
5
Classical field dynamics

A field is a dynamically changing potential V (x, t), which evolves in time
according to an equation of motion. The equation of motion is a constraint
on the allowed behaviour of the field. It expresses the dynamical content of the
theory. The solution of that constraint, called the physical field, is the pivotal
variable from which we glean all of the physical properties of the system. In
addition to dynamical equations, a field theory has a conceptual basis composed
of physical assumptions, interpretations and boundary conditions.

The familiar equations of motion, in classical field dynamics, include the
Schrödinger equation, Maxwell’s equations, Dirac’s relativistic equation and
several others. In the context of field theory, we call such equations classical
as long as we are not doing quantum field theory (see chapter 15), since the
method of solution is directly analogous to that of classical electrodynamics.
In spite of this designation, we know that the solutions of Schrödinger’s field
equation are wavefunctions, i.e. the stuff of quantum mechanics. Whole books
have been written about these solutions and their interpretation, but they are not
called field theory; they use a different name.

Field theory embraces both quantum mechanics and classical electrodynam-
ics, and goes on to describe the most fundamental picture of matter and energy
known to physics. Our aim here is to seek a unified level of description for
matter and radiation, by focusing on a field theoretical formulation. This ap-
proach allows a uniquely valuable perspective, which forms the basis for the full
quantum theory. The equations presented ‘classically’ in this book have many
features in common, although they arise from very different historical threads,
but – as we shall see in this chapter – the completeness of the field theoretical
description of matter and radiation can only be appreciated by introducing
further physical assumptions brought forcefully to bear by Einsteinian relativity.
This is discussed in chapter 15.
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5.1 Solving the field equations 73

5.1 Solving the field equations

A solution is a mathematical expression of the balance between the freedom
expressed by the variables of a theory and the constraints which are implicitly
imposed upon them by symmetries and equations of motion.

Each physical model has a limited validity, and each has a context into
which one builds its interpretation. Some solutions must be disregarded on the
basis of these physical assumptions. Sometimes, additional constraints, such as
boundary conditions, are desirable to make contact with the real world. The
basic vocabulary of solutions involves some common themes.

5.1.1 Free fields

Free particles or fields do not interact. They experience no disturbances and
continue in a fixed state of motion for ever. Free particles are generally described
by plane wave fields or simple combinations of plane waves, which may be
written as a Fourier transform,

#(x) =
∫

dn+1k

(2π)n+1
eikx#(k), (5.1)

or, using Schwinger’s compact notation for the integration measure, as

#(x) =
∫
(dk) eikx#(k). (5.2)

For this combination to satisfy the field equations, we must add a condition
χ(k) = 0, which picks out a hyper-surface (a sub-set) of all of the kµ which
actually satisfy the equations of motion:

#(x) =
∫
(dk)eikx#χ(k)δ(χ), (5.3)

where χ = 0 is the constraint imposed by the equations of motion on k. Without
such a condition, the Fourier transform can represent an arbitrary function.
Notice that#(k) and#χ(k) have different dimensions by a factor of k due to the
delta function. This condition χ is sometimes called the mass shell in particle
physics. Elsewhere it is called a dispersion relation. Fields which satisfy this
condition (i.e. the equations of motion) are said to be on shell, and values of k
which do not satisfy this condition are off shell. For free fields we have

χR = h̄2(−ω2 + k2c2)+ m2c4 = 0

χNR = h̄2k2

2m
− ω = 0, (5.4)

for the relativistic and non-relativistic scalar fields, respectively. The delta-
function constraint ensures that the combinations of plane waves obey the
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74 5 Classical field dynamics

field equations. It has the additional side effect that one component of the
wavenumber kµ is not independent and can be eliminated. It is normal to
integrate over the zeroth (energy) component to eliminate the delta function.
From Appendix A, eqn. (A.15), we have

#(x) =
∫
(dk)

∣∣∣∣ ∂χ∂k0

∣∣∣∣−1

ei(k·x−ω(k)t)#(k, ω(k)). (5.5)

Travelling waves carry momentum ki > 0 or ki < 0, while stationary waves
carry no momentum, or rather both ki and −ki in equal and opposite amounts.

5.1.2 Boundary conditions and causality I

A common strategy for simplifying the analysis of physical systems is to assume
that they are infinitely large, or that they are uniform in space and/or time, or that
they have been running uniformly in a steady state for ever. Assumptions like
this allow one to do away with the complicated behaviour which is associated
with the starting up or shutting down of a dynamical process. It also allows
one to consider bulk behaviour without dealing with more difficult effects in the
vicinity of the edges of a system. Some of the effects of finite size and starting
up/shutting down can be dealt with by imposing boundary conditions on the
behaviour of a system. The term boundary conditions is used with a variety of
meanings.

• Boundary conditions can be a specification of the absolute value of the
field at some specific spacetime points, e.g.

φ(x)

∣∣∣∣∣
x=x0

= 0. (5.6)

This indicates a constraint associated with some inhomogeneity in space-
time.

• A corollary to the above is the specification of the value of the field on the
walls of a container in a finite system.

• At junctions or interfaces, one is interested in continuity conditions, like
those derived in section 4.1.4 and generalizations thereof. Here, one
matches the value of the field, perhaps up to a symmetry transformation,
across the junction, e.g.

�φ(x0) = 0, (5.7)

meaning that the field does not change discontinuously across a junction.
Conditions of this type are sometimes applied to fields, but usually it
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is more correct to apply them to conserved quantities such as invariant
products of fields, probabilities

�
(
ψ†ψ

) = 0, (5.8)

etc. since fields can undergo discontinuous phase changes at boundaries
when the topology of spacetime allows or demands it.

• Related to the last case is the issue of spatial topology. Some boundary
conditions tell us about the connectivity of a system. For example, a field
in a periodic lattice or circle of length L could satisfy

φ(x + L) = U (L) φ(x). (5.9)

In other words, the value of the field is identical, up to a possible phase or
symmetry factor U (L), on translating a distance L .

• Another kind of condition which one can impose on a reversible physical
system is a direction for causal development. The keywords here are
advanced, retarded and Feynman boundary conditions or fluctuations.
They have to do with a freedom to change perspective between cause and
effect in time-reversible systems. Is the source switched on/off before
or after a change in the field? In other words, does the source cause
the effect or does it absorb and dampen the effect? This is a matter
of viewpoint in reversible systems. The boundary conditions known as
Feynman boundary conditions mix these two causal perspectives and
provide a physical model for fluctuations of the field or ‘virtual particles’:
a short-lived effect which is caused and then absorbed shortly afterwards.

5.1.3 Positive and negative energy solutions

The study of fields in relativistic systems leads to solutions which can be
interpreted as having both positive and negative energy. Free relativistic field
equations are all transcriptions of the energy relation

E = ±
√

p2c2 + m2c4, (5.10)

with the operator replacement pµ = −ih̄∂µ and a field on which the operators
act. This is most apparent in the case of the Klein–Gordon equation,

(−h̄2c2 + m2c4)φ(x) = 0. (5.11)

Clearly, both signs for the energy are possible from the square-root in
eqn. (5.10). The non-relativistic theory does not suffer from the same problem,
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76 5 Classical field dynamics

since the Schrödinger equation is linear in the energy and the sign is defined to
be positive:

p2

2m
= E . (5.12)

The field φ(x) can be expanded as a linear combination of a complete set of
plane wavefunctions satisfying the equation of motion. The field can therefore
be written

φ(x) =
∫
(dk)φ(k)eikxδ

(
h̄2c2k2 + m2c4

)
, (5.13)

where φ(k) are arbitrary coefficients, independent of x . The integral ranges over
all energies, but one can separate the positive and negative energy solutions by
writing

φ(x) = φ(+)(x)+ φ(−)(x), (5.14)

where

φ(+)(x) =
∫
(dk)φ(k)eikxθ(k0)δ

(
h̄2c2k2 + m2c4

)
φ(−)(x) =

∫
(dk)φ(k)eikxθ(−k0)δ

(
h̄2c2k2 + m2c4

)
. (5.15)

The symmetry of the energy relation then implies that

φ(+)(x) = (
φ(−)(x)

)∗
. (5.16)

The physical interpretation of negative energy solutions is an important issue,
not because negative energy is necessarily unphysical (energy is just a label
which embraces a variety of conventions), but rather because there are solutions
with arbitrarily large negative energy. A transition from any state to a state with
energy E = −∞ would produce an infinite amount of real energy for free. This
is contrary to observations and is, presumably, nonsense.

The positive and negative energy solutions to the free relativistic field equa-
tions form independently complete sets, with respect to the scalar product,

(φ(+)(x), φ(+)(x)) = const.

(φ(−)(x), φ(−)(x)) = const.

(φ(+)(x), φ(−)(x)) = 0. (5.17)

In the search for physically meaningful solutions to the free relativistic equa-
tions, it might therefore be acceptable to ignore the negative energy solutions
on the basis that they are just the mirror image of the positive energy solutions,
describing the same physics with a different sign.
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This is the case for plane waves, or any solutions which are translationally
invariant in time. Such a wave has a time dependence of the form,

φ(t) ∼ exp

(
−i

E

h̄
(t − t0)

)
, (5.18)

where t0 is an arbitrary origin for time. If E < 0, one can simply recover a
positive energy description by moving the origin for time t0 into the far future,
t0 → ∞, which essentially switches t → −t . Since a free particle cannot
change its energy by interaction, it will always have a definite energy, either
positive or negative. It cannot therefore extract energy from the field by making
a transition.

The real problem with negative energies arises in interacting theories. It is not
clear how to interpret these solutions from the viewpoint of classical field theory.
An extra assumption is needed. This assumption is more clearly justified in the
quantum theory of fields (see chapter 15), but is equally valid in the classical
theory. The assumption is that there exists a physical state of lowest energy
(called the vacuum state) and that states below this energy are interpreted as
anti-matter states.

It is sometimes stated that relativistic quantum mechanics (prior to second
quantization) is sick, and that quantum field theory is required to make sense
of this problem. This is not correct, and would certainly contradict modern
thinking about effective field theories.1 All that is required is a prescription for
interpreting the negative energies. The assumptions of quantum field theory,
although less well justified, are equally effective and no more arbitrary here. In
fact, they are essential since the classical field theory is a well defined limit to
the fully quantized field theory.

5.1.4 Sources

The terms source and current are often used interchangeably in field theory,
but they refer to logically distinct entities. Sources (sometimes referred to
emphatically as external sources) are infinitesimal perturbations to a physical
system; currents represent a transfer between one part of a system and another.
In an isolated (closed) system, matter and energy can flow from one place to
another, and such currents are conserved. There is a close formal similarity
between sources and currents, which is no accident. Sources – and their
opposites: sinks – can be thought of as infinitesimal currents which are not
conserved. They represent the flow of something into or out of a physical
system, and thus a perturbation to it. Sources are also the generators of
infinitesimal field changes, called virtual processes or fluctuations.

1 Certain specific Lagrangians lead to unphysical theories, but this is only a reason to reject
certain models, not the quantum theory itself.

https://doi.org/10.1017/9781009289887.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009289887.007


78 5 Classical field dynamics

In mathematics, any quantity on the ‘right hand side’ of a field equation is
called a source, ‘forcing term’ or ‘driving term’. A source perturbs or drives the
field linearly. For example, consider the Klein–Gordon equation(

− + m2c2

h̄2

)
φ(x) = J. (5.19)

One says that J (x) is a source for the field φ(x). J is sometimes also referred
to as a generalized force. Sources are included in the action in the form

S → S +
∫
(dx)Jφ(x). (5.20)

For example, the Klein–Gordon action with a source term becomes

S =
∫
(dx)

{
1

2
h̄2c2(∂µφ)(∂µφ)+ 1

2
m2c4φ2 − Jφ

}
. (5.21)

When this action is varied, one obtains

δS

δφ
= (−h̄2c2 + m2c4

)
φ − J = 0, (5.22)

which leads directly to eqn. (5.19). Other source terms include

SMaxwell → SMaxwell +
∫
(dx)JµAµ (5.23)

for the electromagnetic field, and

Scomplex → Scomplex +
∫
(dx)

{
Jφ∗ + J ∗φ

}
(5.24)

for a complex scalar field. Most interactions with the field do not have the form
of an infinitesimal perturbation. For instance, the interaction with a Schrödinger
field, in quantum mechanics, has the form ψ∗Vψ , making J = Vψ , which is
not infinitesimal. However, if one assumes that V is small, or infinitesimal, then
this may be expanded around the field ψ for a free theory in such a way that
it appears to be a series of infinitesimal impulsive sources; see section 17.5. In
this way, the source is the basic model for causal change in the field.

Another definition of the source is by functional differentiation:

δS

δφA
= JA, (5.25)

where φ is a generic field. This is a generic definition and it follows directly
from eqn. (5.20), where one does not treat the source term as part of the action
S.
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5.2 Green functions and linear response 79

A current represents a flow or transport. To define current, one looks to the
only example of current known prior to field theory, namely the electric current.
Recall Maxwell’s equation

∂µFνµ = µ0 J ν. (5.26)

The quantity Jµ is the (n + 1) dimensional current vector. It is known,
from the microscopics of electromagnetism, that this is the electric current:
electric currents and electric charges are responsible for the electromagnetic
field. However, one may also say that Jµ is a source for the electromagnetic
field, because it prevents the left hand side of this equation from being equal to
zero. It perturbs the equation of motion. In electromagnetism the current is a
source for the field Fµν or Aµ, so it is common to treat source and current as
being the same thing. This tendency spills over for other fields too, and one
often defines a generic current by eqn. (5.25). Of course, normally one imagines
a current as being a vector, whereas the quantity in eqn. (5.25) is a scalar, but
this may be used as a definition of ‘current’. The notion of conserved currents
and their relation to symmetries recurs in chapter 9.

5.1.5 Interactions and measurements

Fields undergo interactions with other fields, and perhaps with themselves
(self-interaction). When fields interact with other fields or potentials (either
static or dynamical), the state of the field is modified. Classically, the field
responds deterministically according to a well defined differential equation
(the equation of motion), and interactions apply new constraints. One way to
understand weakly interacting systems is to imagine them to be assemblies
of weakly-coupled oscillators. In special circumstances, it is possible to
construct models with interactions which can be solved exactly. Often, however,
approximate methods are required to unravel the behaviour of interacting fields.

In quantum mechanics the act of measurement itself is a kind of temporary
interaction, which can lead to a discontinuous change of state. It is not funda-
mentally different from switching on a potential in field theory. The ‘collapse of
the wavefunction’ thus occurs as a transition resulting from an interaction with a
measurement apparatus. This collapse has no detailed description in the theory.

5.2 Green functions and linear response

5.2.1 The inverse problem

Consider an equation of the form

D y(t) = f (t), (5.27)
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where D is a differential operator, y(t) is a variable we seek to determine, and
f (t) is some forcing term, or ‘source’. We meet this kind of equation repeatedly
in field theory, and D is often an operator of the form D = − + m2.

Normally, one would attempt to solve a differential equation either by
integrating it directly, or by ‘substituting in’ a trial solution and looking for
consistency. An alternative method is the method of Green functions. The idea
can be approached in a number of ways. Let us first take a naive approach.

If D is an operator, then, if a unique solution to the above equation exists,
it must have an inverse. We can therefore write the solution to this equation
formally (because the following step has no meaning until we have defined the
inverse) by

y(t) = (D)−1 f (t) = f (x)

D . (5.28)

This is much like the approach used to solve matrix equations in linear algebra.
Both the notations in the equation above are to be found in the literature. If the
inverse exists, then it must be defined by a relation of the form

D
D = DD−1 = I, (5.29)

where I is the identity operator.2 We do not yet know what these quantities
are, but if an inverse exists, then it must be defined in this way. An obvious
thing to notice is that our eqn. (5.27) is a differential equation, so the solution
involves some kind of integration of the right hand side. Let us now postpone the
remainder of this train of thought for a few lines and consider another approach.

The second way in which we can approach this problem is to think of
eqn. (5.27) as a ‘linear response’ equation. This means that we think of the right
hand side as being a forcing term which perturbs the solution y(t) by kicking it
over time into a particular shape. We can decompose the force f (t) into a set of
delta-function impulse forces over time,

f (t) =
∫

dt ′δ(t, t ′) f (t ′). (5.30)

This equation, although apparently trivial (since it defines the delta function),
tells us that we can think of the function f (t) as being a sum of delta functions
at different times, weighted by the values of f (t ′). We can always build up a
function by summing up delta functions at different times. In most physical
problems we expect the value of y(t) to depend on the past history of all the
kicks it has received from the forcing function f (t). This gives us a clue as to
how we can define an inverse for the differential operator D.

2 Note that the ordering of the operator and inverse is an issue for differential operators. We
require a ‘right-inverse’, but there may be no left inverse satisfying D−1D = I .
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Suppose we introduce a bi-local function G(t, t ′), such that

y(t) =
∫

dt ′ G(t, t ′) f (t ′); (5.31)

i.e. when we sum up the contributions to the force over time with this weight,
it gives us not the force itself at a later time, but the solution. This, in fact, is
the way we define the inverse D−1. It has to be a bi-local function, as we shall
see below, and it involves an integration, in spite of the purely formal notation
in eqn. (5.29).

Substituting this trial solution into the equation of motion, we have

D
∫

dt ′ G(t, t ′) f (t ′) = f (t), (5.32)

where the operator D acts on the variable t only, since the dummy variable t ′ is
integrated out from minus to plus infinity. Thus, we may write,∫

dt ′
t
D G(t, t ′) f (t ′) = f (t). (5.33)

This equation becomes the defining equation for the delta function (5.30) if and
only if

t
D G(t, t ′) = δ(t, t ′), (5.34)

and this equation is precisely of the form of an inverse relation, where the delta
function is the identity operator. We have therefore obtained a consistent set of
relations which allow us to write a formal solution y(t) in terms of an inverse for
the operator G(t, t ′); we also have an equation which this inverse must satisfy,
so the problem has been changed from one of finding the solution y(t) to one of
calculating the inverse function. It turns out that this is often an easier problem
than trying to integrate eqn. (5.27) directly.

The function G(t, t ′) goes by several names. It is usually referred to as the
Green(’s) function for the operator D, but it is also called the kernel for D and,
in quantum field theory, the propagator.

We can, of course, generalize this function for differential operators which
act in an (n + 1) dimensional spacetime. The only difference is that we replace
t, t ′ by x, x ′ in the above discussion:

D y(x) = f (x)

DG(x, x ′) = cδ(x, x ′)

y(x) =
∫
(dx ′)G(x, x ′) f (x ′). (5.35)
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82 5 Classical field dynamics

Or, equivalently,

DG(x, x ′) = δ(x, x′)δ(t, t ′)
y(x) =

∫
(dx ′)G(x, x ′) f (x ′). (5.36)

We are not quite finished with Green functions yet, however: we have skirted
around an important issue above, which is described in the next section.

5.2.2 Boundary conditions and causality II

The discussion above is not quite complete: we have written down a function
which relates the solution at x to a forcing term at x ′ via a bi-local function
G(x, x ′). The inverse relation involves an integral over all intermediate times
and positions x ′, but over what values does this integral run? And over what
values of x ′ was the force defined? Was it switched on suddenly at some time
in the past (giving an integral from a fixed time in the past to the present), or
has it always existed (giving an integral from minus infinity)? Moreover, why
should x ′ be in the past? We know that physics is usually time-reversible, so
why could we not run time backwards and relate a solution in the past to a value
of the force in the future, or perhaps a combination of the past and future?

All of these things are possible using different Green functions. We therefore
see that the inverse is not unique, and it is not unique because the definition of
the inverse involves an integration, and integrals have limits. Physically we are
talking about the need to specify initial or boundary conditions on our physical
system.

The commonly used Green functions are as follows.

• Retarded Green function Gr(x, x ′). This relates a solution at the present
to forces strictly in the past. It is the basis of linear response theory. Due to
its origins in electromagnetism, it is often referred to as the susceptibility
χ(x, x ′) ≡ χ ′ + iχ ′′ in other books, with real and imaginary parts as
denoted.

• Advanced Green function Ga(x, x ′). This relates a solution at the present
to forces strictly in the future.

• Feynman Green function GF(x, x ′). This relates a solution at the present
to forces disposed equally in the past and the future. Its interpretation
is rather subtle, since it turns real fields into complex fields as they
propagate. The Feynman Green function is a correlation function, and
a model for fluctuations in a system. It is sometimes denoted �(x, x ′),
C(x, x ′) or S(x, x ′) in other books.
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• Wightman functions. The positive and negative frequency Wightman
functions G(±)(x, x ′) may be thought of as building blocks out of which
all the other Green functions may be constructed.

5.2.3 Green functions in Fourier momentum space3

A useful way of calculating quantities is to use an integral transformation,
usually the Fourier transformation on the Green functions. The purpose of this
step is to turn an operator equation into an ordinary algebraic equation, plus a
single integral. This is often referred to as transforming into ‘momentum space’,
since the choice of units makes the Fourier transform variables equivalent to
momenta.

We shall focus largely on the Green functions for the scalar field, since most of
the Green functions for other fields can be obtained from this by differentiation.
We are looking to solve an equation of the form

(− + M2)G(x, x ′) = δ(x, x ′), (5.37)

where M2 is some real mass term. We define the Fourier transforms of the Green
function by the mutually inverse relations,

G(r) =
∫
(dk)eikr G(k) (5.38a)

G(k) =
∫
(dr)e−ikr G(x, x ′), (5.38b)

where we have assumed that G(r) = G(x, x ′) is a translationally invariant
function of the coordinates (a function only of the difference x − x ′), which is
reasonable since M2 is constant with respect to x . We shall also have use for the
Fourier representation of the delta function, defined in Appendix A, eqn. (A.10).
Notice how the Fourier integral is a general linear combination of plane waves
exp(ik(x − x ′)), with coefficients G(k). Using this as a solution is just like
substituting complex exponentials into differential equations. Substituting these
transformed quantities into eqn. (5.37), and comparing the integrands on the left
and right hand sides, we obtain

(k2 + M2)G(k) = 1. (5.39)

This is now an algebraic relation which may be immediately inverted and
substituted back into eqn. (5.38b) to give

G(x, x ′) =
∫
(dk)

eik(x−x ′)

k2 + M2
. (5.40)

3 In this section we set h̄ = c = 1 for convenience.
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In addition to this ‘particular integral’, one may add to this any linear combina-
tion of plane waves which satisfies the mass shell constraint k2+M2 = 0. Thus
the general solution to the Green function is

GX(x, x ′) =
∫
(dk)eik(x−x ′)

[
1

k2 + M2
+ X (k, x) δ(k2 + M2)

]
, (5.41)

where X (k, x) is an arbitrary function of k, and in the unusual case of inhomo-
geneous systems it can also depend on the average position x = 1

2(x + x ′).
This arbitrariness in the complementary function is related to the issue of
boundary conditions in the previous section and the subsequent discussion in
the remainder of this chapter, including the choice of integration path for the
Green function. In most cases studied here, X (k, x) = 0, and we choose a
special solution (retarded, advanced, etc.) for the Green function. This term
becomes important in satisfying special boundary conditions, and occurs most
notably in statistical ‘many-particle’ systems, which vary slowly with t away
from equilibrium.

We are therefore left with an integral which looks calculable, and this is
correct. However, its value is ambiguous for the reason mentioned above:
we have not specified any boundary conditions. The ambiguity in boundary
conditions takes on the form of a division by zero in the integrand, since

k2 + M2 = −k2
0 + k2 + M2 = (ωk − k0)(ωk + k0), (5.42)

where ωk =
√

k2 + M2. This G(k) has simple poles at

k0 = ±ωk . (5.43)

In order to perform the integral, we need to define it unambiguously in the
complex plane, by choosing a prescription for going around the poles. It
turns out that this procedure, described in many texts, is equivalent to choosing
boundary conditions on the Green function.

5.2.4 Limitations of the Green function method

The Green function method nearly always works well in field theory, but it is
not without its limitations. The limitations have to do with the order of the
differential operator, D, the number of spacetime dimensions and whether or
not the operator contains a mass term. For a massive operator

(− + M2)φ(x) = J (x), (5.44)

the general solution is given by

φ(x) =
∫
(dx) G(x, x ′)J (x ′). (5.45)
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For a massless field, it is clear that one can always add to this a polynomial of
order lower than the order of the differential operator. In the example above,
setting M = 0 allows us to add

φ(x) =
∫
(dx) G(x, x ′)J (x ′)+ α(x − x ′)+ β. (5.46)

A more serious limitation of the Green function method arises when the order of
the differential operator exceeds the number of spacetime dimensions involved
in the operator. This leads to non-simple poles in the Green function, which
presents problems for the evaluation of the Green function. For example, a
second-order operator in one dimension

∂2
t G(t, t ′) = δ(t, t ′). (5.47)

If we try to solve this using the Fourier method, we end up with an integral of
the form

G(t, t ′) =
∫

dω

2π

e−iω(t−t ′)

−(ω ± iε)2
. (5.48)

This integral has a second-order pole and cannot be used to solve an equation
involving ∂2

t . For example, the equation for the position of a Newtonian body

∂2
t x(t) = F/m, (5.49)

cannot be solved in this way since it is not homogeneous in the source F/m.
The solution is easily obtained by integration

x(t) = 1

2

F

m
t2 + vt + x0. (5.50)

Since there are terms in this solution which are not proportional to F/m, it is
clear that the Green function method cannot provide this full answer. However,
the equation can still be solved by the Green function method in two stages.

5.2.5 Green functions and eigenfunction methods

In introductory quantum mechanics texts, the usual approach to solving the
system is based on the use of the eigenfunctions of a Hamiltonian operator.
This is equivalent to the use of Green functions. The Fourier space expressions
given thus far assume that an appropriate expansion can be made in terms of
plane wave eigenfunctions:

uk(x) = eikx . (5.51)
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Written in this notation, the Green functions have the form

G(x, x ′) =
∑

n

Gn un(x)u
∗
n(x

′) , (5.52)

where the un are a complete set of eigenfunctions, or solutions of the field
equations, and the Gn are a set of constants in this new expansion. The labels n
are sometimes discrete (as in bound state problems) and sometimes continuous,
as in the case n = k, G(k) and so on. In addition to the above expansion, the
question of boundary conditions must be addressed. This can be accomplished
by multiplying the coefficients by step functions:

Gn(x, x ′) ∝ (
αn θ(t − t ′)+ βn θ(t

′ − t)
)
. (5.53)

This is true in many situations, at least when the system concerned is transla-
tionally invariant. However, in bound state problems and situations of special
symmetry, this expansion leads to an inefficient and sometimes pathological
approach.

Consider the relativistic scalar field as an example. The complex scalar field
satisfies the equation (− + m2 + V

)
φ(x) = J (x). (5.54)

Now let ϕn be a complete set of eigenfunctions of the operator in this equation,
such that a general wavefunction φ(x) may be expanded in terms of a complete
set of these with coefficients cn ,

φ(x) =
∑

n

cnϕn(x), (5.55)

such that ∫
dσx(ϕn, ϕm)

∣∣∣∣∣
t=t ′

= δnm . (5.56)

The wavefunction φ(x) and the eigenfunctions ϕn(x) are assumed to be one-
particle wavefunctions. The discrete indices n,m denote any bound state
quantum numbers which the wavefunction might have. The eigenfunctions
satisfy (− + m2 + V

)
ϕn(x) = 0. (5.57)

The eigenfunctions can also be expressed in terms of their positive and negative
frequency parts,

ϕn(x) = ϕ(+)n (x)+ ϕ(−)n (x), (5.58)
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where ϕ(+)n (x) = (ϕ(−)n (x))∗,

φ(+)n (x) =
∫
(dk)eikxθ(−k0)δ(k

2 + m2 + V )an(k), (5.59)

and an(k) is a c-number. The Green function for the field (wavefunction) φ(x)
is the inverse of the operator in eqn. (5.54), satisfying,(− + m2 + V

)
Gnm(x, x ′) = δnmδ(x, x ′). (5.60)

Using eqn. (5.57) and eqn. (A.21) from Appendix A, we can solve this equation
with an object of the form

Gnm =
(
α θ(t − t ′)+ β θ(t ′ − t)

)∑
n,m

ϕn(x)ϕ
∗
m(x

′), (5.61)

where α and β are to be fixed by the choice of boundary conditions on the Green
function.

5.3 Scalar field Green function

The Green function for the scalar field is defined by the relation

(−h̄2c2 + m2c4)G(x, x ′) = δ(x, x′)δ(t, t ′). (5.62)

It is often convenient to express this in terms of the (n + 1) dimensional delta
function

δ(x, x′)δ(t, t ′) = cδ(x, x′)δ(x0, x0′) = cδ(x, x ′). (5.63)

The right hand side of eqn. (5.62) differs from an (n + 1) dimensional delta
function by a factor of c because the action is defined as an integral over
dVt = (dx) rather than dVx . This convention is chosen because it simplifies
the coupling between matter and radiation, and because it makes the Lagrangian
density have the dimensions of an energy density. In natural units, h̄ = c = 1,
this distinction does not arise. The formal expression for the scalar Green
function on solving this equation is

G(x, x ′) = c
∫
(dk)

eik(x−x ′)

p2c2 + m2c4
, (5.64)

where pµ = h̄kµ. Thus, G(x, x ′) has the dimensions of φ2(x). This Green
function can be understood in a number of ways. For the remainder of this
section, we shall explore its structure in terms of the free-field solutions and the
momentum-space constraint surface p2c2 + m2c4 = 0, which is referred to in
the literature as the ‘mass shell’.
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5.3.1 The Wightman functions

It is useful to define two quantities, known in quantum field theory as the positive
and negative frequency Wightman functions, since all the Green functions can
be expressed in terms of these. The Wightman functions are the solutions to the
free differential equation,4

(−h̄2c2 + m2c4)G(±)(x, x ′) = 0. (5.65)

For convenience, it is useful to separate the solutions of this equation into
those which have positive frequency, k0 = |ωk |, and those which have negative
frequency, k0 = −|ωk |. They may be written by inspection as a general linear
combination of plane waves, using a step function, θ(±k0), to restrict the sign
of the frequency, and a delta function to ensure that the integral over all k is
restricted only to those values which satisfy the equations of motion,

G(+)(x, x ′) = −2π i c
∫
(dk)eik(x−x ′)θ(−k0)δ(p

2c2 + m2c4)

G(−)(x, x ′) = 2π i c
∫
(dk)eik(x−x ′)θ(k0)δ(p

2c2 + m2c4). (5.66)

Because of unitarity,5 these two functions are mutually conjugate (adjoint) in
the relativistic theory.

G(+)(x, x ′) = [
G(−)(x, x ′)

]∗ = −G(−)(x ′, x). (5.67)

In the non-relativistic limit, field theory splits into a separate theory for particles
(which have positive energy) and for anti-particles (which have negative energy).
Although this relation continues to be true, when comparing the particle theory
with the anti-particle theory, it is not true for straightforward Schrödinger theory
where the negative frequency Wightman function is zero at zero temperature.

The delta function in the integrands implies that one of the components of the
momentum is related to all the others,6 thus we may integrate over one of them,
k0, in order to eliminate this and express it in terms of the others. The equations
of motion tell us that ck0 = ±ωk , where

h̄ωk =
√

h̄2k2c2 + m2c4, (5.68)

i.e. there are two solutions, so we may use the identity proven in eqn. (A.15) to
write

δ(p2c2 + m2c4) = 1

2h̄2c2|ωk |

{
δ

(
−k0 + |ωk |

c

)
+ δ

(
k0 + |ωk |

c

)}
(5.69)

4 They are analogous to the complementary function in the theory of linear partial differential
equations.

5 Unitarity is the property of field theories which implies conservation of energy and probabili-
ties.

6 The momentum is said to be ‘on shell’ since the equation, k2+m2 = 0, resembles the equation
of a spherical shell in momentum space with radius im.
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This relation is valid under the integral sign for k0. Noting that the step
functions, θ(±k0), pick out only one or the other delta function on the right
hand side, we have

G(+)(x, x ′) = −2π i (h̄2c)−1
∫
(dk)
2π

1

2ωk
ei(k·(x−x′)−|ωk |(t−t ′))

G(−)(x, x ′) = 2π i (h̄2c)−1
∫
(dk)
2π

1

2ωk
ei(k·(x−x′)+|ωk |(t−t ′))

= 2π i (h̄2c)−1
∫
(dk)
2π

1

2ωk
e−i(k·(x−x′)−|ωk |(t−t ′)).

(5.70)

Before leaving this section, we define two further symbols which appear in field
theory,

G̃(x, x ′) = G(+)(x, x ′)+ G(−)(x, x ′)
G(x, x ′) = G(+)(x, x ′)− G(−)(x, x ′). (5.71)

G(x, x ′) is the sum of all solutions to the free-field equations and, in quantum
field theory, becomes the so-called anti-commutator function.7 Note that
this quantity is explicitly the sum of G(+)(x, x ′) and its complex conjugate
G(−)(x, x ′) and is therefore real in the relativistic theory.8

The symmetric and anti-symmetric combinations satisfy the identities

x ′
∂t G(x, x ′)

∣∣∣∣∣
t=t ′

= 0 (5.72)

and

x ′
∂t G̃(x, x ′)

∣∣∣∣∣
t=t ′

= δ(x, x′). (5.73)

The latter turns out to be equivalent to the fundamental commutation relations
in the quantum theory of fields. G̃(x, x ′) becomes the commutator function in
the quantum theory of fields.

7 This looks wrong from the definitions in terms of Green functions, but recall the signs in the
definitions of the Green functions. The tilde denotes the fact that it is a commutator of the
quantum fields in the quantum theory.

8 This symmetry is broken by the non-relativistic theory as G(−)(x, x ′) vanishes at the one-
particle level.
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Finally, we may note that ωk is always positive, since it is the square-root of a
positive, real quantity, so we may drop the modulus signs in future and take this
as given.

5.3.2 Boundary conditions and poles in the k0 plane

When solving differential equations in physics, the choice of boundary con-
ditions normally determines the appropriate mixture of particular integral and
complementary functions. The same is true for the Green function approach, but
here the familiar procedure is occluded by the formalism of the Green function.

The Wightman functions are the general solutions of the free-field equations:
they are the complementary functions, which one may always add to any
particular integral. There are two ways to add them to a special solution. One
is to use the term X in eqn. (5.41); the other is to deform the complex contour
around the poles. This deformation accomplishes precisely the same result as
the addition of complementary solutions with complex coefficients. Let us now
consider how the deformation of the complex contour leads to the choice of
boundary conditions for the field.

The retarded, advanced and Feynman Green functions solve the equations
of motion in the presence of a source, with specific boundary conditions as
mentioned in section 5.2.2. In this section, we shall impose those boundary
conditions and show how this leads to an automatic prescription for dealing
with the complex poles in the integrand of eqn. (5.40). The most intuitive way
of imposing the boundary conditions is to write the Green functions in terms of
the step function:

Gr(x, x ′) = −θ(σ, σ ′)G̃(x, x ′) (5.74a)

Ga(x, x ′) = θ(σ ′, σ )G̃(x, x ′) (5.74b)

GF(x, x ′) = −θ(σ, σ ′)G(+)(x, x ′)+ θ(σ ′, σ )G(−)(x, x ′). (5.74c)

Note that, since the retarded and advanced Green functions derive from G̃(x, x ′),
they are real in x, x ′ space (though this does not mean that their Fourier
transforms are real in k space), except in the non-relativistic theory. When
we write θ(σ, σ ′) in this way, the σ ’s usually refer to two time coordinates
θ(t, t ′), but in general we may be measuring the development of a system
with respect to more general spacelike hyper-surfaces, unconnected with the
Cartesian coordinate t or x0. For simplicity, we shall refer to t and t ′ in
future. The physical meaning of these functions is as advertised: the retarded
function propagates all data from earlier times to later times, the advanced
function propagates all data from future times to past times, and the Feynman
function takes positive frequency data and propagates them forwards in time,
while propagating negative frequency data backwards in time.
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To convert these expressions into momentum-space integrals, we make use of
the integral representations of the step function,

θ(t − t ′) = i lim
ε→0

∫ ∞

∞

dα

2π

e−iα(t−t ′)

α + iε

θ(t ′ − t) = −i lim
ε→0

∫ ∞

∞

dα

2π

e−iα(t−t ′)

α − iε
. (5.75)

Writing �x ≡ x − x ′ for brevity, we can now evaluate these expressions using
the momentum-space forms for the Wightman functions in eqn. (5.70).

To evaluate the Green functions in momentum-space, it is useful to employ
Cauchy’s residue theorem, which states that the integral around a closed (anti-
clockwise) circuit of a function equals 2π times the sum of the residues of the
function. Suppose the function φ(z) has simple poles in the complex plane at zi ,
then, assuming that the closed contour is in the anti-clockwise (positive) sense,
we have ∮

C
φ(z)dz = 2π i

∑
i

(z − zi )φ(z)

∣∣∣∣∣
z=zi

. (5.76)

If the contour C is in the clockwise sense, the sign is reversed.
The complex contour method for evaluating integrals is a useful tool for

dealing with Green functions, but one should not confuse the contours with the
Green functions themselves. The Green functions we seek are only defined
on the real axis, but Cauchy’s formula only works for a closed contour with
generally complex pieces. We can evaluate integrals over any contour, in order
to use Cauchy’s formula, provided we can extract the value purely along the
real axis at the end. The general strategy is to choose a contour so that the
contributions along uninteresting parts of the curve are zero.

5.3.3 Retarded Green function

Let us begin with the retarded (causal) Green function, sometimes called the
susceptibility χ , and write it as an integral expression in k space. We substitute
the integral expressions in eqn. (5.75) into eqn. (5.70) and eqn. (5.74a), giving

Gr(x, x ′) = − 2π

h̄2c

∫
dα

2π

e−iα�t

α + iε

∫
(dk)
2π

[
ei(k�x−ωk�t)

2ωk
− ei(k�x+ωk�t)

2ωk

]

= − 1

h̄2c

∫
(dk)dα
(2π)

[
ei(k�x−(ωk+α)�t)

2ωk(α + iε)
− ei(k�x−(α−ωk )�t)

2ωk(α + iε)

]
.

(5.77)
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We now shift α→ α−ωk in the first term and α→ α+ωk in the second term.
This gives

Gr(x, x ′) = − (h̄2c)−1
∫

dnkdα

(2π)n+1

ei(k�x−α�t)

2ωk

×
[

1

(α − ωk + iε)
− 1

(α + ωk + iε)

]
. (5.78)

Re-labelling α→ k0 and combining the partial fractions on the right hand side,
we are left with,

Gr(x, x ′) = (h̄2c)−1
∫
(dk) eik�x 1

−(k0 + iε)2 + ω2
k

, (5.79)

or to first order, re-defining ε → ε/2,

Gr(x, x ′) = c
∫
(dk) eik�x 1

p2c2 + m2c4 − ip0ε
. (5.80)

This is the significant form we have been looking for. It may be compared
with the expression in eqn. (5.40), and we notice that it reduces to eqn. (5.40)
in the limit ε → 0. What is important is that we now have an unambiguous
prescription for dealing with the poles: they no longer lie in the real k0 axis. If
we examine the poles of the integrand in eqn. (5.79) we see that they have been
shifted below the axis to

ck0 = ±ωk − iε; (5.81)

see figure 5.1. An alternative and completely equivalent contour is shown in
figure 5.2. In this approach, we bend the contour rather than shift the poles; the
end result is identical.

This iε prescription tells us how to avoid the poles on the real axis, but it
does not tell us how to complete the complex contour. Although the result we
are looking for is equal to the value of the integral along the real axis only,
Cauchy’s theorem only gives us a prescription for calculating an integral around
a closed contour, so we must complete the contour by joining the end of the real
axis at +∞ and −∞ with a loop. After that, we extract the value of the portion
which lies along the real axis.

The simplest way to evaluate the contribution to such a loop is to make it a
semi-circle either in the upper half-plane or in the lower half-plane (see figure
5.2). But which do we choose? In fact, the choice is unimportant as long as we
can extract the part of integral along the real axis.

Evaluation around two closed loops We begin by writing the integrals piece-
wise around the loop in the complex k0 plane. It is convenient to use ω = k0c as
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Fig. 5.1. Contour in the complex plane for the retarded Green function with poles
shifted using the iε prescription.

Fig. 5.2. Contour in the complex plane for the retarded Green function.

https://doi.org/10.1017/9781009289887.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009289887.007


94 5 Classical field dynamics

the integration variable, since this is what appears in the complex exponential.
The contour in figure 5.1 has the simplest shape, so we shall use this as our
template. We write eqn. (5.79) schematically: the integral over ω is written
explicitly, but we absorb all the remaining integrals and the integrand into an
object which we shall call G ′

r(k) to avoid clutter;∮
dωe−iω(t−t ′)G ′

r(k) =
∫ +∞

−∞
dωe−iω(t−t ′)G ′

r(k)

+
∫

SC
dωe−iω(t−t ′)G ′

r(k), (5.82)

where the first term on the right hand side is the piece we wish to find and the
second term is the contribution from the semi-circle.

By Cauchy’s theorem, the value of the left hand side is equal to 2π i times the
sum of the residues of the integrand which are enclosed by the contour. Since all
of the poles lie in the lower half-plane, the left hand side is zero if we complete
in the upper half-plane. In the lower half-plane it is∮

dωe−iω(t−t ′)G ′
r(k) = −2π i (h̄2c)−1

∫
dnk

(2π)n+1
×[

ei(k·�x+ωk�t)

−2ωk
+ ei(k·�x−ωk�t)

2ωk
.

]
(5.83)

Re-labelling k →−k in the first term and using

eix − e−ix = 2i sin(x), (5.84)

we have (�t > 0)∮
dωe−iω(t−t ′)G ′

r(k) =
∫
(h̄2c)−1 dnk

(2π)n
cos(k ·�x) sin(ωk�t)

ωk
. (5.85)

This is clearly real.

Semi-circle in the upper half-plane The integral around the semi-circle in the
upper half-plane can be parametrized using polar coordinates. We let

ω = reiθ = r(cos θ + i sin θ), (5.86)

so that,∫
SC

dωe−iω(t−t ′)G ′
r(k) =

∫ π

0
ireiθdθ e−ir(cos θ+i sin θ)(t−t ′)G ′

r(reiθ )

=
∫ π

0
ireiθdθ e−ir cos θ(t−t ′)er sin θ(t−t ′)G ′

r(reiθ ).

(5.87)
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Note what has happened here. The imaginary component from the semi-circle
(the contribution involving sin θ(t− t ′)) has created a real exponential. This real
exponential causes the integrand to either blow up or decay to zero at r = ∞,
depending on the sign of the sin θ(t − t ′) term. So we have two cases:∫

SC
dωe−iω(t−t ′)G ′

r(k) = 0 (t − t ′ < 0)

= ? (t − t ′ > 0). (5.88)

In the first case, in which we do not expect the retarded function to be defined,
the integral over the semi-circle vanishes. Since the complete integral around
the loop also vanishes here, the real axis contribution that we are looking for
(looking at eqn. (5.82)), must also be zero. In the second case, the contribution
from the loop is difficult to determine, so the contribution to the real axis part,
from eqn. (5.82) is also difficult to determine. In fact, we cannot derive any
useful information from this, so for t − t ′ > 0, we cannot determine the value of
the integral. In order to evaluate the integral for t − t ′ > 0 we close the contour
in the lower half-plane where the semi-circle contribution is again well behaved.

Semi-circle in the lower half-plane The integral around the semi-circle in the
lower half-plane can also be parametrized using polar coordinates,∫

SC
dωe−iω(t−t ′)G ′

r(k) = −
∫ −π

0
ireiθdθ e−ir(cos θ+i sin θ)(t−t ′)G ′

r(reiθ )

= −
∫ −π

0
ireiθdθ e−ir cos θ(t−t ′)e−r | sin θ |(t−t ′)G ′

r(reiθ ).

(5.89)

Now the opposite happens:∫
SC

dωe−iω(t−t ′)G ′
r(k) = ? (t − t ′ < 0)

= 0 (t − t ′ > 0). (5.90)

This time the situation is reversed. The value of the integral tells us nothing for
t − t ′ < 0. In the second case, however, the contribution to the loop goes to
zero, making the integral along the real axis equal to the loop integral result in
eqn. (5.85).

Piece-wise definition Because of the infinite pieces, we must close the contour
for the retarded Green function separately for t − t ′ > 0 (lower half-plane,
non-zero result) and t − t ′ < 0 (upper half-plane, zero result). This is not a
serious problem for evaluating single Green functions, but the correct choice
of contour becomes more subtle when calculating products of Green functions
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using the momentum-space forms. We have nonetheless established that these
momentum-space prescriptions lead to a Green function which propagates from
the past into the future:

Gr(x, x ′) = (h̄2c)−1
∫

dnk
(2π)n

cos(k ·�x) sin(ωk�t)

ωk
(t − t ′ > 0)

= 0 (t − t ′ < 0). (5.91)

5.3.4 Advanced Green function

The treatment of this function is identical in structure to that for the retarded
propagator. The only difference is that the poles lie in the opposite half-plane,
and thus the results are reversed:

Ga(x, x ′) = − (h̄2c)−1
∫
(dk) eik�x 1

−(k0 − iε)2 + ω2
k

. (5.92)

We see that the poles are shifted above the axis and that the complex contour
may now be completed in the opposite manner to the retarded Green function.
The result is

Ga(x, x ′) = − (h̄2c)−1
∫

dnk
(2π)n

sin(k ·�x− ωk�t)

ωk
(t − t ′ < 0)

= 0 (t − t ′ > 0). (5.93)

5.3.5 Feynman Green function

GF(x, x ′) = − 2π

h̄2c

∫
dα

2π

(dk)
(2π)

[
ei(k�x−(ωk+α)�t)

(α + iε)2ωk
− ei(k�x−(α−ωk )�t)

(α − iε)2ωk

]
.

(5.94)

Shifting α→ α−ωk in the first fraction and α→ α+ωk in the second fraction,
and re-labelling α→ k0 we obtain,

GF(x, x ′) = (h̄2c)−1
∫
(dk)

eik�x

2ωk

[
1

(k0 + ωk − iε)
− 1

(k0 − ωk + iε)

]
.

(5.95)

It is normal to re-write this in the following way. Remember that we are
interested in the limit ε → 0. Combining the partial fractions above, we get

GF(x, x ′) = (h̄2c)−1
∫
(dk) eik�x

[ −1

(k0 + ω − iε)(k0 − ω + iε)
+ O(ε)

]
.

(5.96)
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Fig. 5.3. Contour in the complex plane for the Feynman Green function. This shows
how the iε prescription moves the poles effectively from the real axis.

From this expression, we see that the poles have been shifted from the real axis
to

ck0 = ωk − iε

ck0 = −ωk + iε, (5.97)

i.e. the negative root is shifted above the axis and the positive root below the axis
in the k0 plane (see figure 5.4). An equivalent contour is shown in figure 5.3.
Although it does not improve one’s understanding in any way, it is normal in the
literature to write the Feynman Green function in the following way. Re-writing
the denominator, we have

(ck0 + ω − iε)(ck0 − ω + iε) = c2k2
0 − ω2

k + 2iεωk + ε2. (5.98)

Now, since ε is infinitesimal and ωk > 0, we may drop ε2, and write 2iεωk = iε′.
This allows us to write

GF(x, x ′) = c
∫
(dk)

eik�x

p2c2 + m2c4 − iε′
. (5.99)
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Fig. 5.4. Contour in the complex plane for the Feynman Green function. Here we
bend the contour rather than moving the poles. The result is identical.

5.3.6 Comment on complex contours

The procedure described by Green functions is a formalism for extracting
solutions to the inverse-operator problem. It has a direct analogy in the theory of
matrices or linear algebra. There the issue concerns the invertibility of matrices
and the determinant of the matrix operator. Suppose we have a matrix equation

M · x = J, (5.100)

with a matrix M given by

M =
(

a b
c d

)
. (5.101)

If this matrix has an inverse, which is true if the determinant ad − bc does not
vanish,

M−1 = 1

ad − bc

(
d −b
−c a

)
, (5.102)

then eqn. (5.100) has a unique solution. We would not expect this case to
correspond to the solution of a differential equation such as the one we are
considering, since we know that the general solution to second-order differential
equations usually involves a linear super-position of many solutions.
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If the determinant of M does vanish, then it means that there is an infinite
number of solutions, which corresponds to a sub-space of x (a hyper-surface
which is determined by a constraint linking the coordinates). In this case, the
inverse defined above in eqn. (5.102) has a pole. For example, suppose we take
M to be the matrix

M =

 1 2 1

1 1 0
4 8 4


 , (5.103)

and

J =

 4

2
16


 . (5.104)

This matrix clearly has no inverse, since the third row is a multiple of the first.
The determinant vanishes, but in this trivial case we can solve the equations
directly. Since there are only two independent equations and three unknowns, it
is not possible to find a unique solution. Instead, we eliminate all but one of the
variables, leaving

x2 + x3 = 2. (5.105)

This is the equation of a straight line, or a sub-space of the full three-dimensional
solution space. We regard this as an incomplete constraint on the solution space
rather than a complete solution.

This is analogous to the situation we have with the Green functions. The poles
indicate that the solution to the differential equation which we are trying to solve
is not unique. In fact, there is an infinite number of plane wave solutions which
lie on the hyper-surface k2 + m2 = 0, called the mass shell.

5.4 Scalar Green functions in real space

Although the momentum-space representations of the Green functions are useful
for calculations, we are usually interested in their forms in real space. For
general fields with a mass, these can be quite complicated, but in the massless
limit the momentum-space integrals can be straightforwardly evaluated.

Again, since the other relativistic Green functions can be expressed in terms
of that for the scalar field, we shall focus mainly on this simple case.
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5.4.1 The retarded Green function for n = 3 as m → 0

From Cauchy’s residue theorem in eqn. (5.76), we have

Gr(x, x ′) = −2π i (h̄2c)−1
∫

d3k
(2π)4

[
ei(k·�x−ωk�t)

2ωk
− ei(k·�x+ωk�t)

2ωk

]
.

(5.106)

For general m �= 0, this integral defines Bessel functions. For m = 0,
however, the integral is straightforward and can be evaluated by going to
three-dimensional polar coordinates in momentum space:

ωk = |r |c∫
d3k =

∫ ∞

0
r2 dr

∫ π

0
sin θdθ

∫ 2π

0
dφ

k · x = |r |�X cos θ, (5.107)

where �X = |�x|, so that

Gr(x, x ′) = −i

16π3
(h̄2c)−1

∫ ∞

0
2πr2 dr

×
∫ π

0
sin θ dθ

eir�x cos θ

r

[
e−irc�t − eirc�t

]
. (5.108)

The integral over dθ may now be performed, giving

Gr(x, x ′) = −1

8π2�X
(h̄2c)−1

∫ ∞

0
dr

{
e−ir(�X+c�t)

− eir(�t−c�X) − eir(�X−c�t) + eir(�X+c�t)
}
. (5.109)

Note that both �t and �x are positive by assumption. From the definition of
the delta function, we have

2πδ(x) =
∫ +∞

−∞
dk eikx

=
∫ ∞

0

[
eikx + e−ikx

]
. (5.110)

Using this result, we see that the first and last terms in eqn. (5.109) vanish, since
�x can never be equal to −�t as both �x and �t are positive. This leaves us
with

Gr(x, x ′) = 1

4h̄2cπ�X
δ(ct −�X)

= 1

4π h̄2c|x− x′| δ
(
c(t − t ′)− |x− x′|) . (5.111)
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5.4.2 The G(±) and GF for n = 3 as m → 0

From eqn. (5.74c) we can see that the Feynman propagator is manifestly equal
to −G(+) for t > t ′ and is equal to G(−) for t ′ < t . The calculation of all three
quantities can therefore be taken together. We could, in fact, write this down
from the definitions, but it is useful to use the residue theorem on eqn. (5.95)
to show the consistency of the procedure with the definitions we have already
given. In fact, we shall see that the Wightman functions are just the residues, up
to a sign which depends on the orientation of the closed contour.

For t − t ′ > 0, we complete the contour in the lower half-plane, creating an
anti-clockwise contour. The residue theorem then tells us that∮

dk0G ′
F(k0) = (h̄2c)−1

∫
d(k)
(2π)

1

2ωk
eik�x ×−2π i {−1}

∣∣∣∣∣
k0=ωk

. (5.112)

Comparing this equation with eqns. (5.66), we see that this is precisely equal to
−G(+)(x, x ′). In the massless limit with n = 3, we may therefore write

G(+) = −i (h̄2c)−1 d3k
(2π)4

eik�x

2|k|c2

= −1

8π2h̄2c|x′ − x|
∫ ∞

0
dr

{
e−ir(�X+c�t) − eir(�X−c�t)

}
.

(5.113)

Similarly, for t − t ′ > 0, we complete the contour in the upper half-plane,
creating a clockwise contour. This gives∮

dk0G ′
F(k0) = (h̄2c)−1

∫
d(k)
(2π)

1

2ωk
ei(k·�x+ωk�t) × 2π i {+1}

∣∣∣∣∣
k0=ωk

(5.114)

Comparing this equation with eqn. (5.66), we see that this is precisely equal to
G(−)(x, x ′), and

G(−) = 1

8π2h̄2c|x′ − x|
∫ ∞

0
dr

{
e−ir(�X−c�t) − eir(�X+c�t)

}
. (5.115)

It may be checked that these expressions satisfy eqn. (5.67). Finally, we may
piece together the Feynman Green function from G(±). Given that the �t are
assumed positive, we have

GF(x, x ′) = 1

8π2h̄2c|x− x′|
∫ ∞

0
dr

{
e−ir(�X) − eir(�X)e−irc�t

}
= −i

4π2h̄2c|x− x′|
∫ ∞

0
dr sin(r |x′ − x|)e−irc|t−t ′|. (5.116)
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We may note that the difference between the retarded and Feynman Green
functions is

GF(x, x ′)− Gr(x, x ′) = lim
α→0

2
∫ ∞

0
dr eir(c�t−�X+iα) − eir(c�t+�X+iα)

= i

|x− x′| − c|t − t ′| −
i

|x+ x′| − c|t − t ′| ,
(5.117)

where α is introduced to define the infinite limit of the complex exponential.
This difference is a purely imaginary number, which diverges on the light cone.

5.4.3 Frequency-dependent form of GF and Gr in n = 3

In atomic physics and optics, one usually deals in implicitly translational
invariant systems, in the rest frames of an atom, where the frequency ω and time
are the only variables entering physical models. To use standard field theoretical
methods in these cases, it is useful to have the Green functions in such a form,
by integrating over spatial wavenumbers leaving only the Fourier transform over
time. These are obtained trivially by re-writing the non-zero contributions to
eqns. (5.109) and (5.116) with r → ω/c:

GF(x, x ′) = −i

4π2h̄2c2|x− x′|
∫ ∞

0
dω sin

(ω
c
|x− x′|

)
e−iω|t−t ′|

Gr(x, x ′) = 1

4π2h̄2c2|x− x′|
∫ ∞

0
dω cos

(ω
c
|x− x′| − ω|t − t ′|

)
.

(5.118)

5.4.4 Euclidean Green function in 2+ 0 dimensions

In the special case of a space-only Green function (the inverse of the Laplacian
operator), there is no ambiguity in the boundary conditions, since the Green
function is time-independent and there are no poles in the integrand. Let us
define the inverse Laplacian by

(−∇2 + m2)g(x, x ′) = δ(x, x ′). (5.119)

To evaluate this function, we work in Fourier space and write

g(x, x ′) =
∫

d2k

(2π)2
eik(x−x ′)

k2 + m2
, (5.120)

where k2 = k2
1 + k2

2. Expressing this in polar coordinates, we have

g(x, x ′) =
∫ 2π

0

∫ ∞

0

rdrdθ

(2π)2
eir |x−x ′| cos θ

r2 + m2
. (5.121)
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Massless case In the massless limit, this integral can be evaluated straight-
forwardly using a trick which is frequently useful in the evaluation of Fourier
integrals. The trick is only valid strictly when x �= x ′, but we shall leave it as
an exercise to show what happens in that case. The integral is then evaluated by
setting m to zero in eqn. (5.121) and cancelling a factor of r from the integration
measure. To evaluate the expression, we differentiate under the integral sign
with respect to the quantity |x − x ′|:

d

d|x − x ′|g(x − x ′) =
∫ 2π

0

∫ ∞

0

i cos θ

(2π)2
eir |x−x ′| cos θdr dθ. (5.122)

Notice that this step cancels a factor of r in the denominator, which means that
the integral over r is now much simpler. Formally, we have

d

d|x − x ′|g(x − x ′) =
∫ 2π

0

dθ

(2π)2
eir |x−x ′| cos θ

∣∣∣∣∣
∞

0

. (5.123)

There is still a subtlety remaining, however: since we are integrating a complex,
multi-valued function, the limit at infinity has an ambiguous limit. The limit can
be defined uniquely (analytically continued) by adding an infinitesimal positive
imaginary part to r , so that r → r(i + ε) and letting ε → 0 afterwards. This
makes the infinite limit converge to zero, leaving only a contribution from the
lower limit:

d

d|x − x ′|g(x − x ′) = lim
ε→0

∫ 2π

0

dθ

(2π)2
1

1− iε
e(ir−εr)|x−x ′| cos θ

∣∣∣∣∣
∞

0

= −
∫ 2π

0

dθ

(2π)2
1

|x − x ′| . (5.124)

To complete the evaluation, we evaluate the two remaining integrals trivially,
first the anti-derivative with respect to |x − x ′|, which gives rise to a logarithm,
and finally the integral over θ , giving:

g(x, x ′) = − 1

2π
ln |x − x ′|, (5.125)

where it is understood that x �= x ′.

5.4.5 Massive case

In the massive case, we can write down the result in terms of Bessel functions
Jν, Kν , by noting the following integral identities [63]:

Jν(z) = (z/2)ν

�(ν + 1
2)�(

1
2)

∫ π

0
e±iz cos θ sin2ν θ dθ (5.126)

Kν−µ(ab) = 2µ�(µ+ 1)

aν−µbµ

∫ ∞

0

Jν(bx) xν+1

(x2 + a2)
dx . (5.127)
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From the first of these, we can choose ν = 0 and use the symmetry of the cosine
function to write

J0(z) = 1

2π

∫ 2π

0
eiz cos θdθ. (5.128)

Eqn. (5.121) may now be expressed in the form

g(x, x ′) =
∫ ∞

0

rdr

2π

J0(r |x − x ′|)
r2 + m2

, (5.129)

and hence

g(x, x ′) = 1

2π
K0(m|x − x ′|). (5.130)

The massless limit is singular, but with care can be inferred from the small
argument expansion

K0(m(x − x ′)) = lim
m→0

− ln

(
m(x − x ′)

2

) ∞∑
k=0

(
m(x−x ′)

2

)2k

(k!)2
. (5.131)

5.5 Schrödinger Green function

Being linear in the time derivative, the solutions of the Schrödinger equation
have positive definite energy. The Fourier transform may therefore be written
as,

ψ(x) =
∫ ∞

0

dω̃

2π

∫ +∞

−∞
(dk) ei(k·�x−ω̃�t)ψ(k, ω̃)θ(ω̃)δ

(
h̄2k2

2m
− h̄ω̃

)
.

(5.132)

This singles out the Schrödinger field amongst the other relativistic fields which
have solutions of both signs. Correspondingly, the Schrödinger field has only a
positive energy Wightman function, the negative energy function vanishes from
the particle theory.9 The positive frequency Wightman function is

G(+)
NR (x, x ′) = −2π i

∫ ∞

0

dω̃

2π

∫ +∞

−∞
(dk)ei(k·�x−ω̃�t)θ(ω̃)δ

(
h̄2k2

2m
− h̄ω̃

)
.

(5.133)

The negative frequency Wightman function vanishes now,

G(−)
NR (x, x ′) = 0, (5.134)

9 This does not remain true at finite temperature or in interacting field theory, but there remains
a fundamental asymmetry between positive and negative energy Green functions in the non-
relativistic theory.
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since there is no pole in the negative ω̃ plane to enclose. Moreover, this means
that there is no Feynman Green function in the non-relativistic theory, only a
retarded one. In the non-relativistic limit, both the Feynman Green function and
the retarded Green function for relativistic particles reduce to the same result,
which has poles only in the lower half complex ω̃ plane. This non-relativistic
Green function satisfies the equation(

− h̄2∇2

2m
− ih̄∂t

)
GNR(x, x ′) = δ(x, x′)δ(t, t ′). (5.135)

This Green function can be evaluated from the expression corresponding to
those in eqns. (5.74):

GNR(x, x ′) = −θ(t − t ′)G(+)
NR (x, x ′). (5.136)

Using eqn. (5.75) in eqn. (5.133), we have

GNR(x, x ′) = −
∫ +∞

−∞
dα

∫ ∞

0

dω̃

2π

∫ +∞

−∞
(dk)

×ei(k·�x−(ω̃+α)�t)

(α + iε)
δ

(
h̄2k2

2m
− h̄ω̃

)
. (5.137)

The integral over α can be shifted, α → α − ω̃, without consequences for the
limits or the measure, giving

GNR(x, x ′) = −
∫ +∞

−∞
dα

∫ ∞

0

dω̃

2π

∫ +∞

−∞
(dk)

× ei(k·�x−α�t)

(α − ω̃)+ iε
δ

(
h̄2k2

2m
− h̄ω̃

)
. (5.138)

We may now integrate over ω̃ to invoke the delta function. Noting that the
argument of the delta function is defined only for positive ω̃, and that the integral
is also over this range, we have simply

GNR(x, x ′) = −
∫ +∞

−∞
dα

∫ +∞

−∞
(dk)

ei(k·�x−α�t)(
h̄α − h̄2k

2

2m

)
+ iε

, (5.139)

or, re-labelling α→ ω̃,

GNR(x, x ′) =
∫ +∞

−∞
dω̃

∫ +∞

−∞
(dk)

ei(k·�x−ω̃�t)(
h̄2k2

2m − h̄ω̃
)
− iε

. (5.140)

In spite of appearances, the parameter ω̃ is not really the energy of the system,
since it runs from minus infinity to plus infinity. It should properly be regarded
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only as a variable of integration. It is clear from this expression that the
Schrödinger field has a single pole in the lower half complex plane. It therefore
satisfies purely retarded boundary conditions. We shall see in section 13.2.2
how the relativistic Feynman Green function reduces to a purely retarded one in
the non-relativistic limit.

5.6 Dirac Green functions

The Dirac Green function satisfies an equation which is first order in the
derivatives, but which is matrix-valued. The equation of motion for the Dirac
field,

(−iγ µ∂µ + m)ψ = J, (5.141)

tells us that a formal solution may be written as

ψ =
∫

dVx ′S(x, x ′)J (x ′), (5.142)

where the spinor Green function is defined by

(−ih̄cγ µ∂µ + mc2)S(x, x ′) = δ(x, x ′). (5.143)

Although this looks rather different to the scalar field case, S(x, x ′) can be
obtained from the expression for the scalar propagator by noting that

(−ih̄cγ µ∂µ + mc2)(ih̄cγ µ∂µ + mc2)

= −h̄2c2 + m2c4 + 1

2
[γ µ, γ ν]∂µ∂ν, (5.144)

and the latter term vanishes when operating on non-singular objects. It follows
for the free field that

(ih̄cγ µ∂µ + mc2)G(±)(x, x ′) = S(±)(x, x ′) (5.145)

(ih̄cγ µ∂µ + mc2)GF(x, x ′) = SF(x, x ′) (5.146)

(−ih̄cγ µ∂µ + mc2)S(±)(x, x ′) = 0 (5.147)

(−ih̄cγ µ∂µ + mc2)SF(x, x ′) = δ(x, x ′). (5.148)

5.7 Photon Green functions

The Green function for the Maxwell field satisfies the (n+1) dimensional vector
equation [− δ νµ + ∂µ∂ν

]
Aµ(x) = µ0 J ν. (5.149)
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As usual, we look for the inverse of the operator,10 which satisfies[− δ νµ + ∂µ∂ν
]

Dρ
ν (x, x ′) = µ0cδ ρµ δ(x, x ′). (5.150)

Formally, it can be written as a Fourier transform:

Dµν(x, x ′) = µ0c
∫
(dk)eik(x−x ′)

[
gµν
k2
− kµkν

k4

]
. (5.151)

In this case, however, there is a problem. In inverting the operator, we are
looking for a constraint which imposes the equations of motion. For scalar
particles, this is done by going to momentum space and constructing the Green
function, which embodies the equations of motion in the dispersion relation
k2 + m2 = 0 (see eqn. (5.40)). In this case, that approach fails.

The difficulty here is the gauge symmetry. Suppose we consider the determi-
nant of the operator in eqn. (5.149). A straightforward computation shows that
this determinant vanishes:∣∣∣∣ − + ∂0∂

0 ∂0∂
i

∂i∂
0 − + ∂i∂

i

∣∣∣∣ = 0. (5.152)

In linear algebra, this would be a signal that the matrix was not invertible, the
matrix equivalent of dividing by zero. It also presents a problem here. The
problem is not that the operator is not invertible (none of the Green function
equations are invertible when the constraints they impose are fulfilled, since
they correspond precisely to a division by zero), but rather that it implies no
constraint at all. In the case of a scalar field, we have the operator constraint, or
its momentum-space form:

−h̄2c2 + m2c4 = 0

p2c2 + m2c4 = 0. (5.153)

In the vector case, one has

det
[− δ νµ + ∂µ∂ν

] = 0, (5.154)

but this is an identity which is solved for every value of the momentum. Thus,
the Green function in eqn. (5.151) supplies an infinite number of solutions for
Aµ for every J , one for each unrestricted value of k, which makes eqn. (5.151)
singular.

The problem can be traced to the gauge symmetry of the field Aµ(x). Under
a gauge transformation, Aµ→ Aµ + ∂µs, but[− δ νµ + ∂µ∂ν

]
(∂νs) = 0 (5.155)

10 Note that the operator has one index up and one index down, thereby mapping contravariant
eigenvectors to contravariant eigenvectors
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for any function s(x). It can be circumvented by breaking the gauge symmetry
in such a way that the integral over k in eqn. (5.151) is restricted. A convenient
choice is the so-called Lorentz gauge condition

∂µAµ = 0. (5.156)

This can be enforced by adding a Lagrange multiplier to the Maxwell action,

S →
∫
(dx)

{
1

4µ0
FµνFµν − JµAµ + 1

2α
µ−1

0 (∂
µAµ)

2

}
, (5.157)

so that eqn. (5.149) is modified to[
− δ νµ +

(
1− 1

α

)
∂µ∂

ν

]
Aµ(x) = J ν. (5.158)

It may now be verified that the determinant of the operator no longer vanishes
for all α; thus, a formal constraint is implied over the kµ, and the Green function
may be written

Dµν(x, x ′) = cµ0

∫
(dk)eik(x−x ′)

[
gµν
k2
+ (α − 1)

kµkν
k4

]
. (5.159)

This constraint is not a complete breakage of the gauge symmetry, since one
may gauge transform eqn. (5.156) and show that

∂µAµ→ ∂µAµ + s(x) = 0. (5.160)

Thus, the gauge condition still admits restricted gauge transformations such that

s(x) = 0. (5.161)

However, this modification is sufficient to obtain a formal Green function, and
so the additional gauge multi-valuedness is often not addressed.

5.8 Principal values and Kramers–Kronig relations

Green functions which satisfy retarded (or advanced) boundary conditions
satisfy a special pair of Fourier frequency-space relations, called the Kramers–
Kronig relations (these are also referred to as Bode’s law in circuit theory),
by virtue of the fact that all of their poles lie in one half-plane (see figure
5.5). These relations are an indication of purely causal or purely acausal
behaviour. In particular, physical response functions satisfy such relations,
including the refractive index (or susceptibility, in non-magnetic materials) and
the conductivity.
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Fig. 5.5. Contour in the complex plane for the Kramers–Kronig relations.

Cauchy’s integral formula states that the value of a function G(ω), which is
analytic at every point within and on a closed curve C , and is evaluated at a point
ω = z, is given by the integral around the closed loop C of∮

C

G(ω)

ω − z
= 2π iG(z). (5.162)

If a point P lies outside the closed loop, the value of the integral at that point is
zero. Consider then a field G(t−t ′)which satisfies retarded boundary conditions

G(t − t ′) =
∫

dω

2π
e−iω(t−t ′)G(ω). (5.163)

The Fourier transform G(ω), where

G(ω) =
∫

d(t − t ′)eiω(t−t ′)G(t − t ′) (5.164)

is analytic in the upper half-plane, as in figure 5.5, but has a pole on the real
axis. In the analytic upper region, the integral around a closed curve is zero, by
Cauchy’s theorem: ∮

C

G(ω)dω

ω − z
= 0, (5.165)
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110 5 Classical field dynamics

where we assume that G(z) has a simple pole at ω = z. We can write the
parts of this integral in terms of the principal value of the integral along the
real axis, plus the integral around the small semi-circle enclosing the pole. The
integral over the semi-circle at infinity vanishes over the causal region, since
exp(iω(t − t ′)) converges if t − t ′ > 0 and ω has a positive imaginary part.
Around the semi-circle we have, letting ω − z = ε eiθ ,∮

SC

G(ω)dω

ω − z
= − lim

ε→0

∫ π

0

G(εeiθ )iεeiθdθ

εeiθ

= −iπ(εeiθ + z)

∣∣∣∣∣
ε→0

= −iπG(z). (5.166)

Then we have ∮
C

G(ω)dω

ω − z
= P

∫ ∞

−∞

G(ω)dω

ω − z
− iπG(z) = 0. (5.167)

The first term on the left hand side is the so-called principal value of the integral
along the real axis. For a single pole, the principal value is defined strictly by
the limit

P
∫ +∞

−∞
≡ lim
ε→0

{∫ pi−ε

−∞
+

∫ ∞

pi+ε

}
, (5.168)

which approaches the singularity from equal distances on both sides. The
expression may be generalized to two or more poles by arranging the limits
of the integral to approach all poles symmetrically. Thus, if we now write the
real and imaginary parts of G(ω) explicitly as

G(z) ≡ GR(z)+ iGI(z), (5.169)

and substitute this into eqn. (5.167), then, comparing real and imaginary parts
we have:

P
∫ ∞

−∞

GR(ω)dω

ω − z
= −πGI(z)

P
∫ ∞

−∞

GI(ω)dω

ω − z
= πGR(z). (5.170)

These are the so-called Kramers–Kronig relations. They indicate that the
analyticity of G(t − t ′) implies a relationship between the real and imaginary
parts of G(t − t ′).

The generalization of these expressions to several poles along the real axis
may be written

P
∫ ∞

−∞

GI/R(ω)dω

ω − z
=

∑
poles

±πGR/I(z). (5.171)
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The integral along the real axis piece of the contour may be used to derive an
expression for the principal value of 1/ω. From eqn. (5.167), we may write

1

ω − z
= P

1

ω − z
− iπδ(ω − z). (5.172)

This relation assumes that we have integrated along the real axis in a positive
direction, avoiding a single pole on the real axis by passing above it (or,
equivalently, by pushing the pole into the lower half-plane by an infinitesimal
amount iε). Apart from these assumptions, it is quite general. It does not make
any other assumptions about the nature of G(ω), nor does it depend on the
presence of any other poles which do not lie on the real axis. It is a property
of the special contour segment which passes around one pole. Had the contour
passed under the pole instead of over it, the sign of the second term would have
been changed. These results can be summarized and generalized to several poles
on the real axis, by writing

1

ω − z ± iε j
= P

1

ω − z
∓

∑
j

iπδ(ω − z j ), (5.173)

where z is a general point in the complex plane, zi are the poles on the real axis
and ε → 0 is assumed. The upper sign is that for passing over the poles, while
the lower sign is for passing under.

5.9 Representation of bound states in field theory

Bound states are states in which ‘particles’ are completely confined by a
potential V (x). Confinement is a simple interaction between two different fields:
a dynamical field ψ(x) and a static confining field V (x). The way in which one
represents bound states in field theory depends on which properties are germane
to the description of the physical system. There are two possibilities.

The first alternative is the approach traditionally used in quantum mechanics.
Here one considers the potential V (x) to be a fixed potential, which breaks
translational symmetry, e.g.(

− h̄2

2m
∇2 + V (x)

)
ψ(x) = i∂tψ(x). (5.174)

One then considers the equation of motion of ψ(x) in the rest frame of this
potential and solves it using whatever methods are available. A Green function
formulation of this problem leads to the Lippman–Schwinger equation for
example (see section 17.5). In this case, the dynamical variable is the field,
which moves in an external potential and is confined by it, e.g. electrons moving
in the spherical hydrogen atom potential.
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112 5 Classical field dynamics

A second possibility is to consider bound states as multi-level, internal
properties of the dynamical variables in question. For instance, instead of
formulating the motion of electrons in a hydrogen atom, one formulates the
motion of hydrogen atoms with internal electron levels which can be excited.
To do this, one introduces multiplet states (an index A on the field and on the
constant potential), e.g.(

− h̄2

2m
∇2 + VA

)
ψA(x) = i∂tψA(x). (5.175)

This is an effective theory in which one takes the average value of the potential
VA at N different levels, where A = 1, . . . , N . The values of VA signify the
energy differences between levels in the atom. The field ψA now represents
the whole atom, not the electron within in. Clearly, all the components of ψA

move together, according to the same equation of motion. The internal indices
have the character of a broken internal ‘symmetry’. This approach allows one to
study the dynamics and kinematics of hydrogen atoms in motion (rather than the
behaviour of electrons in the rest frame of the atom). Such a study is of interest
when considering how transitions are affected by sources outside the atom. An
example of this is provided by the classic interaction between two levels of a
neutral atom and an external radiation field (see section 10.6.3). This approach
is applicable to laser cooling, for instance, where radiation momentum has a
breaking effect on the kinetic activity of the atoms.
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