makes use of the definition
of the zero quantity so that

VEE Ap pep = VBB/VQB’¢BCDQ + VBB Tepps.
The first term of the right-hand side is manipulated using the commutator
Vaa'Vep écpEF — VBBV A PCDEF

s s s
=—-R°caa BB ¢sDEF — R°DAaa'BB' ?scEFr — R°Eaa BB PSCDF

s PP’
— R°raa' BB ¢scpE +2Xaa”  BB'VPP$CDEF-

Observe that the torsion X 44/FF ' BB, being one of the unknowns in the
subsidiary system, needs to be included in the commutator. Also, the curvature
terms in the above expression are understood to be those of the geometric
curvature. Contracting the expression of the commutator leads to

2VEBVQp ¢popg = —R°cBP? Q4 dspBo — RO DB Q A dscBo
~ RSpBAQ 4 6scpg — RBP4 dscpB
+2A4SSQ | Vs dopag-

Using the zero quantity

c

(1]

—RC _C
DAA'BB’ — DAA'BB’ P DAA'BB’

to eliminate the geometric curvature and the decomposition (13.9) one obtains
an expression which is homogenous in zero quantities:

VBB VQp ¢pepg = —Z5cP* Pa¢spee — Z¥pP4 YadscBo
—255B4Q L pscpg — B4 %4 dscpB
+0AASSQ | Vs dopag- (13.48)

In particular, all the terms coming from the algebraic curvature cancel out.
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Combining Equations (13.47) and (13.48) one obtains the required subsidiary
equation. Namely, one has that if A apcp) = 0, then

3
PA%gcp — 2DF (cA®pypg + —=xPpTea8A%cD)0

V2
ScBAR L ¢sppg +E°pPA@

!’
4+ =5,BAQ

— =
- =

A'9sCBQ

adscpg +Z5084 4 dscpB

—20AASSQ Vs depag — 2VPB Tepsss

which is homogeneous in zero quantities if the matter term VBB/TC DBB’ can
be expressed, in turn, as a homogeneous expression of matter zero quantities.

Alternatively, one can perform the computation with tensorial objects. In this
case one looks at

VPAbea = VOV ad®bed — VT eap.
Again, using the properties of the Hodge dual one can write
VOVad%%ea = —=V*Vdapea

* 7% 1
= Vavb dabcd = zeabefeghcdvbv(zdefgh

1 1
= Eeabefeghcd(Rseabdfsgh + ngabdhse_f - izasbvsdefgh)

1
7€abef€ghcd(

4 ESea,bdfsgh + ESga,bdhsej" - QZaSbvsdefgh)~

Hence, one concludes that V®Ap.q, except for the matter term V°T,qp can be
written as a linear combination of zero quantities.

13.3.7 Summary

In most applications, the detailed form of the evolution and subsidiary equations
is not required; general structural properties suffice. These properties are
summarised in the following propositions.

It is convenient to group the independent components of the unknowns
appearing in the spinorial formulation of the conformal field equations in the
following manner:

o independent components of =, Y 44, S;
v independent components of ey 1., Taa'Bc, PaaBp';
¢ independent components of papcD;
¢ independent components of matter fields.
Moreover, let e and IT' denote, respectively, the independent components of the

frame components and the connection coefficients. In terms of these objects one
has the following:
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Proposition 13.1 (properties of the conformal evolution equations)
Given arbitrary smooth gauge source functions

Fe(z), Fap(x), R(x),
such that
VQQ/eQQ/a = F*(z), VQQ/FQQ/AB = Fap(x),
VQQ/LQQ’BB’ = %VBB’R@),
and assuming that the components of the matter tensors Tgp and Tape can be

written in such a way that they do not contain derivatives of the matter fields,
then the conformal Finstein field equations

Qa = 07 Zab = 07 ZCL = 07 El],cb = 07 Ecdab = 0;
Aa,bc = 07 Aabc = 0,

imply a symmetric hyperbolic system of equations for the independent components
of the geometric fields (o, v, @) of the form

(I+A%e€))0-¢+ A%(€)0ap = BT + C(o,v, ),
(I+D%e))d-v+D"(e)d,v =ET)v +F(o,v,0,),
67'0 = G(I‘)U + H(Uv v, 90)7
where I denotes the identity matrix of the required dimensions,
Af(e),  D¥(e)
are smooth matriz-valued functions of the components of the frame components,
B({), E(), G(T)
are smooth matriz-valued functions of the connection coefficients and

C(0-7U7 (P)7 F(0-7U7 d)ﬂ LP)? H(a7v7 (p)

are smooth vector-valued functions with polynomial dependence on their argu-
ments. The characteristics of this system satisfy a characteristic polynomial
inwvolving factors of the form

1% {on 2 a
T“&Ha g )\gug)” (TpT + ggp >£p£o~

Remarks

(i) In the presence of matter, the symmetric hyperbolic system given in the
above proposition needs to the supplemented by a symmetric hyperbolic
system for the matter fields. As the rescaled Cotton tensor Type (and hence
also the spinor Tapcc’) is made up of derivatives of the energy-momentum
tensor, the matter evolution equations will need to include equations for the
matter field derivatives appearing in the geometric evolution equations.
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(ii) The choice of the gauge source functions is dictated by the particular analysis
under consideration.

With regards to the subsidiary system one has the following:

Proposition 13.2 (properties of the subsidiary evolution system)
Assume that the evolution equations implied by the conformal FEinstein field
equations are satisfied and that the energy-momentum tensor Tqp is such that
the quantities

Mcd = vb,-_[jcdbv
_ ecd 1 —3 a frem) — ghya
Nbf =E€f (2: Tead bed 1 Ve:f cdb — HveTcdb) — €ab b nghv

can be written as homogeneous expressions of the geometric and matter zero
quantities. Then the zero quantities encoding the constraint equations implied by
the conformal Einstein equations under the hyperbolic reduction procedure leading
to Proposition 13.1 satisfy a symmetric hyperbolic system which is a homogeneous
expression of zero quantities.

13.4 Hyperbolic reductions using conformal Gaussian systems

This section discusses a hyperbolic reduction procedure based on the properties
of congruences of conformal geodesics. The approach discussed in this section
makes use of the formulation of the conformal field equations in terms of Weyl
connections — the so-called extended conformal field equations. As will be seen,
this procedure leads to simpler evolution equations than the ones obtained by
the reduction procedure discussed in Section 13.2.

For conciseness of the presentation, the discussion in the rest of this section is
restricted to the vacuum case.

13.4.1 Basic set up

In what follows, it is assumed one has a region U of a spacetime (M, g) which
is covered by a congruence of conformal geodesics ((7), 3(7)). For convenience,
the vector field tangent to the congruence will be denoted by 7. As discussed in
Section 5.5, a canonical representative g of the conformal class [g] is singled out
by the requirement

g(TvT) = 17

so that g = ©2g where the conformal factor © satisfies a third-order ordinary
differential equation along the congruence of conformal geodesics; see Equa-
tion (5.53b). In the case of a vacuum spacetime this equation can be explicitly
solved yielding a formula for © as a quadratic polynomial in the parameter 7.
The conformal factor is completely determined by the three coefficients ©,, ©,,
O, specified, say, on an initial hypersurface S,.
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In the following, {e,} will denote a g-orthonormal frame which is Weyl-
propagated along the conformal geodesics and such that eg = 7. As discussed
in Section 5.5, to every congruence of conformal geodesics one can associate a
Weyl connection V. This Weyl connection satisfies the relations

Vsea =0, L(r,") =0,
where I denotes the Schouten tensor of V; see Equation (5.41). In terms of
frame components, the above conditions can be rewritten as

I'o% =0, Loa = 0. (13.49)

In particular, it follows that the covector f which defines the Weyl connection
V satisfies

Jo=0.

The gauge choice can be refined further by choosing the parameter of the
conformal geodesics 7 as the time coordinate. Thus, one has the additional gauge
condition

eg = 0, so that et = dph. (13.50)

In most applications, initial data for the congruence of conformal geodesics will
be prescribed on the initial hypersurface S,. On S, choose some local coordinates
(z%). Assuming that each curve of the congruence of conformal geodesics
intersects S, only once, one can extend coordinates on S, off the hypersurface by
requiring them to be constant along the conformal geodesic which intersects Sy
at the point with coordinates (x®); see Figure 13.1. The spacetime coordinates
(1,2%) one obtains by this procedure are known as conformal Gaussian
coordinates. More generally, the collection of the conformal factor ©, Weyl-
propagated frame vectors {eq} and coordinates (7,2*) extended off some initial
hypersurface S, using a congruence of conformal geodesics will be known as a
conformal Gaussian gauge system.

(r,z%)

.

conformal geodesic

5. (0%

Figure 13.1 Schematic depiction of the construction of conformal Gaussian
coordinates. The coordinates (z) of a point p € S, are propagated off the
hypersurface along the unique conformal geodesic passing through p; see the
main text for further details.
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Remarks

(i) The specific choice of the data for the conformal Gaussian gauge system
on an initial hypersurface S is dictated by the particular geometric setting
under consideration.

(ii) The discussion in this section can be adapted, with minor changes, to the
case of a congruence of so-called conformal curves in non-vacuum spacetimes;
see, for example, Liibbe and Valiente Kroon (2012) for further details.

13.4.2 Hyperbolic reduction of a model equation

The general ideas behind the procedure of hyperbolic reduction using conformal
Gaussian systems are best illustrated with a model equation. All the extended
conformal equations, except for the unphysical Bianchi identity, are of the
form

ﬁaMblC - ﬁbMalC = NablCa (1351)

where Mgk and Ngbk = Nigpjc denote the components of some tensorial
quantities with respect to the frame {e,} and x denotes an arbitrary set of
tensor indices. To derive an evolution equation along the direction given by the
congruence of curves, one sets a = 0 so that

VoM — VeMox = Nobk,
or, more explicitly,
eo(Mpx) — ep(Mox) = Novk + Lo%eMex + LoF ik Mpr — TpS0Mex — T'p i Moz

If the gauge conditions (13.49) are taken into account and coordinates are chosen
such that eg = 9, then the above equation reduces to

9 Myx: — es(Mox) = Nobx — DoCoMex — T Moz (13.52)

This last equation is not a completely satisfactory evolution equation for the
components Mg as it does not yield information about 0, Mox — notice that by
setting @ = b = 0 in (13.51) both sides of the equation vanish as a result of the
skew symmetry of the equation. To read Equation (13.52) as a suitable evolution
equation one needs to know the value of the time component Mg either as
a result of symmetries of the tensor M,x or through some gauge condition.
In any of these cases, Equation (13.52) is just a tramsport equation along
the congruence of conformal curves, and, accordingly, it trivially gives rise to a
symmetric hyperbolic subsystem of equations.
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Analysis in terms of spinors

In view of subsequent applications, the properties of the spinorial counterpart of
Equation (13.51) are now analysed. In this case one has

VaaMppx — Ve Maax = Naa s, (13.53)

where i denotes an arbitrary string of spinorial indices. In view of its anti-
symmetry, Equation (13.53) is completely equivalent to the pair of contracted

equations
- / 1 ’
Viap Mp)" k= 5Nap s «, (13.54a)
A 1
Ve Mpy T = §NP(A’PB’)IC- (13.54b)

Thus, not unsurprisingly, one has arrived at a situation similar to the one
analysed in Section 13.2. Namely, one has equations containing a symmetrised
spinorial curl. A symmetric hyperbolic system can then be obtained if suitable
information about the divergence VFF Mpp/ is available.

The next step in the procedure consists of introducing the space spinor version
of MAA’K:7 namely, MBB’IC = —TPB/MBPIC so that
p2 1% VaaMpp i = —1p? 7P (TRB’VAA’MBRIC + MBRICVAA’TRB')

= VapMpgx — V2MBrc XarTq.

where it has been used that \@)ZABCD = TBAlTDC,@AA/TCC/ consistent with

formula (4.17). From the above identity together with Equations (13.54a) and
(13.54b) one obtains

ViapMp)Fx = %N(A\P|B)PIC —V2M A" XB)PRT,
@A(PMAQ)K = %NA(PAQ)IC +V2M*A g Yarpto)-
Using the decomposition
Vap = %EAB’ﬁ +Das.

with P = 744V g4 and Dap = T(AA/@B)A/ — compare Equation (4.16) — and
writing Mapx as

1
Magk = 5€ABMK + maBk

where mx = M@k and mapk = M ap)k, one obtains

1

R 1. .
ipmABIC - §DABm)C —Dpamp Fx

1 .
= _§N(A|P\B)PIC +V2M AR x| XB) PRT
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14 1. R

57)me)( — §DmeK + DA(pmAQ)K:
1
2

Taking linear combinations of the latter equations one finally arrives at

NA(pAQ)/C + \@MAR)C )ACA(PRQ)'

Pmasx — Dapmi = Eapr, (13.55a)
751:'(,477”LP]5');C = CaBk; (13.55b)

where Fapx and Capx are some expressions not involving derivatives of
Mapx whose precise form is not relevant for the subsequent discussion.
Equation (13.55a) can be read as an evolution equation for the spatial components
ma g if the time component my is known. Observe that the reduction procedure
does not produce an equivalent equation for my consistent with the discussion
of Equation (13.51).

13.4.3 The evolution equations in the frame formalism

To obtain some intuition into the structural properties of the evolution equations,
it is convenient to look first at the form of the equations in a tensor frame
formalism. Accordingly, one considers the vacuum extended conformal field
equations as given in Section 8.4.1; see Equations (8.46).

The required evolution equations for the frame components, connection
coefficients and components of the Schouten tensor are obtained from the
conditions

Sob =0, =406 = 0, Aope = 0.

In particular, the evolution equation for the covector f defining the Weyl
connection is given by

Cc

[1p

c0b — 0.

Using the definitions of the zero quantities given in Equations (8.44a)—(8.44c),
recalling that in the vacuum case T.qp = 0, and making use of the gauge
conditions (13.49) and (13.50), one obtains the evolution equations

drept = —Tpfoesh,
- Tp%a = —T4%al'sT o + 00 Lba + 04 Lo — M0an? Ly + ©daop,
OrLpe = —TpF oL je + dd? cob.
These equations contain derivatives only in the 7 direction — that is, they are
transport equations along the conformal geodesics.
The evolution equations for the components of the rescaled Weyl tensor are
obtained by resorting to an electric-magnetic decomposition; see Section 11.1.2.

Using Equations (11.9) and (11.10) for the decomposition of a Weyl candidate
in the equations
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*
a=20,

18.4 Hyperbolic reductions using conformal Gaussian systems
Vadabc

Vadabcd =0,

one obtains the expressions
Alpioja) = €0(Eba) + DaBewea)* + 2aae® pBaye — 3X(°Eaye

— %°€4*f EqeXes + XEba = 0,
Awloja) = €0(Bba) — DaEepeay™ — 2006 pEgyec — 3X* b Bd)a
— ev"°€4®f BacXes + XBba = 0,
X = habXabv Aq = TbeTa-

where
Xab = hacchb7

hab = Gab — TaTb,
The above form of the equations is completely general. In the particular case

of a conformal Gaussian gauge system one has eg = 8,
13.4.4 The evolution equations in the spinorial formalism

Aspcp =0,

To discuss the spinorial version of the evolution equations one makes use of the
Acc'pp'BB =0,

extended conformal field equations

Saapp =0, =°paapp =0,
with the zero quantities as given in (8.53a)—(8.53¢). These equations are regarded
$»aBCD-

as differential conditions on the fields
T'aaBe, Laa BB
" — the counterpart of the vector 7, with

eaa’,
AA
= 2. In terms of a spinor dyad {e4*} adapted to 744

Moreover, one considers the spinor 7
AN

normalisation 744/ 7
one has
TAA/ = €9 eg/A/ + elAele/.
In what follows, all spinorial objects will be expressed with respect to this basis.
In particular, the components of 744" with respect to {e4?} will be denoted

-
A4 Laapp =0.

by 744
The gauge conditions (13.49) and (13.50) in the spinorial formalism take the
(13.56)

form
/A
TAA 1_‘AA’BC =0,

4% e a4 = V20,
For future use, it is recalled that the reduced spin Weyl connection coefficients
I'cc’ap can be written in terms of the unphysical Levi-Civita connection

coefficients I'ccr ap and the covector fa 4/ as
l'ccraB =TccaB —€acfBe-
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Combining the above with the gauge conditions one obtains
9 Tocap = -4 faer (13.57)
and, furthermore, that
TocraB =TccaB — eAcTQQ/FQQ’PBTPC"

In the gauge given by conditions (13.56) the connection coefficients I'ccran
can be fully expressed in terms of the coefficients I'ccrap, and vice versa.
Comparing Equation (13.57) with the definition in Equation (4.17), one sees
that the spinor fa4. encodes the acceleration of the congruence of conformal
geodesics. In particular, if fqa4. = 0, then the congruence consists of standard
geodesics and one obtains a Gaussian gauge system.

The reduced symmetric hyperbolic system of evolution equations can be
deduced from the following contractions of the conformal field equations

AA'S PP cc'=
% Yaa" " Breppt =0, 7% EaBcc'pp =0,
AA A AR
T ApaBecco =0, 7a” MaBep) = 0.

Explicitly, for the first three equations one has
V20,eqa" = — (f‘AA’QBTBQI + 1ZA’AQ/B'TQB/)ecQQ’”7
V20,0 anBo =— (fAA’PQfPQ’BC + fAA’PlQ’f‘QP’BC)TQQ/
+ i/AA’CQ/TBQ/ + 008 cqat®a,
V20, Laaps =— (TaaFolrgsp + fA’APlQ'iQP’BB’)TQQ/

—dPP (¢PAQB€P’B'7'QA' + d;P'A'Q'B%PBTAQ )-

Following the same procedure discussed in Section 13.2.4 one finds, for the
Bianchi identity, that

Poaco —2Da%dpep)g =0 (13.58)

Observe that this last expression is, for convenience, expressed in terms of the
Levi-Civita connection V.

The space spinor split of the evolution equations

A more detailed version of the evolution equations is obtained by resorting to
the space spinor formalism, and, in particular, to the split of the connection
coefficients as given in Section 4.3.1.

Following the general strategy behind the space spinor formalism, it is
convenient to define

N _ A _ A _ A
IF'aBecp =78° Taaco, IF'aBecp =78° Taaco, faB =787 faar,

___A__C?
©aBcp =BT ™0~ Laacc
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In particular, one has

T'ascp =TaBep — €cafpsb.
As a consequence of the gauge conditions (13.56) it follows that
faB = fiaB), I'o%ap = —fas. Lg®ap =0.

Defining, as in Section 4.3.1, the spinors xapcp and {apcp Via

1
XABCD = —E(FABCD +Thsen) £ABCD = E(FABCD —Thgep)

one obtains from the metricity of the connection V that

1
TaBep = ﬁ(fABCD — XABCD)

1

E(EABCD ~ X(AB)CD) — §€ABfCD-

Exploiting the gauge conditions, the spinor ©® opcp can be decomposed into

1
©aBcp = OaBcD) + §€CD@ABQQ~

In addition, it is convenient to introduce the electric and magnetic parts
of the rescaled Weyl spinor ¢ apcp via

1 1
NABCD = §(¢ABCD + dhBep) HABCD = _§(¢ABCD — ¢hBeD)

A calculation using the above definitions yields the detailed system:

dreap” = *X(AB)PerQO — faB., (13.59a)
dreaB® = —x(ap) Cepq”, (13.59b)
1
0-6aBep = —X(ap) %¥poep + E(GACX(BD)PQ + eBDX(aC)PQ)TC
1
— V2x(aB)c®fo)e — Q(EAC@BDQQ + €800 acq?)
— iGMABCDa (1359C)
1
O-faB = —xaB) % fpg + E@ABQQ, (13.59d)
d-x(aB)cD = —X(aB) ®XPacp — ©ap(cp) + OnaBcD, (13.59)
9:9¢cp(aB) = —X(cp) ?Opgan) — 0-OMaBCcD
+ i\/ﬁdP(AuB)cpp, (13.59f)
3,0480% = ~x(aB) FFOrrq® + V2d¥ % aBPq. (13.59g)

Remark. The term 0.0 in the second term of the left-hand side of Equa-
tion (13.59f) arises from the fact that, in a conformal Gaussian system, the

time component of the covector d is given by ©; see Proposition 5.1.
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Setting

$0 = doo00, P1 = dooo1, P2 = doo11, P3 = Po111, D4 = P1111,

the standard Bianchi system, Equation (13.58), explicitly reads

(V2 + 2¢01°)0- ¢ — 2€11°0-¢1 + 2€01%Oabo — 2611 0ath1
= —6l111102 + (41110 + 8T0111)#1 + (2I'1100 — 8L0101)P0,
(V24 2€01°)0-¢1 — 2€11°0, 62 — 2611 Oab + 2€01% Oa b1
= —4T'111103 + (6T (01)11 — 3/11) P2
+ (4T'1100 — 4T 01)01 + 2f01)P1 — (2T (01)00 + fo0)P0,
V20 ¢3 — €11°0: 63 + 000 d1 — €11%0adds + 00" abr
= —T111104 — 2(T'1101 + f11)#3 + 3(Foo11 + ['1100) P2
—2(T'o001 — foo)#1 — T'ooooo,
(V2 — 2€01°)0- ¢3 + 2€00°0- b2 — 2€01° D b3 + 2€00” Va2
= —(2Lo1)11 + f11)d4 + (2Lo011 — 4T (01)01 — 2f01) 93
+ (6T (01)00 + 3f00)®2 — 4T000091,
(V2 — 2€01°)0- ¢4 + 2€00"0; 3 — 2€01% 0o s + 2€00” 0aP3
= (2T'g011 — 8T'1010) 94 + (4T'0001 + 8T'1000)P3 — 6T 0000 P2-

For completeness, the constraints
Aap =DP9¢pgap =0
are also given in explicit form:

€11°0: ¢4 — 2€01°0; 03 + €00°0- d2 + €11 0ads — 2€01% 0o s + €00 Du 2
= —(2T(01)11 — 4'1110)¢4 + (2L0011 — 4L (01)01 — 4T'1100) B3
+ 6I'(01)00%2 — 2I'0000¢1,
€11°0; 03 — 2€01°0; 02 + €00’ 07 h1 + €11%Oaths — 2€01" a2 + €00” Dathr
=T111104 — (4T 01)11 — 2l"1101) 83 + 3(Loo11 — '1100) P2
— (20001 — 4T (01)00)¢1 — o000 %o,
1170, 02 — 2€01°0;61 + €00 0-do + €11%0a b2 — 2€01" D1 + €00” Datho
= 2l'111103 — 60 (01)1192 + (40011 + 4 (01)01 — 2T'1100) 91
— (40001 — 2T (01)00) ®0-
These constraint equations contain time derivatives of the components of the
Weyl spinor. Furthermore, as the congruence of conformal curves is, in general,

not hypersurface orthogonal, the constraint equations are not intrinsic to the
leaves of a foliation.
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The boundary adapted system

The standard system (13.36) is not the only symmetric hyperbolic evolution
system that can be extracted from the Bianchi equation. In certain applications,
such as the ones involving evolution domains with a timelike boundary, another
form of the evolution equations is more convenient. In what follows, the system
extracted from

1
—2A(0000) =0,  —2A(0001) — 5000 =0, —2Ao11) =0, (13.60a)

1
—2A(0111) + 5011 =0, —2A1111 =0, (13.60Db)

will be known as the boundary adapted system. In the following, it will
be shown that it is, indeed, symmetric hyperbolic. The principal part of the
boundary adapted system can be written as

™ + 2601'“’ 72600# 0 0 0 ¢0
2eq1" 27# —2epo 0 0 o1
A“@Mcb = 0 2611# 2T 72600“ 0 8H (,252 ,
0 0 et 2Tk 200t b3
0 0 0 2611“ T — 2601“ (154
(13.61)

so that the matrices A* are Hermitian, and, in particular, A#7, is positive
definite. The characteristic polynomial is given by

det(A1,) = 4(7"€u) (96062) (77680
where 1?7 = 7P77 + egoPe11?). In Chapter 14, it will be seen that when
TH is tangent to a timelike hypersurface, then the pull-back of I,, gives the
components of the intrinsic three-dimensional Lorentzian metric implied by g on
the hypersurface.
Explicitly, the boundary adapted system takes the form
(V2 4 2e01°)0- 0 — 2€11°0, 61 + 2€01”Oatbo — 2€11%Oahr
= —6I'1111¢2 + (4T'1110 +8L0111)¢1 + (2T'1100 — 8L0101) D0,
V20,61 — €11°0; 62 + €00 07 do — €11%Fat2 + €00" D1
= —2T'11116¢3 — 3f1102 + (2I'1100 + 4L0011 + 2f01)P1 — (40001 — foo)Po,
V20,62 — €11°0; 63 + €00 0 $1 — €11%0ats + €00“ Ot
= —T111104 — 2(T'1101 + f11)¢3 + 3(To011 + '1100) 92
—2(Too01 — foo)®1 — Foooo o,
V20, ¢35 — €11°0: ¢4 + 0007 d2 — €11%Oatbs + €00” Dapo
= —(4T1110 + f11)92 + (2T 0011 + 4T'1100 — 2f01) 93 + 3 food2 — 2L'000091,
(V2 — 2€01°)0- ¢4 + 2€00°0; d3 — 2€01% Oabs + 200" Da b3
= (20011 — 8T'1010) ¢4 + (4T'0001 + 8T'1000) 93 — 60000 P2-
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13.4.5 The construction of a subsidiary system

This section addresses the construction of a system of subsidiary equations for
the evolution equations discussed in the previous section. The particular problem
at hand consists of constructing evolution equations for the zero quantities

Za,cba

(1

cdaba Aa,bc; Aabm

encoding the extended conformal field equations. In addition, in the present
hyperbolic reduction procedure, one also needs to construct evolution equations
for the additional zero quantities

511 ) Yab; Sab)

which play the role of constraints of the conformal equations; see Equations
(8.47a)—(8.47¢) for their definitions. The necessity of these extra zero quantities
can be traced back to Proposition 8.3.

As in the case of the analysis of the subsidiary equations for the hyperbolic
reduction procedure using gauge source functions, the subsidiary equations need
to be homogeneous in zero quantities so that the vanishing of the latter on
an initial hypersurface readily implies a unique vanishing solution. The basic
assumption in the construction of the subsidiary system is that the evolution
equations associated to the extended conformal field equations are satisfied. That
is, one assumes that

Yo% =10, Z%ob =0, Agpe =0,

hold, together with either the standard or the boundary adapted system for the
components of the Weyl spinor. The aforementioned evolution equations have
been constructed using the gauge conditions

fO = Oa 1Q\Obc = 07 fJOb = 07

which, therefore, can also be used in the construction of the subsidiary system.
Note also, that in the present gauge do = ©59 = VO so that one has

do = 0.
Similarly,
Yob = Lob — VoL — %Sobefﬁeﬁf + A0 %1, = 0
by virtue of the gauge conditions and the evolution equation
VoBa + Boba — %an(ﬂeﬂe —2)007%) =0, (13.62)
for the covector 4. Finally, one has
sob = —Lyo — Vo fo + b0 fe = 0,

as a result of the evolution equation for the covector f.
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The construction of subsidiary equations is similar in spirit to the one discussed
in Section 13.3. There are, however, certain differences. The most conspicuous

one is the fact that one is now working with a connection which is non-metric.

The subsidiary equation for the no-torsion condition
To construct the subsidiary equation for the no-torsion condition one considers
the totally antisymmetric covariant derivative V[azbdc] and observes that
3@[02bdc] = VoIp%e + VpSco + Vo
=Volpte — Tp%0%ce — [e%02e . (13.63)

On the other hand, from the first Bianchi identity, Equation (2.10), and the
(13.64)

definition of 2%.4p one obtains
VieZs% = —Z%cab) — La®b2e) %,

where it has been used that ﬁd[cab] = 0 by construction. The desired evolution

equation is obtained from combining Equations (13.63) and (13.64). More

precisely, one has
. 1. . 1. . N
_7FceOEedb - grceOEedb - :dObc

ﬁOZbdc = 3
This evolution equation has the required homogeneous form.

The subsidiary equation for the Ricci identity
In this case, one considers the totally symmetrised covariant derivative

@[aé‘ﬂe‘bc]. A direct computation shows that
3V[Oéd\e\bc] = @Oédebc + ﬁbédeco + @cédeob
= @Oédebc - fbfoédecf - f‘cfoédefb-

Using the second Bianchi identity, Equation (2.11), and the definition of 2%,

one arrives at the expression
E o) = ~ViaT 68 eler — Viahjejbe]-

VieE
The first term on the right-hand side is already of the required form. The second

~d

one needs to be analysed in more detail. It is recalled that
p

ebc = C(debc + 2Se[bdff/c]f~

Thus,
& ad & ~d dfe 7
Viah% e = ViaC%elbe] + 2Sep™ VaLey-
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In order to further expand this expression one considers € fabc@a ﬁdebc. A direct
calculation shows that

ﬁ[acd|e|bc] = v[acd\e\bc] + 5[adf|fcfe|bc] + ne[affcd\ﬂbc]' (1365)
Moreover, one has

efabcvacdebc — _efabcva*c*debc
= =2V, C%* = 2V, C 5,

= —eedghVaC“fgh.

Thus, using that C€gqap = Odgaep and the definition of the zero quantity Agpe
one concludes that

€5V aC%be = Occ ™A pgn + 2VIOd ey + 20 f9d} s + 2090 g g
A similar computation using the definition of Agbe yields
2498 b A gy = 20B,d™9 o5 — 208,d*9% .
Thus, using the symmetries of d*€44p and the definition of d, one concludes that
€42V apepe = Ot A o, — 20090 5y + € Sep 9 A ey

Alternatively, using the properties of the generalised Hodge duals T and ¥ defined
in Equation (2.24), one can write

A 1 1 . «
v[a,pd|e|bc] = geefabceedgh/\fgh - g(”)efabc(;gd defg - Se[bdgAac]g-

Combining the expressions, one obtains the required evolution equation.
Namely, one has

= r e - e - - 1
vOzdebc = beozdecf + Fcfozdefb - becRdeOf - §®€f0bc€edghAfgh
+ EfObc(sgd*defg + 3SeOdgAcbgv

which is homogeneous in the zero quantities.

The subsidiary equation for the Cotton equation

In this case one considers the skew derivative @[aAbc]d. A direct computation
yields

3@[oAbc]d = VoAped + VoAcoq + Velopa

= VoAped — T6%0Aced — Te®0Acba-
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On the other hand, using the definition of Z€.ap and the symmetries of p€cqp
one obtains

VieBbaa = 2V VoLlaa — Viaded®ape) — deViad® |djbe)
= (cab Led — Z°ajabLeje — P ajabLeje + L1abVe|Laa
~ Viadjed® gjpe] — deV(ad®|ajbe)-

> 1]

Using the definition of d, and v4p one finds that
Viadjed®aibe) = —O0aBled® aibe) — OVialeddjbe] — © fiaBled®dibe) + OL(aled® djbe)-

Finally, a calculation similar to the one carried out in the previous subsection
shows that

€4V 0 d®abe = €49V od® fgn,

so that using Equation (13.65) and the properties of the generalised duals T and
¥ — see Equation (2.24) — one finds that

1
Viad®djbe] = geabcffdeghAfgh +00° f1£47 qibe + Najaf ' d%) 1 1be)-

Combining the above expressions and using the properties of the decomposi-
tion of ﬁddab one obtains the expression

ViaBbea = —Z%cabLea — E%djabLele + L1a%V e/ Laa
+ ©0[aB1ed® djbe] + OV[aled® djbe] — %EabcfEdeghAfghﬁe,
and, finally, the evolution equation
VoAped = I'v®0Aced + T'e®0Aecbd — Z%0beLed + Tbded® dco + deded®on
+ OVped®dco + OVeed®dob — %eobcfedeghAfghﬂea

which is homogeneous in zero quantities as required.

The subsidiary equations for the physical Bianchi identity

The argument to show the propagation of the Bianchi identity in the present
context is similar to the one discussed in Section 13.3.6. In particular, the zero
quantity Aapcp satisfies Equation (13.47). It remains to compute VPApeq and
express it in terms of zero quantities associated with the extended conformal
field equations. A calculation using the commutator of the covariant derivative
V yields

2V Aped = 2VPV % abed = 2V PV dapea
= 2Re[cbadd]eab - 2Reabadebcd + Ebeavedabcd-
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Now, it is recalled that if V — V = S(f), then $a% = Ya%. Morcover,
using the formula relating the curvature tensors of the connections V and Vv,
Equation (5.25b), the definitions of the zero quantities Ecdab and ¢gp and the
symmetries of dgped, one concludes that

2 2 la
VbAbcd = :e[cbadd]eab - :eabadebcd + §Zbeavedabcd + gabdabcd-
This expression is homogeneous in zero quantities and, thus, also its spinorial
counterpart VAAN 4/ acp- Consequently, if the standard evolution equations
hold, it follows from Equation (13.47) and the calculations in the previous
paragraph that

3 7
PAag —DaFApp — EXPQSQ‘ES(AABP) =2V9? Aqq aB
is homogeneous in zero quantities.
Finally, in the case of the boundary adapted system, one obtains a symmetric
hyperbolic system of evolution equations of the form

PAoo + DooAo1 = Uoo, (13.66a)
PA11 — D11ho1 = Uia, (13.66¢)

where Upg, Up1 and Uy are expressions homogeneous in zero quantities.

The subsidiary equations for the auxiliary zero quantities
Direct computations show that
2V (065 = Vods + I'p%00e,
2V (0Yb)c = Vobe + [b%0%ec;
3@[097(;] = @Ogbc - 1ﬁ\beogce - f‘ceogeb

For d, one finds, using the definitions of the various zero quantities, that

Viads] = Vabo — Vafs — 07V, VO
1 ~
= 77[0,17] + Sab — ieilzaebve@-
A lengthier computation yields

2ViaYsje = 2V [aLbje = 2V[aVi)Be + 2Scia® Ble) Vi) By
— 2)\973@[(1977;,]6 — 2)\@72f[a77b]c
= Aabc + ﬂeéecab - zAlaebﬁeﬁc + 2ﬁcp)/[ab] - 26[a7b]c + nc[aﬂef)/b]e
+ 2)\9_26[a77b]c + B[anb]cﬁeﬁe - 2)\@_2770[a/8b]'
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Similarly, using d®[cqp) = 0, one obtains

Viasbe] = ViiaLbje = Viia Vi) fe

= %A[abc] - %dede[cab] + %Re[cab]fe - %i[aeb@hﬂfc]
= %A[abc] + %ée[cab]fe - %i[aezﬁ\eﬁcy
Hence, one obtains the evolution equations

Vodi = vio — I'i®o0e,

Vovie = —Yjel'if o = Bovie — Bevio + Noc(B%Yie — 2007265;),
%éeojkfe + %ib‘ekfefoff’

where, in the last equation relation, (13.62) has been used to get further
cancellation of terms.

R . R 1.
Vosik = L'j%0ske + Tk 0Sej + iAjkO +

13.4.6 Summary of the analysis

It is convenient to group the independent components of the spinorial fields in
the extended conformal field equations as:

© independent components ofeg 4", 'aa'Bc, Laa'BB’,

¢ independent components ofpsgcp-

Also, let e and T denote, respectively, the independent components of the frame
and connection coefficients. In terms of the above definitions one has:

Proposition 13.3 (properties of the conformal evolution equations) The
extended conformal vacuum FEinstein field equations

2A:a,cb = 07 écdab = 07 Aabc = 07 Aabc = O;

expressed in terms of a conformal Gaussian gauge imply a symmetric hyperbolic
system for the components of (0, @) of the form

0,0 = Ko + Q)0 + L(z)¢,

(I+A%)0-¢ + A%(e)dadp = B(D)p,
where I is the 5 x5 unit matriz, K is a constant matriz, Q(f‘) s a smooth matriz-
valued function, L(x) is a smooth matriz-valued function of the coordinates,
At(e) are Hermitian matrices depending smoothly on the frame coefficients e
and B(T') is a smooth matriz-valued function of the connection coefficients. In

the case of the standard Bianchi system, the characteristic polynomial consists
of the factors

v v 2 v
Tﬂg,u? gu g,uglﬁ (TMT + gg# >§,u€l/7
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while for the boundary-adapted Bianchi system one has the factors
THE,, 9" €&, (T“TV + eoo(uellu))fufu.

Remark. It is important to emphasise the relative simplicity of the evolution
system provided by Proposition 13.3 compared with the one given in Proposition
13.1. This structure reinforces the intuition that the Weyl tensor encodes the
degrees of freedom of the gravitational field.

With regards to the subsidiary system one obtains a result analogous to
Proposition 13.2:

Proposition 13.4 (properties of the subsidiary evolution) Assume that
the conditions

C

dob = 0, Aope =0,

[1)>

ich = 07

hold and that the associated evolution equations are expressed in terms of a
conformal Gaussian gauge system. Moreover, let the independent components
of the rescaled Weyl spinor satisfy either the standard or the boundary-adapted
evolution system. Then, the independent components of the zero quantities

Eacba Ecdaba AabCa Aabc; a, Yab; Sab;

which are not determined by either the evolution equations or gauge conditions
satisfy a symmetric hyperbolic system which is homogeneous in zero quantities.

Controlling the conformal Gaussian gauge

The conformal Gaussian hyperbolic reduction procedure is based on the
assumption of the existence of a non-singular (i.e. non-intersecting) congruence
of conformal geodesics. While this assumption may be valid close to an initial
hypersurface, it may fail at later times. To analyse the potential breakdown of
the gauge, one appends to the evolution system given in Proposition 13.4 an
evolution equation for the components of the deviation vector of the congruence;
see Section 5.5.7.

In what follows, let z denote a separation wvector for the congruence of
conformal geodesics. Accordingly, one has

[, z] = 0.

Thus, writing z = 2%e, where {e,} is a Weyl propagated frame such that
eg = x, it follows that

eo(2%)eq = 2%[eq, €o).

Using the conformal field equation Yo% = 0 and using that, in the present
gauge, eg = 0, and g, = 0, the above expression can be rewritten as

aTZa _ Fbaozb-
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Now, let z4 4/ denote the spinorial counterpart of z%. Defining the space spinor
counterpart zap = TBA/ZAA/ and using the split

1

ZAB = 5%€AB + 2aB),

a computation similar to the one used to derive the evolution equations yields
the following evolution equations for the irreducible components of zap:

0,z = fapzP), (13.67a)
0r2aB) = Xcp(ap)z'CP). (13.67h)

The congruence of conformal geodesics will be non-intersecting as long as
z2aB) # 0.

13.5 Other hyperbolic reduction strategies

The hyperbolic reduction procedures discussed in Sections 13.2 and 13.4 do not
exhaust the possible strategies to extract evolution equations from the conformal
Einstein field equations. Indeed, other approaches have been put forward in the
literature.

13.5.1 Hyperbolic reductions for the metric conformal field equations

Numerical evaluations of solutions to the vacuum conformal Einstein field
equations have been carried out in Hiitbner (1999a,b, 2001a) using the metric
formulation of the equations; see Equations (8.28a)-(8.28¢). As the metric
conformal field equations contain no equation which can be read as a differential
equation for the components of the unphysical metric g, one needs to supplement
the equations in some manner. Assuming that suitable evolution equations can be
found for the components of the conformal fields =, X, s, Lqp and d%p.q in some
local coordinates x = (x#), the conformal metric g can be computed from the
components of the Schouten tensor, L, , using generalised wave coordinates;
see the Appendix to this chapter for the vacuum Einstein field equations and the
remark at the end of Section 8.2.5. More precisely, the components g, of g are
given as the solutions to the equations

Dguy - QV(MFI/) - 29AngTFa/\/LF7pv - 4F>\0pg)\7—ga(uru)p‘r

1
gR(x)gwa

Ozt = —F*(x), that is, 't = F¥(x),

= AL, —

where F#(x) are some suitable coordinate gauge source functions and it
has been used that R,, = 2L + %R(m)gab. Observe that in the right-hand side
of the first of the above equations one has the Ricci scalar R, which, following
the discussion from previous sections, is to be treated as a further gauge source
function.
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From an analytic point of view, the approach described in the previous
paragraphs leads to an evolution system with equations of mixed order. This
type of system requires a more general notion of hyperbolicity than the one
discussed in Chapter 12: the so-called Leray hyperbolicity; see, for example,
Choquet-Bruhat (2008) and Rendall (2008).

13.5.2 Wave equations for the conformal fields

One way of avoiding mixed-order evolution systems is to construct wave
equations for the components of the conformal fields =, ¥, s, Ly, and d®peq. This
strategy has been pursued in Paetz (2015) for the metric (vacuum) conformal
FEinstein field equations. More precisely, it has been shown that by introducing
suitable gauge source functions, the conformal field equations can be rewritten
as a system of quasilinear wave equations for the conformal fields. An alternative
reformulation can be obtained using spinors; see Gasperin and Valiente Kroon
(2015). This approach is briefly discussed in the remainder of this section.

Wave equations for the concomitants of the conformal factor

Wave equations for the fields =, ¥ 4 4 and s can be obtained from the following
derivatives of the relevant zero quantities:

VAYQaa =0,  VA%Zaapp =0, VAYZsa =0
A direct computation renders the equations
02 — VA4S 44 =0,

OSpp + 24 Laasp +EVAY Laa g — Veps =0,

Us + ECC/VAAILAA/CC/ + VAA/ZCCILAA/CC/ =0.

The wave equation satisfied by the rescaled Weyl spinor
Recalling the definition of the zero quantity Ag'gpcp, one has
VaZ Apsop =Va® Vs ¢BoDO
7 1 /
= —V(AB Vao)péscp® + §€AQVPP Vpp ¢Bop®

1
=0agdscp® — §D¢ABCD7

where (gp denotes the box operator discussed in Section 3.2.5. A further
calculation shows that

— 1
Oaq@éscp® = 62672 apdcp)pq — ZR(x)¢ABCD~
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Thus, the condition —QVAQIABQ/CD = 0 implies the wave equation

— 1
O¢ascp — 122679 apdcp)po + §R(x)¢ABCD =0

for the components of the rescaled Weyl spinor as long as the conformal gauge
source function R(x) is explicitly provided.

The wave equation satisfied by the components of the Schouten spinor
To construct an equation for the Schouten spinor, one considers the expression
—-2V€c Acpep =0,

as given by Equation (13.30) together with the decomposition (13.31) for
the Schouten tensor in terms of the spinor ® 4 4/gp’ and the Ricci scalar.
Accordingly, one has

2VC o Acper = Ve Ve? ®popp + %GDBVCC’VC’B’R(‘I)
+VCeX®pdcpBo + 298 Ve dcpBQ,
where
Ve Ve? pgpr = *VC(C'V\C|Qf)<I>DQ’BB'

1 / !’
- §€C’Q’VCP/VC’P dp pp

_ , 1
~Oc'g®p? BB — §D<I>DC’BB’;
c 1
v C/VCB/R(.T) = EGC’B/DR($)~
Thus, using that

Oco®p® e = P9 gp®popo + 0% P dpcpo

+ Z¢cops®p® B

1 1
— —R(2)®pop — —R(2)Ppp B
3 (33) DC’'BB 21 (x) DB’'BC’;

one obtains the desired wave equation for the components of ® 4 4-gp’. Finally, a
suitable subsidiary equation to ensure that the conformal gauge source function
R(z) is, indeed, the Ricci scalar of the connection V can be obtained from the
contracted Bianchi identity (13.29).

13.6 Further reading

The original references for the hyperbolic reduction procedure based on the use of
spinors and gauge source functions are Friedrich (1983, 1991) — in particular, the
latter reference contains a discussion of the hyperbolic reduction of the Einstein-
Yang-Mills equations. The hyperbolic reduction procedure using a conformal
Gaussian system was first discussed in Friedrich (1995, 1998¢c); extensions of
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these ideas to the non-vacuum case using conformal curves have been given
in Liibbe and Valiente Kroon (2012). An alternative discussion of hyperbolic
reductions of the conformal field equations using space spinors can be found in
Frauendiener (1998a,b). A gauge source function-based hyperbolic reduction of
the conformal Einstein-Euler system for a perfect fluid with a radiation equation
of state has been described in Liibbe and Valiente Kroon (2013b). A discussion
of the hyperbolic reduction of the conformal Einstein-scalar field system using
gauge source functions is given in Hiibner (1995).

A general discussion of the procedure of hyperbolic reduction of the standard
Einstein field equations in the vacuum and matter case can be found in
Friedrich and Rendall (2000), where, for example, the case of the Einstein-
Dirac system is discussed. A related reference is Reula (1998). More specific
discussions of hyperbolic reductions for the vacuum Einstein field equations and
their associated subsidiary evolution systems can be found in Friedrich (1996,
2005). A Lagrangian hyperbolic reduction for the Einstein-Euler system has been
discussed in Friedrich (1998b). Extensions of this Lagrangian approach have
been obtained for the equations of relativistic magnetohydrodynamics coupled to
gravity — the so-called Einstein-Euler-Maxwell system — in Pugliese and Valiente
Kroon (2012) and for the Einstein-charged scalar field system in Pugliese and
Valiente Kroon (2013).

Readers interested in the hyperbolic reductions of the Einstein field equations
used in numerical relativity are referred to the monographs by Alcubierre (2008)
and Baumgarte and Shapiro (2010) as an entry point to the extensive literature.

Appendix A.1: the reduced Einstein field equations

This chapter has been primarily focused on hyperbolic reductions for the
conformal FEinstein field equations in their spinorial formulation. In order to
put the discussion into a more general context, it is useful to briefly consider
the hyperbolic reduction procedure of the (standard) Einstein field equations
using generalised wave coordinates. This procedure is essentially the one
used in the seminal work by Fourés-Bruhat (1952) where the well-posedness of
the Cauchy problem in general relativity was first established.

For simplicity, in the following, the discussion is restricted to the vacuum case
so that the Einstein field equations are equivalent to

Rap = 0. (13.68)

Given general coordinates x = (z*), the Ricci tensor can be explicitly written in
terms of the components of the metric tensor g and its first and second partial
derivatives as

~ 1._ ~ ~ o~
R[LV = 759)@3)\8[)9“” + v(p,]-—‘u)

+ gkpgono’Aupru + Qf‘kapg)\Tgo(pfu)pT7 (1369)
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where it is recalled that the Christoffel symbols f#” A can be written in terms of
partial derivatives of the metric tensor as

v 1 ~v ~ ~ ~
WA= 59 p(augp)\ + az\g,up - 8;)9#)\)7

—

and one has defined
fV = gﬂ/\f’#’/)\,

the so-called contracted Christoffel symbols. The principal part of the
vacuum Einstein field equation (13.68) is given by the terms

1. ~ ..
_igkp(%‘aﬂg/w + Vil

The first term in the above expression is hyperbolic as it coincides with
the principal part of the D’Alambertian operator [ = @“@M acting on the
components g,,. If the second term in the principal part can be removed one
would obtain a system of non-linear wave equations for g, .

Generalised wave coordinates

A systematic approach to the construction of coordinates x = (z*) is to require
the coordinates to satisfy the equation

Ozt = —F*(z), (13.70)

where the coordinate gauge source functions F"(x) are arbitrary smooth
functions of the coordinates x. In the particular case where F*(x) = 0 one talks of
wave coordinates, called harmonic coordinates in older accounts. In order
to unravel the consequences of Equation (13.70), one treats the coordinates z*
as scalar fields over M. Accordingly, a direct computation gives

Vot = 9,z = §,M,
VaViat = 0z, =T\, op0 = =T"y,
so that
Ozt = g T4\ = —T*, (13.71)

A natural way of prescribing initial conditions for Equation (13.70) on a
hypersurface S, with normal v is to set z° = 0 with v#9,z° = 1 while setting
the spatial coordinates (z%) to be equal to some given coordinates on S, and
requiring that v#0,x* = 0. Given this data, the general theory of hyperbolic
differential equations ensures the existence of a solution to Equation (13.70),
and as a result of Equation (13.71), one concludes that

" = F*(z). (13.72)
Moreover, if the coordinate differentials dz* are chosen initially to be pointwise
independent on the initial hypersurface S,, then they will also remain pointwise
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independent close to S,. Thus, by a suitable choice of coordinates, the contracted
Christoffel symbols can be made to agree, locally, with any prescribed set of
functions F*(z). These coordinate gauge source functions and the data for
Equation (13.71) uniquely determine the coordinates. Conversely, given any
metric g, any coordinate system is characterised by some suitable gauge source
function and initial data. The domain on which the coordinates z = (z*) form a
good coordinate system depends on the initial data, the coordinate gauge source
functions and the metric g itself. Consequently, there is little that can be said,
a priori, about the domain of existence of the coordinates.

The reduced Einstein equation and the subsidiary evolution equation

Substituting Equation (13.72) into the Einstein field equations in the form given
by (13.69) one finds that

1 = = = = ~0'T~ =
- §g>\p8>\apg/w + v(,quz) (.Z') + 9xp9 Fo)\ur-rpu

+ 237,53 Go(uT0)"r = 0, (13.73)

where F,(x) = ¢, F” (). This equation is a system of quasilinear wave equations
for the components of the metric tensor g. For this system, the local Cauchy
problem with data on a spacelike hypersurface S, is well posed — one can show
the existence and uniqueness of solutions and their continuous dependence on
the data; see, for example, Friedrich and Rendall (2000). Equation (13.73) is
known as the reduced FEinstein field equation.

The introduction of a specific system of coordinates via the gauge source
functions F*(x) breaks the tensoriality of the Einstein field equation (13.68).
Given a solution to the reduced Einstein field equation (13.73) the latter will
imply a solution to the actual Einstein field equations as long as the coordinates
x = (z*) satisfy Equation (13.71) for the chosen coordinate source function
FH(x) appearing in the reduced equation. To prove that this is the case one
needs to construct a suitable subsidiary evolution equation.

A suitable subsidiary equation for the hyperbolic reduction procedure under
consideration can be obtained by observing that the reduced Einstein field
equation, Equation (13.73), can be written as

R/u) = @(HQV)? Q;L = f,u. - EL(I)7 (1374)
where fu = gwf”. Now, from the contracted Bianchi identity in the form
s 1~
VA Ry — §R9W =0,
it follows, by substituting Equation (13.74), that

0Q, + R*,Q, = 0.
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From the homogeneity on @, of this wave equation, it follows that if @), = 0 and
V@, = 0 on some initial hypersurface and if g, satisfies the reduced Einstein
field equations, then I'* = F'#(x) at later times.

Appendix A.2: differential forms

Let M be a four-dimensional manifold. A p-form a on M is a totally
antisymmetric covariant tensor of rank p. Thus, if ;,..;, is the abstract index
version of a, one has that

Qi

Given g € M, the space of p-forms at ¢ is denoted by AP|,(M), while the bundle
of p-forms over M is denoted by A?(M). In particular, 0-forms are scalar fields so
that A°(M) = X (M) and 1-forms are covectors — accordingly, A (M) = T*(M).
A counting argument readily shows that dim A?|,(M) = 4!/p!(4 — p)! - thus, in
four dimensions any 4-form is proportional to the volume form. Given a p-form
a and a ¢g-form (3, their wedge product a A 3 is defined, using abstract index
notation, as

(p+q)
plq!

(a/\ﬂ)aynapbln-bq = Oé[aln-apﬁblmbq}'

Given local coordinates = (z#) in M, a 1-form o can be written as a = ¢, dz*.
More generally, for a p-form one has the expansion

a = oy, .., dz Ao Adatr.
It can be verified that
dz* Adzx” = dz* @ dz¥ — dz¥ @ dz”.

Given a p-form o and a vector v = v*d,,, one defines the contraction i,
as the (p — 1)-form

lye = Vg, dTtt A Adatrt

The exterior derivative da is the (p + 1)-form defined via the relation

da =0 oA - Adatett,

Hlauz“'upﬂ]d

It follows from the commutativity of partial derivatives that d?a = 0.
Finally, it observed that the Lie derivative of a p-form can be computed using
Cartan’s formula:

Lo = ipda + diyor.

Further details on the above expressions can be found in, for example, Frankel
(2003).
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