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Abstract. We construct a general semiregularity map for algebraic cycles as asked for by
S. Bloch in 1972. The existence of such a semiregularity map has well known consequences

for the structure of the Hilbert scheme and for the variational Hodge conjecture. Aside from
generalizing and extending considerably previously known results in this direction, we give
new applications to deformations of modules that encompass, for example, results of Artam-

kin and Mukai. The formation of the semiregularity map here involves powers of the cotan-
gent complex, Atiyah classes, and trace maps, and is defined not only for subspaces of
manifolds but for perfect complexes on arbitrary complex spaces. It generalizes in particular
Illusie’s treatment of the Chern character to the analytic context and specializes to Bloch’s ear-

lier description of the semiregularity map for locally complete intersections as well as to the
infinitesimal Abel–Jacobi map for submanifolds.
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1. Introduction

Let Z be a closed complex subspace of a compact complex manifold X and let ½Z �

denote the corresponding point in the Douady space HX of X, the complex analytic

analogue of the Hilbert scheme. It is a classical fact that the tangent space of HX at

½Z � is naturally isomorphic to H 0ðZ;N Z=XÞ, where N Z=X ¼ HomXðJ ;OZÞ denotes

the normal sheaf of Z in X with J � OX the ideal sheaf of Z. Moreover, if Z is

locally a complete intersection in X then the vanishing of H1ðZ;N Z=XÞ implies that

½Z � is a smooth point of HX. It was, however, already observed by Severi [Sev] that

the converse is not true in general. He introduced the notion of a semiregular curve

on a surface to mean that the restriction mapH 0ðX;oXÞ ! H 0ðZ;oXjZÞ is surjective

or, dually, that the semiregularity map H1ðZ;N Z=XÞ ! H 2ðX;OXÞ is injective, and

showed that the point of the Hilbert scheme corresponding to a semiregular curve

is always smooth. This result was extended to divisors in arbitrary projective com-

plex manifolds by Kodaira and Spencer [KSp]. In 1972, S. Bloch [Blo] was able to
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define more generally for every locally complete intersection Z of codimension q in X

a semiregularity map t:H1ðZ;N Z=XÞ !Hqþ1ðX;Oq
1
X Þ to show again that the injec-

tivity of t implies that ½Z � is a smooth point of HX. His semiregularity map admits

a simple description using Serre duality. However, in the case of an arbitrary sub-

space Z of X, the obstructions for extending embedded deformations lie in the tan-

gent cohomology group T 2Z=XðOZÞ, and it is no longer possible to apply duality.

Thus, the problem arises to define such a semiregularity map by other means.

In our approach, we will more generally assign first a semiregularity map

s :Ext2XðF ;F Þ !
Q

q50H
qþ2ðX;Oq

XÞ to every coherent OX-module F on a complex

manifold. Indeed this map will be defined for any coherent OX-module F of locally
finite projective dimension, or even for perfect complexes of modules, on arbitrary

complex spaces, and it occurs as the component s ¼ sð2Þ of a family of maps

sðrÞ: ExtrXðF ;F Þ !
Y
q5 0

HqþrðX;Lq
LXÞ; r5 0;

where LX denotes the cotangent complex of X. We will outline in brief our construc-

tion when X is smooth, which special case is also subject of our survey [BFl2].

To begin with, we assign to F its Atiyah class, as originally defined in [At] for

locally free sheaves. Following [Ill], a possible way of construction for any coherent

OX-module is to use the extension on X� X that defines the module of analytic dif-

ferential forms,

0! J =J 2 ffi O1X ! OX�X=J 2 ! OX ! 0; ð1Þ

where J � OX�X is the ideal of the diagonal. With pi: X� X! X the ith projection

for i ¼ 1; 2, we tensor (1) with p1ðF Þ and consider the resulting sequence

0! F �OX
O1X ! p1ðF Þ �OX�X

OX�X=J 2! F ! 0

as an extension of OX-modules via p2 so that it defines an element

AtðF Þ 2 Ext1XðF ;F �OX
O1XÞ;

the Atiyah class of F . Taking powers gives elements AtqðF Þ 2 ExtqXðF ;F � Oq
XÞ.

Now the qth component of the semiregularity map s is the composition of the
two maps

sq: Ext2XðF ;F Þ !
�ð
AtðF ÞÞq=q!

Ext
qþ2
X ðF ;F � Oq

XÞ!
Tr

Hqþ2ðX;Oq
XÞ;

where Tr is the trace map as defined in [Ill, OTT]. Finally, to get a semiregularity

map for subspaces Z � X, we observe that there is a natural homomorphism from

Tk
Z=XðOZÞ into Ext

k
XðOZ;OZÞ for each k5 0. Composing this for k ¼ 2 with the

map s above in case F ¼ OZ gives the desired semiregularity map

t ¼ ðtqÞq50: T
2
Z=XðOZÞ !

Y
q50

Hqþ2ðX;Oq
XÞ
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for subspaces. We will verify in Section 8 that for a locally complete intersection Z in

X of codimension q the component tq
1 of our semiregularity map coincides with the
classical one defined by Bloch.

To understand some of the geometrical implications of such semiregularity maps,

let us restrict further to the case of coherent modules on a compact algebraic mani-

fold, the case of subspaces being similar. With respect to the Hodge decomposition,

HkðX;CÞ ¼
L

pþq¼k H
qðX;Op

XÞ, the Chern character of a coherent sheaf is obtained

from its Atiyah class by the formula

chðF Þ ¼ Tr expð
AtðF ÞÞ ¼
X
k50

ð
1Þk

k!
TrðAtkðF ÞÞ;

see [At] for the case of vector bundles and [Ill, OTT] for the general case.

Assume now given an infinitesimal deformation of X represented by a class

x 2 H1ðX;YXÞ, where YX denotes the tangent bundle. By Bloch’s interpretation of

Griffiths’ transversality theorem, for fixed k5 0 the unique horizontal extension

of the cohomology class chkþ1ðF Þ relative to the Gauss–Manin connection stays
of Hodge type ðkþ 1; kþ 1Þ if and only if the contraction of this class by x vanishes,
hx; chkþ1ðF Þi ¼ 0 in Hkþ2ðX;Ok

XÞ. On the other hand, let us consider the deforma-

tions of F itself instead of just extending its Chern character horizontally. The defor-
mations of F are controlled by the differential graded Lie algebra underlying

Ext�XðF ;F Þ so that the space of infinitesimal deformations is given by Ext1XðF ;F Þ
and the obstructions to extend deformations live in Ext2XðF ;F Þ. Contracting against
the negative of the Atiyah class serves as an obstruction map

ob :¼ h;
AtðF Þi: H1ðX;YXÞ 
!Ext
2
XðF ;F Þ

so that F admits a deformation into the direction of x if and only if obðxÞ ¼ 0; see
[Ill] for the algebraic and 4.4 for the analytic case. A key observation is now that the

maps just described fit into a commutative diagram

As a consequence (of a suitable generalization) of this fact and generalizing the argu-

ments of [Blo] we obtain for instance in Section 5 that the variational Hodge conjec-

ture holds for cycles that are representable as ðkþ 1Þst component of the Chern

character of a k-semiregular sheaf F , where we mean by k-semiregular that the com-

ponent sk of the semiregularity map for F is injective. An analogous result holds for
subspaces Z � X that are (k-)semiregular in the corresponding sense.

Other important applications are to deformations of modules. In analogy with the

aforementioned results of Bloch we will show that the basis of the semiuniversal

deformation of F is smooth if the semiregularity map s is injective. We will deduce this

result more generally for arbitrary singular complex spaces X and also for relative
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situations. We derive as well analogous smoothness criteria for the Douady space

and the Quot-space, and give applications to deformations of holomorphic

mappings.

Ideally, the semiregularity map, say, for a module F should correspond to a

morphism between two deformation theories so that it maps the obstruction space

Ext2XðF ;F Þ into the obstruction space of some other deformation theory. It seems
quite clear that this second deformation theory should be given in terms of the inter-

mediate Jacobians, or, more naturally, by Deligne cohomology. The map from the

deformations of F into the intermediate Jacobian, say J kðX Þ, should be a general-

ized Abel–Jacobi map that associates to a deformation of F over a germ ðS; 0Þ the

map of S into the intermediate Jacobian given by integration over a topological cycle

whose boundary is the difference of the kth Chern characters of the special fibre and

the fibre over s. As the intermediate Jacobian is smooth this would provide a satis-

factory explanation of the fact that the injectivity of s implies the smoothness of the
versal deformation of F , and it would show that all obstructions of F vanish under s
and not merely the curvilinear ones as we show here; for the special case of subma-

nifolds instead of modules see [Cle, Ran4]. Such an interpretation indeed applies for

the lowest component of the semiregularity map: the work of Artamkin [Art] and

Mukai [Muk] interprets s0: Ext2XðF ;F Þ ! H 2ðX;OXÞ as the map between obstruc-

tion spaces for the deformations of F versus those of its determinant line bundle.

As a further clue that such interpretation might be true in general we verify in

Section 9 that for a submanifold Z of X the differential of the Abel–Jacobi map

admits the same homological description as the semiregularity map.

A few remarks about the contents of the various sections: In Section 2 we review

the technique of Forster–Knorr systems, originally used in [FKn] and further exploi-

ted in [Pal, Fle1], to construct a cotangent complex for complex spaces. Most of that

material is a largely generalized version of parts of [Fle1]. As this source is not easily

accessible we use the opportunity to give an exposition of that technique of simplicial

spaces of Stein compact sets in the generality we need. Following [Pal] we will review

in brief the notion of resolvents and give the relevant descriptions of tangent (co)ho-

mology as used later on.

In Section 3 we construct the Atiyah class of a coherent sheaf F as a class in

Ext1XðF ;F � LXÞ, thereby generalizing the construction by Illusie [Ill] to the analy-

tic case. First we do this for modules on simplicial spaces of Stein compact sets and

then use the results of the previous section to descend to actual complex spaces. Fol-

lowing the classical approach of Atiyah [At], see also [ALJ], we will construct these

classes using connections, in our case on modules over the resolvent of a complex

space, thus verifying the basic functorial properties by explicit computation.

Section 4 contains the construction of the semiregularity map for modules as well

as for subspaces. We give an interpretation of the obstruction map for modules or

subspaces in terms of Atiyah classes and derive the aforementioned commutative

diagram. This is the basic tool in Section 5, where we prove the variational Hodge

conjecture for the special case described above.
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In Section 6 we prove some general criteria for the smoothness of the basis of a

semiuniversal deformation. We give a new and transparent proof of the T1-lifting

criterion of Ran and Kawamata [Kaw1, Kaw2, Ran2, Ran3] and show how to

deduce their results by a simple argument from the well known Jacobian criterion

for smoothness. Our method also yields new generalizations to the relative case.

These results, together with the existence of the semiregularity map, have many

applications in deformation theory, some of which we treat in Section 7. In the first

part we deduce applications to deformations of modules as mentioned above. In the

second part we turn to the Douady space and give various criteria for its smoothness.

The more general case of the Quot-scheme is treated in the third part, and in the last

part we apply our constructions to deformations of mappings and define a semi-

regularity map under very general circumstances. For the special case of stable curves,

results in this direction were independently obtained by K. Behrend and B. Fantechi.

In the final Section 8, we compare our semiregularity map with the one construc-

ted by S. Bloch. This requires an explicit description of the trace map via a Cousin

type resolution. Moreover, we show how the infinitesimal Abel–Jacobi map fits into

this framework.

In an Appendix we collect some results on integral dependence and infinitesimal

deformations of complex spaces that are needed in Section 6. Especially the (elemen-

tary) characterizations of the subspaces of T1X given by the curvilinear extensions,

respectively by Ext1XðO
1
X;OXÞ, seem to be new.

GENERAL NOTATION. We explain some notation used throughout this paper.

Categories are written in boldface and categories like Sets should need no further

explanation. Whenever we talk about isomorphism classes of objects from a category

C, it will be assumed that those classes form a set. Such a category C is sometimes

called essentially small.

A germ of a (formal) complex space is denoted ðS; 0Þ or often simply S. As a rule,

every germ has 0 as its basepoint, and the same symbol represents the (reduced)

point. For a (formal) complex space X the sheaf of holomorphic functions is as usual

denoted OX, whereas for a germ S ¼ ðS; 0Þ the symbol OS indicates the local ring

OS;0 and mmmmmS its maximal ideal.

If X is a complex space then CohðX Þ will be its category of coherent modules.

Similarly, if S ¼ ðS; 0Þ is the germ of a (formal) complex space, CohðS Þ, CohartðS Þ

will denote the categories of finite, respectively finite Artinian OS;0-modules. A

closed embedding S ,!S0 of complex spaces is an extension of S by M 2 CohðS Þ

if the ideal I :¼ kerðOS0 ! OSÞ defining S in S0 is of square zero and isomorphic

to M as OS-module under a fixed isomorphism. In particular, S ½M� indicates the
trivial extension whose structure sheaf OS ½M� is the direct sum OS �Me endowed
with the multiplication ðsþmeÞðs0 þm0eÞ ¼ ss0 þ ðsm0 þms0Þe so that e2 ¼ 0.
To reduce complexity of display,weuseunadorned tensor products, suchasM�N ,

whenever the sheaf or ring over which the tensor product is taken should be clear from

the context. We also use � instead of �L to denote derived tensor products.
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2. Homological Algebra on Simplicial Schemes of Stein Compact Sets

Let X be a complex space and F a coherent OX-module. In the introduction we

reviewed for X smooth the construction of the Atiyah class, AtðF Þ 2
Ext1X ðF ;F �OX

O1XÞ, of F that is given by the extension

0! F �OX
O1X ! p1ðF Þ �OX�X

OX�X=J 2! F ! 0:

In the singular case, however, we need to produce more generally the Atiyah class in

Ext1XðF ;F � OX
LXÞ, where LX is the cotangent complex of X and � denotes the

derived tensor product.

In the algebraic setting this was done by Illusie [Ill] using simplicial methods.

Those do not immediately generalize to the analytic situation due to the lack of glo-

bal resolutions. Instead, we use the technique of Forster–Knorr systems [FKn] on

simplicial schemes of Stein compact sets and construct resolvents on complex spaces

as in [Fle1, Pal]. Alternatively, one might be tempted to use the method of twisted

cochains as developed in [OTT], but this theory is so far only available for manifolds,

in particular the theory of cotangent complexes on singular spaces has not yet been

established in that framework.

We first state and (indicate how to) prove the results on the homological algebra

of Forster–Knorr systems that we will use. Key references are [Fle1], [Pal]; see also

[BMi]. All our complex spaces are assumed to be paracompact.

2.1. A subset K of a complex space X is called Stein compact if it is compact, semi-

analytic and admits arbitrary small open neighborhoods that are Stein. We equip K

with the structure sheaf OK :¼ OXjK so that the ring GðK;OKÞ consists of all K-germs

of functions that are analytic in an open neighborhood of K in X. In the extreme case

that K ¼ fxg consists just of a point in X one retrieves the local analytic algebra OX;x.

Every coherent OK-module for a Stein compact set K satisfies Cartan’s Theorems A

and B, and by a fundamental result of Frisch [Fri] the ring GðK;OKÞ is Noetherian.

These facts imply that a Stein compact set behaves like a Noetherian affine scheme:

for example, the category Coh OK of coherent OK-modules is equivalent to the cate-

gory of finite GðK;OKÞ-modules, in particular it contains enough projectives. Again

as for affine schemes, these projectives are usually not projective objects in the cate-

gory of all OK-modules.

Note that the dimension of a Stein compact set is given by

dimK :¼ supfdimOK;x j x 2 K g ¼ inffdimU j K � U � X;U openg:

If K � X, L � Y are Stein compact sets with X, Y complex spaces over some com-

plex space Z, then the product K� L � X� Y as well as the fibre product

K�Z L � X�Z Y are again Stein compact sets.

A covering of a complex space X by Stein compact sets fXigi2I is called locally finite

if every point in X admits an open neighborhood that meets only finitely many Xi.

Any two such coverings clearly admit common refinements and, as X is paracompact,
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each covering by open sets can be refined to a locally finite covering by Stein

compact sets.

2.2. We mainly work on simplicial schemes of Stein compact sets Z ¼ ðZaÞa2A.

Thus, A is a simplicial scheme consisting of a collection of finite subsets, called

the simplices, of a given set I such that with a simplex all its nonempty subsets are

in A. Furthermore, the Za are Stein compact sets and there are given compatible

morphisms of ringed spaces Zb ! Za for each inclusion of simplices a � b. Denote
jaj ¼ k the dimension of the simplex a ¼ fi0; . . . ; ikg, not to be confused with dimZa,

the complex dimension of the Stein compact Za.

Morphisms Z0 ¼ ðZ
0
aÞa02A0 ! Z ¼ ðZaÞa2A of such simplicial schemes of Stein

compact sets are defined as usual. Such a morphism is said to be f lat or smooth if

all induced morphisms of stalks have the corresponding property.

The following two examples are crucial in the sequel.

(a) Let X be a complex space over Y and Xigi2I
�

a locally finite covering of X by

Stein compact sets. The nerf of the covering is the simplicial scheme

A ¼ a � I j Xa :¼
T
i2a

Xi 6¼ ;

( )
;

whose simplices are thus finite subsets of I, and X is the simplicial scheme of

Stein compact sets ðXaÞa2A with the natural inclusions Xb ,!Xa for a � b.

(b) Let A be again a simplicial scheme on I and assume given for any vertex i 2 I a

Stein compact set Li � C
ni � Y for some ni. Set Wa :¼

QY
i2a Li; a 2 A; whereQY denotes the fibre product over Y, and let the natural projections

pab: Wb !Wa for a � b serve as transition maps. The natural maps from
Wa onto Y are smooth and compatible with the transition maps.

Returning to the complex space X with its given covering choose closed

Y-embeddings Xi ,!Li � C
ni � Y with Li a Stein compact subset. These data yield

diagonal embeddings Xa ,!Wa; a 2 A; that define a morphism of simplicial schemes

X ,!W over Y. We will refer to it as a (simplicial) free smoothing of the given map

X! Y.

2.3. Now we consider (negatively graded, simplicial) DG algebras R ¼
L

i40Ri


over a simplicial scheme of Stein compact sets W. The differential of such an alge-

bra is a derivation of degree þ1 and will be denoted @R or simply @. The simplicial

structure consists of a system of compatible maps p
1ab ðRaÞ ! Rb for a � b that are
morphisms of DG algebras overWb. If f is a local homogeneous section of R, then
j f j denotes its degree. All our DG algebras will be (graded) commutative so that the

product on R satisfies the sign rule fg ¼ ð
1Þj f jjgjg f:
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Graded modules over R are defined in the obvious way: An R-module M

consists of a family of graded right Ra-modules Ma ¼
L

j2Z Mj
a together with a

compatible collection of transition maps for a � b that are degree preserving
homomorphisms of right Rb-modules,

pabðMaÞ :¼ p
1ab ðMaÞ �p
1ab ðRaÞ
Rb !Mb:

As we only consider commutative DG algebras, the sign rule allows to switch the

module structure from right to left, in particular one can form the tensor product

M �R N  of R-modules, defining it simplex by simplex through

ðM �R N Þa ¼Ma �Ra N a.

If M is equipped with a differential @ ¼ @M
such that ðM; @Þ becomes a DG

module over R then we call M a DG R-module in brief. Such a module is said
to have coherent cohomology if HiðMaÞ, the cohomology with respect to the differ-

ential on Ma, is a coherent OWa -module for each simplex a and each integer i; it
is said to be (locally) bounded above if for each simplex HiðMaÞ ¼ 0 for i� 0, and

it is said to vanish (locally) above if already Mi
a ¼ 0 for i� 0.

2.4. Next we comment upon and fix some of the usual notations and conventions

from homological algebra that extend in a straightforward manner to (DG)R-mod-
ules. We include these details in order to be able later to calibrate Atiyah classes

against Chern classes: Over time, the conventions and signs in constructing mapping

cones, distinguished triangles and their associated extension classes have changed,

say from [Har] over [Ver] to [ALG]; see also the comments in [SGA4, Exp. XVII]

and [Del3]. Whereas classically, e.g. in [At, ] or [Ill, V.5.4.1, 5.3.3], the first Chern

class is the trace of the opposite of the Atiyah class, it appears in [ALJ] as the trace

of the Atiyah class itself.

If i is an integer, M½i� is the shifted module with M½i�
n
¼ N iþn

 and the same

right R-module structure, whence the left structure becomes fðm½i�Þ ¼ ð
1Þjijj f j

ð fmÞ½i�. In case M is a DG module, M½i� becomes a DG module with respect to

the differential @M½i� ¼ ð
1Þ
i@M

. Writing the shift functor on the left, say as

TiM ¼M½i�, and considering T as an operator of degree 
1, the conventions just

introduced obey the usual sign rule.

A morphism of R-modules M ! N  of degree i is a collection of homomor-

phisms fa: Ma! N a of right Ra-modules that satisfy faðMj
aÞ �Miþj

a for all j 2 Z

and are compatible with the transition maps. By convention, if no degree is specified,

a homomorphism of R-modules is assumed to be of degree 0. We set

HomR ðM;N Þ :¼
M
i2Z

Homi
R ðM;N Þ;

where Homi
R ðM;N Þ denotes the morphisms of degree i. IfM, N  are DG mod-

ules with differential @ then HomR ðM;N Þ is a complex of vector spaces with dif-
ferential h jjjj!½@; h� :¼ @h
 ð
1Þjhjh@. Note that for any integer j, the maps h½ j � and h
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are identical once the grading is ignored, and so one usually suppresses the shift in

the notation of morphisms.

2.5. The morphisms of degree i are thus the (degree preserving) homomorphisms

M ! N ½i� of R-modules, the cycles of degree i in the Hom-complex are the

homomorphisms M ! N ½i� of DG R-modules, whereas the boundaries are the
homomorphisms that are homotopic to zero. The homotopy category KðRÞ of
DG R-modules has as its objects the DG R-modules but its morphisms are the
homotopy classes, HomKðRÞðM;N Þ ¼ H0ðHomR ðM;N ÞÞ. The derived category

DðRÞ is obtained from KðRÞ as usual by inverting all quasi-isomorphisms. Adorn-
ments such as ð Þa;bc or ð Þbc determine full subcategories of DG modules, where a

bounds the underlying graded objects on each simplex, b bounds the cohomology,

and c refers to special structure of the cohomology modules. For example,

D
cohðRÞ denotes the derived category of DG R-modules that are bounded above
with coherent cohomology. In case R is a structure sheaf, such as OX , we write

HomX and DðXÞ to reduce clutter.

The morphisms in DðRÞ are denoted

ExtkR ðM;N Þ :¼ HomDðRÞðM;N ½k�Þ; k 2 Z:

Similarly, if X is a complex space and M, N are complexes of OX-modules then

ExtkXðM;N Þ will represent the set of morphisms of degree k in the derived category
DðX Þ. Note that if N is bounded below and so admits an injective resolution, say, I
then these Ext-groups are given as usual by the cohomology of the complex

HomXðM; I Þ. This definition allows in particular to define HkðX;N Þ :¼
ExtkXðOX;N Þ for any complex N of OX-modules. Below we will show how to com-

pute these groups using projective ‘resolutions’ on X.

2.6. For a homomorphism f : N 0 ! N  of DG R-modules, its mapping cone,

Conð f Þ :¼ N  �N 0½1�, is formed simplex by simplex according to the conventions
of [ALG, X.36ff] so that for local sections n of N a and Tn0 ¼ n0½1� of N 0a½1� the dif-
ferential in Conð f Þmaps ðn;Tn

0Þ to ð@N  ðnÞ 
 fðn0Þ;
T@N 0 ðn
0ÞÞ. The mapping cone is

again a DG R-module, and the triangulated structure of either KðRÞ or DðRÞ is
now defined in terms of the distinguished triangles arising from mapping cones.

2.7. Generalizing the construction of mapping cones, if

M�
 � ð� � � !MðiÞ

 !
di Mðiþ1Þ

 ! � � �Þ

is a complex of DG R-modules, then the associated total complex �M ¼
Q

i MðiÞ
 ½i�

is a DG R-module as well. The following simple fact will be used throughout: If the
complex M�

 is acyclic and locally vanishes above, then the associated DG module
�M is again acyclic.
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2.8. As just done, we will often argue simplex by simplex and such arguments are alle-

viated by the following: For each simplex a, the restriction functor M jjjj!Ma is

exact and admits a left adjoint pa defined through

paðMaÞb :¼
pabðMaÞ; for a � b;
0; otherwise,

�
whence one has

HomR paðMaÞ;N 
� 	

ffi HomRa ðMa;N aÞ ð2Þ

for eachRa-moduleMa and eachR-moduleN , see [Fle1, Section 2], [BMi, 4.1], or,
even more generally, [Ill, VI.5.3]. The functor pa is compatible with differentials, it is

as well a left adjoint to the restriction functor on the category of DG R-modules.

2.9. Inductive arguments based on the dimension of simplices often use the skeleton

filtration on an R-module M given by

M4 k ¼ Im
M
jaj4k

paðMaÞ !M

 !
�M:

For a DG module this filtration is by DG submodules.

2.10. Analogous facts and notions allow to argue degree by degree on Wa for each

individual simplex a. Consider, in general, (DG) R-modules M ¼
L

i2Z Mi over a

(negatively graded DG) OW-algebra R ¼
L

i4 0Ri with ðW;OWÞ some ringed space.

For each fixed degree i 2 Z, the restriction functorM jjjj!Mi to OW-modules is exact

and admits as left adjoint the functor V jjjj!V �OW
R½
i�. The corresponding canoni-

cal R-homomorphism
L

i2Z Mi
�OW

R½
i� !M is an epimorphism of (DG)

R-modules. The analogue to the skeleton filtration is the degree filtration

M5 k
¼ Im

M
i5 k

Mi
�OW

R½
i� !M
 !

�M;

whenceM5 k is just the (DG) submodule ofM generated by all homogeneous com-

ponents in degrees at least k.

Now we turn to the existence and construction of resolutions for DGR-modules.

2.11. We will say in brief that an R-module M ¼
L

i2Z Mi
 has coherent homo-

geneous components if each Mi
a is coherent as OWa-module. By convention, our DG

algebras will always have coherent homogeneous components. The category of all

R-modules with coherent homogeneous components is then Abelian and will,
slightly abusively, be denoted CohR. The restriction to a simplex a and its left
adjoint pa preserve coherence of homogeneous components and the R-moduleL

a2A paðMaÞ is in CohR along with M.
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2.12. A module P 2 CohR will be called projective if it is a projective object in that
category, equivalently, if the functor HomR ðP;
Þ is exact on CohR. As remarked
above, such a projective module is in general not a projective object in the category

of all R-modules. Note also that, in general, R is not a projective module over
itself. In contrast, Ra, being a module with coherent homogeneous components over

the Stein compact setWa, is projective as a module over itself, and if Pa is projective

in CohRa, then p

aðPaÞ is a projectiveR-module since a left adjoint of an exact func-

tor preserves projectives. A module F  2 CohR is called graded free if it is a direct

sum of modules paðPaÞ with graded free Ra-modules Pa. Thus graded free modules

are always projective. Each category CohRa has enough projectives, for example,

the graded free modules. As the canonical R-homomorphism
L

a2A paðMaÞ !

M is an epimorphism, there are enough projectives in CohR as well.
Using the simplicial structure, and generalizing slightly [Fle1, 2.3, (3)], one obtains

the following precise description of projective R-modules.

LEMMA 2.13. ð1Þ An R-module P is projective if and only if P ffi
L

a2A paðQaÞ for

some projective Ra-modules Qa with coherent homogeneous components.

ð2Þ If Qa is a projective Ra-module with Qi
a ¼ 0 for i� 0, then Qa ffi

L
j2Z QðjÞa ,

where QðjÞa is a projective Ra-module generated in degree j.

Proof. By induction on the dimension of simplices, it clearly suffices to show the

following. If A0 � A consists of all simplices a0 such that Pa ¼ 0 for each strict subset

a � a0, then
L

a02A0 p

a0 ðPa0 Þ is a direct summand of P. As P is projective the

canonical epimorphism j:
L

a2A paðPaÞ ! P admits a section c . The definition of
A0 yields for each a0 2 A0 that ja0 , and thus also ca0 , is the identity on

ð
L

a2A paðPaÞÞa0 ¼ Pa0 . Composing the projection
L

a2A paðPaÞ ! pa0 ðPa0 Þ with c
then retracts the natural homomorphism pa0 ðPa0 Þ ! P and the claim (1) follows.
Repeating the argument with respect to degrees instead of simplices yields the

second assertion. &

From 2.13(1) it follows easily that the tensor product of projective modules is

again projective. Moreover, if P is projective then its exterior and symmetric powers
LkP and S

kP are projective for k5 1 (whereas L0P ffi R ffi S
0P is not!)

If P is a projective R-module which also carries a DG structure, then we will say
in brief that P is a projective DG R-module, although, of course, P is not neces-
sarily a projective object in the category of all DG modules with coherent homo-

geneous components.

For a projective module P the skeleton filtration 2.9 is by direct summands: In
the notation of the preceding lemma, P4 k ffi

L
jaj4 k p


aðQaÞ, whence each such sub-

module as well as each subquotient P4 k=P4 k
1 ffi
L
jaj¼k p


aðQaÞ is again projective.

Analogously, if Pa vanishes above, each submodule or subquotient with respect to

the degree filtration is again projective. If P, resp. Pa, is a projective DG module,

then P4 k, resp. P5 k
a , is not necessarily a direct summand as DG module, but one
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has the following simple observations that reflect typical reduction steps when deal-

ing with projective DG P-modules that locally vanish above.

LEMMA 2.14. If M and P are DG R-modules with P projective, then the natural

map

HpðHomR ðP;MÞÞ 
! lim
 

k

HpðHomR ðP4 k;MÞÞ

is bijective for each integer p. If Ma and Pa are DG Ra-modules with Pa projective and

Pi
a ¼ 0 for i� 0, then the natural map

HpðHomRaðPa;MaÞÞ 
! lim
 

k

HpðHomRaðP5 k
a ;MaÞÞ

is bijective for each integer p. If Pa is generated in a single degree k, then there is a

natural number s such that the complex HomRa ðPa;MaÞ becomes a direct summand

of GðWa;Ma½k�Þ
s.

Proof. As said above, 0! P4 k ! P ! P=P4 k ! 0 is an exact sequence

of projective R-modules and so splits, whence the induced map

HomR ðP;MÞ ! HomR ðP4 k;MÞ is surjective. The first claim follows imme-

diately and the second one is obtained replacing skeleton by degree filtration.

For the final assertion, note that the hypothesis yields a natural epimorphism of

DG Ra-modules Pk
a �OWa Ra½
k� ! Pa. As Pa is projective it has in particular

coherent homogeneous components and so Pk
a can be generated by a finite number

of sections over Wa, which in turn provides an epimorphism Ra½
k�
s
! Pa.

Employing now fully that Pa is projective, this epimorphism splits as a homomor-

phism of Ra-modules. As Pa is generated in a single degree, the differential necessa-

rily vanishes on the generators and the splitting is already a morphism of DG

modules. Finally use that HomRa ðRa½
k�;MaÞ ¼ GðWa;Ma½k�Þ. &

An R-module M will be called W-acyclic if H
iðWa;MaÞ ¼ 0 for all i5 1 and

a 2 A. For instance, by Theorem B every module M 2 CohR is W-acyclic. The
point of the definition is of course that a quasi-isomorphism M ! N  of W-
acyclic DG modules induces quasi-isomorphisms GðWa;MaÞ ! GðWa;N aÞ over

each simplex.

LEMMA 2.15. For each DG R-module M there is a W-acyclic resolution, thus a

quasi-isomorphismM ,! eW fromM into aW-acyclic module eW. The construction
is functorial in M.

Proof. Consider on each simplex a 2 A the canonical flabby resolution, say,

Ma !W�a. As this resolution is functorial, each component of the complex W�a is
naturally again a DG Ra-module and the resulting systemM !W� is a resolution
by DG R-modules. Now cut this resolution on the simplex a at the place
dðaÞ :¼

P
b�a dimWb to obtain �W i

a :¼W i
a for i < dðaÞ, �W i

a :¼ 0 for i > dðaÞ and
�W i
a :¼ KerðW i

a!W iþ1
a Þ for i ¼ dðaÞ.
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The choice of the cut-off point guarantees first, as dðaÞ5 dimWa, that �WdðaÞ
a is

W-acyclic along with the other components. Secondly, as dðaÞ4 dðbÞ for a � b,
the truncated complexes still form a simplicial system. Finally, �W� is now a complex
that locally vanishes above and thus the canonical injectionM ,! ~W into the DG
module obtained as the total complex associated to �W� provides the desired functor-
ial quasi-isomorphism into a W-acyclic R-module. &

COROLLARY 2.16. The inclusion of the full subcategory of DðXÞ consisting of all

W-acyclic DG R-modules into DðXÞ is an equivalence of triangulated categories. An

inverse is given by associating to a DG R-module its W-acyclic resolution.
To derive a functor on all DG R-modules it suffices thus to derive it on the

W-acyclic ones.

PROPOSITION 2.17. Let M ! N  be a quasi-isomorphism of DG R-modules and

P a DG R-module that locally vanishes above.

ð1Þ IfP is locally free then the mapP �R M ! P �R N  is a quasi-isomorphism.

ð2Þ If M; N  are W-acyclic and P is a projective R-module, then the map

HomR ðP;MÞ 
!HomR ðP;N Þ is a quasi-isomorphism. In particular, any

morphism P ! N  of DG R-modules lifts through the given quasi-isomorphism

to a morphism of DG R-modules P !M.

Proof. Assertion (1) can be verified locally and there [ALG, X.66, Section 4,

No.3] applies.

To prove (2), we may assume by the first part of Lemma 2.14 that P ¼ P4 k. In

this case the spectral sequence associated to the skeleton filtration on P converges
and so it is sufficient to show the claim in case that P ffi pðPaÞ with a projective DG

Ra-module Pa. In view of 2.8(2) this requires to show that the corresponding map

HomRaðPa;MaÞ ! HomRaðPa;N aÞ: ðÞ

is a quasi-isomorphism. Because of the second part of Lemma 2.14 we may reduce to

the situation where Pa is generated in finitely many degrees, in which case the spec-

tral sequence associated to the degree filtration on Pa converges. It remains to deal

with the case that Pa is generated in a single degree k and then the final part of

Lemma 2.14 exhibits the map ðÞ as a direct summand of GðWa;Ma½k�
s
Þ !

GðWa;N a½k�
s
Þ for some s. As M;N  are W-acyclic, this last map is a quasi-

isomorphism and the claim follows. &

COROLLARY 2.18. Any quasi-isomorphism P ! Q between projective DG

R-modules that locally vanish above is a homotopy equivalence. In particular, for

every DG R-module M and any quasi-isomorphism P ! Q the induced maps

HomR ðQ;MÞ 
!HomR ðP;MÞ
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and

P �R M 
!Q �R M

are quasi-isomorphisms.

Proof. It follows from 2.16 and 2.17(2) that any quasi-isomorphism between

projective DG R-modules that locally vanish above is represented by an actual
morphism f : P ! Q of DG R-modules. Such a morphism is a homotopy

equivalence if the identity on the mapping cone C ¼ Conð f Þ is homotopic to 0.
With P;Q also C is projective, thusW-acyclic, and locally vanishes above. So the
preceding result 2.17(2) applies to yield that HomR ðC; CÞ ! HomR ðC; 0Þ ¼ 0 is a
quasi-isomorphism. The rest follows immediately. &

A quasi-isomorphism h: P!M of DG R-modules will be called a projective

approximation of M if P is a projective DG R-module that locally vanishes
above. The preceding corollary shows that projective approximations of a DG

R-module are unique up to homotopy equivalence. Their existence is settled next.

PROPOSITION 2.19. A DGR-module M admits a projective approximation if and

only if it is bounded above with coherent cohomology.

Proof. If h: P !M is a projective approximation, then M is necessarily

bounded above with coherent cohomology as this holds for P and h is a quasi-

isomorphism. Conversely, it suffices by 2.15 to show the existence of a projective

approximation when M is furthermore W-acyclic. But if M is W-acyclic with

coherent, thus W-acyclic, cohomology, then its submodule of boundaries,

B ¼ @ðMÞ �M is also W-acyclic: the exact sequences

0! Ki
 !Mi

 ! Bi
 ! 0

0! Bi
1
 ! Ki

 ! HiðMÞ ! 0

yield for each j5 1 and each simplex a 2 A isomorphisms

HjðWa;Bi
aÞ 
!

ffi
Hjþ1ðWa;Ki

aÞ 

ffi

Hjþ1ðWa;Bi
1
a Þ;

whence HjðWa;Bi
aÞ ffi HjþdimWaðWa;Bi
dimWa

a Þ ¼ 0 for each i.

In view of this observation, the classical construction of a projective resolution

applies: as HðMÞ is coherent there exists a surjection from a graded free R0-
module Q with coherent homogeneous components onto HðMÞ such that Qi

a vani-

shes in degrees i > d ifHiðMbÞ vanishes for those degrees for all simplices b � a. Due
to the W-acyclicity of the boundaries B �M, this homomorphism lifts from the

cohomology to the cycles K �M, and the resulting morphism of DG R-modules
Pð0Þ :¼ Q �R0 R !M is surjective in cohomology. Now Pð0Þ is projective, thus
any submodule is W-acyclic, and the usual process, see e.g. [Har, I.4.6], produces

a complex � � � ! PðiÞ ! � � � ! Pð0Þ !M ! 0 with projective DG R-modules
PðiÞ that becomes acyclic when H is applied. Moreover, on each simplex a the pro-
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jective modules PðiÞa can be choosen to vanish uniformly above so that the DG R-
module P associated to the total complex of the PðiÞ is again a projective

R-module. The induced morphism h: P !M then resolves, cf. 2.7, and consti-

tutes a desired projective approximation. &

EXAMPLE 2.20. Let F  be a locally free R-module with coherent homogeneous
components such that the transition maps pabðF aÞ ! F b are quasi-isomorphisms. In

general, such a module will not be projective. However, each F a is projective over

Ra. This fact can be used to construct the following explicit, and natural, projective

approximation. First consider the co-Čech complex

� � � 
!
M
jaj¼p

paðF aÞeðaÞ 
!
d
� � � 
!

d M
jaj¼1

paðF aÞeðaÞ 
!
d M
jaj¼0

paðF aÞeðaÞ ! 0;

where the direct sums are indexed by ordered simplices, a ¼ ða0; . . . ; apÞ, and the
differential d is dual to the differential of the Čech complex so that

dðeða0; . . . ; apÞÞ ¼
X
ð
1Þjeða0; . . . ; âj; . . . ; apÞ:

This differential is a homomorphism of DG modules and each term of the complex is

a projective R-module by 2.13. The augmentation map
L
jaj¼0 p


aðF aÞeðaÞ 
!

E F ,
sum of the natural maps paðF aÞ ! F , realizes the total complex of this co-Čech
complex as a projective approximation of F  as an R-module: using a simple spec-
tral sequence argument the restriction of the augmentation map to any simplex is

seen to be a quasi-isomorphism.

The total complex associated to this co-Čech complex gives thus a projective

approximation P of F , see 2.7 or the proof of 2.19. Note that P ¼L
paðF aÞ½jaj�, where the sum is taken over all ordered simplices a.

As we mentioned earlier in 2.12, and as can be seen easily from 2.13, R is in gene-
ral not a projective module over itself. However, the construction above provides a

canonical projective approximation of R over itself.

Remarks 2:21. (1) It follows that a projective approximation h: P !M can be

realized as a pair of morphisms of DG R-modules P ! fM  M, where the

morphism M ! fM is a W-acyclic resolution and P ! fM is a projective

approximation as constructed in the proof.

(2) If so desired, one may clearly modify the above construction to obtain in the

end a projective approximation F  !M with F  a graded free DG R-module.
(3) With the notation of the proposition, if A0 � A is a set of simplices such that

HðMaÞ ¼ 0 for all simplices a that do not contain a simplex from A0, then the above

construction produces a projective approximation withPa ¼ 0 for the same simplices.

Analogously, if HiðMÞ ¼ 0 for i > i0, then the construction provides a projective

approximation h: P !M with Pi
 ¼ 0 for i > i0.
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2.22. Now we can describe the Ext-functors of DG R-modules when the contra-
variant argument admits a projective approximation. Recall that by our conventions

for R-modules M, N  the Extk-functors are given by the set of morphisms
M ! N  of degree k in the derived category so that

ExtkR ðM;N Þ ¼ HomDðRÞðM;N ½k�Þ:

The following proposition summarizes 2.19, 2.17(2), and 2.16. The reader should

compare the result with [III, VI.10.2.4] in the algebraic case.

PROPOSITION 2.23. IfM is a DGR-modules that is bounded above with coherent

cohomology, and N  is any DG R-module then

ExtkR ðM;N Þ ffi HkðHomR ðP; ~N ÞÞ for k 2 Z;

where P !M is a projective approximation and N  ! ~N  is a quasi-isomorphism

into a W-acyclic DG R-module. &

2.24. Projective approximations allow as well to derive tensor products of DG

R-modules. Calling a DG R-module M flat if M �R ð Þ preserves quasi-iso-

morphisms of DG R-modules, a projective module that locally vanishes above is
flat by 2.17(1). Indeed, for flatness it suffices already that the module locally vanishes

above and that its restriction to each simplex is projective. For example, R itself is
always flat. If P !M is a projective approximation of a DG R-module M,

necessarily bounded above with coherent cohomology, and if N  is any DG
R-module, then P �R N  represents M � RN , the derived tensor product of

M with N  over R.
By 2.18, the derived tensor product is well defined up to homotopy equivalence,

and by 2.17(1) and 2.18 a pair of quasi-isomorphisms M !M0
; N  ! N 0 of

DG R-modules induces a quasi-isomorphism M � RN  
!M0
 � RN

0

. If

N  admits a projective approximation as well, say Q ! N , then M �R Q
represents M � RN  too. If N  is flat and locally vanishes above then, again
by [ALG, X.Prop.4], the given quasi-isomorphism P !M induces a quasi-

isomorphismM � RN  
!M �R N  and so, for example,M � RR ffiM.

A useful consequence of the preceding considerations is the following result that is

again well known in the algebraic case, see [Ill, VI.10.3.15].

COROLLARY 2.25. LetR ! S be a quasi-isomorphism of DG algebras over OW .

ð1Þ If M, N  are DG R-modules that are bounded above with coherent cohomology,

then there are natural isomorphisms

ExtkR ðM;N Þ 
!
ffi
ExtkS ðM � RS;N  � RSÞ

for each integer k.
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ð2Þ If M is in D
cohðRÞ and N  any DG S-module, then for each integer k there is a

natural isomorphism

ExtkR ðM;N Þ 
!
ffi
ExtkS ðM � RS;N Þ:

ð3Þ Restriction of scalars from S to R and ð Þ � RS form a pair of inverse exact

equivalences between D
cohðSÞ and D
cohðRÞ.

Proof. Let P !M and Q ! N  be projective approximations as DG
R-modules. By 2.17(1), Q ! Q �R S is a quasi-isomorphism and so

ExtkR ðP;QÞ 
!
ffi
ExtkR ðP;Q �R SÞ:

As HomR ðP;Q �R SÞ ffi HomS ðP �R S;Q �R SÞ and P �R S is a pro-
jective DG S-module that locally vanishes above, assertion (1) follows from 2.23.
To obtain (2), let P !M be as before and N  ! ~N  a W-acyclic resolution

that is a morphism of DG S-modules. One has then

ExtkR ðM;N Þ ffi HkðHomR ðP; ~N ÞÞ by 2:23;

ffi HkðHomS ðP �R S; ~N ÞÞ by adjunction;

ffi ExtkS ðM � RS;N Þ by 2:23 again:

For (3), note that ð Þ � RS on D
cohðRÞ is fully faithful by (1). This functor takes
its values in D
cohðSÞ, and to establish it as an equivalence with inverse as indicated,
it suffices to remark that for each N  in D
cohðSÞ the natural morphism
N  � RS ! N  obtained from (2) is an isomorphism in D
cohðSÞ. Indeed, let
N  ! ~N be again a W-acyclic resolution that is a morphism of DG S-modules
and choose a morphism of DG R-modules Q ! ~N  that constitutes a projective
approximation. As ~N  is already a S-module, this quasi-isomorphism factors as
Q ! Q �R S ! ~N , the morphism Q ! Q �R S is a quasi-isomorphism
by 2.17(1), and thus so is Q �R S ! ~N . Now the pair of quasi-isomorphisms
Q �R S ! ~N   N  represents the morphism N  � RS ! N , whence the
latter is an isomorphism in D
cohðSÞ. &

2.26. Considering OX as a DG algebra concentrated in degree 0, (projective) DG

OX-modules are just complexes of (projective) OX -modules. In this situation, the

restriction functor to a simplex a is easily seen to admit a right adjoint, given by

paðMaÞb :¼
pbaðMaÞ; for b � a;
0; otherwise,

�
cf. [Fle1, Section 2], or, again more generally, [Ill, VI.5.3]. As it is right adjoint to an

exact functor, pa transforms an injective OXa -module I a into the injective OX -mod-

ule paðI aÞ. The canonical map M ,!
Q

a2A paðMaÞ is a monomorphism for each
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OX-moduleM, and embedding in turn each Ma into an injective OXa-module I a

yields by composition a monomorphismM ,!
Q

a2A paðI aÞ into an injective OX-

module. Thus the category of OX-modules has enough injectives. In particular, for

complexesM;N  of OX-modules one may calculate Ext
k
X
ðM;N Þ in the ‘classi-

cal’ way as HkðHomX ðM; IÞÞ if N  admits an injective resolution N  ! I. By
2.23, ifM is a complex of OX -modules that is bounded above with coherent coho-

mology, then these groups can be calculated using a projective approximation ofM.

2.27. Restricting a given OX-moduleM to the Stein compact sets of the given cover-

ing defines the OX -moduleM ¼ j M withMa :¼MjXa. This functor is exact and

so induces directly a functor j : DðX Þ ! DðXÞ between the derived categories.

To describe a right adjoint, denote ja: Xa ,!X the inclusion and associate to a

moduleM on X the Čech complex C�ðMÞ with terms C
pðMÞ :¼

Q
jaj¼p jaðMaÞ;

where the product is over all ordered simplices, and the differential is defined in the

usual way by means of the transition maps for M and the given ordering on the

simplices. The functor jðMÞ :¼ H0ðC�ðMÞÞ is a right adjoint to j
 on the category

of OX-modules, and the canonical homomorphism of OX-modulesM! j j
 ðMÞ

is an isomorphism.

As the given covering is locally finite, the complex C�ðMÞ is locally bounded; the

localization at a point x 2 X vanishes in degrees greater than maxfjaj; x 2 Xag. As the

covering is by closed sets, the functors ja, and then also Cpð Þ, are exact. These two

facts together imply that the total complex (associated to) C�ðM�
Þ is acyclic when-

everM�
 is an acyclic complex of OX-modules. Accordingly, C

� can be viewed as a

functor from DðXÞ to DðX Þ. Note that the terms of the complex C�ðM�
Þ are flat

OX-modules whenever M�
a is flat over OXa for each simplex a.

We now show that C� represents Rj, the right derived functor of j: for an OX -

module of the form paðMaÞ, the complex C�ð paðMaÞÞ is nothing but the usual

(sheafified) Čech complex of Ma on Xa with respect to the trivial covering

fXa \ Xi ¼ Xagi2a, then extended by zero to the rest of X. Clearly C�ð paðMaÞÞ

resolves jð paðMaÞÞ ffi jaðMaÞ, the extension of Ma by zero. By 2.26, each

OX-module M admits a resolution by OX-modules of the form
Q

a2A paðN aÞ,

whence the natural morphism of functors Rj!C�, induced by the universal prop-

erty of the derived functor, is indeed an isomorphism. The relationship between

DðX Þ and DðXÞ can now be summarized as follows.

PROPOSITION 2.28. The functor j : DðX Þ 
!DðXÞ embeds DðX Þ as a full and

exact subcategory into DðXÞ and C� ffi Rj is an exact right adjoint. In particular, for

M;N 2 DðX Þ and N 0 2 DðXÞ there are functorial isomorphisms

M ffi C�ðj MÞ;
ExtkXðM;N Þ ffi ExtkX ðj

ðMÞ; j ðN ÞÞ;

and
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ExtkX ðj
ðMÞ;N 0Þ ffi ExtkXðM;C�ðN 0ÞÞ:

The adjoint pair j ;Rj satisfies the projection formula: the canonical morphism

M � OX
RjðN Þ 
!Rjðj

M � OX
N Þ

is an isomorphism in DðX Þ for M 2 DðX Þ and N  2 D
cohðXÞ.

Proof. As mentioned above, the natural morphism of functors id
! jj
 is an

isomorphism on the level of modules. It induces an isomorphism id
!ðRjÞj
ffi C�j 

of the corresponding derived functors on DðX Þ, whence the functor j  is still fully

faithful on DðX Þ.

To prove the projection formula, observe first that the natural map

j ðM�OX
M0
Þ 
! j ðMÞ �OX

j ðM0
Þ

is an isomorphism as this holds on each simplex. As j  is exact, this isomorphism

passes to the derived tensor products as soon as those exist. Adjunction then yields

a morphism M � OX
M0

!Rjðj

ðMÞ � OX
j ðM0

ÞÞ. Now set M0
¼ RjN  and

compose the corresponding morphism with the one induced by the adjunction

map j RjðN Þ 
!N  to obtain the morphism in the projection formula. Given

the existence of this natural morphism, to establish it as an isomorphism for

N  2 D
cohðXÞ, we first replace N  by a projective approximation P, then use
2.13 to reduce to the case N  ¼ paðOXa Þ for some simplex a. Now

Rjð p

aðOXaÞÞ ffi C�ðOXjXaÞ is a finite complex of flat OX-modules that resolves

OXjXa and Rjðj
M � OX

paðOXa ÞÞ ffi C�ðMjXaÞ resolves MjXa. The desired iso-

morphism in DðX Þ follows thus from the obvious one for OX-modules,

MjXa ffiM�OX
ðOXjXaÞ. &

EXAMPLE 2.29. If N is any complex on X then, by our conventions, its coho-

mology groups HkðX;N Þ are the groups ExtkXðOX;N Þ and so can be computed by
the complex HomX ðP; ~N Þ, where P 
!OX is a projective resolution of OX as a

module over itself and N  
! ~N  is a quasi-isomorphism into a W-acyclic com-

plex. Using the projective approximation P of OX constructed in 2:20 it follows

that HomX ðP; ~N Þ is the usual Čech-complex GðX;C�ð ~N ÞÞ.

Remarks 2:30. (1) Note that the preceding constructions work more generally on

the category of all sheaves of Abelian groups AbX on X and AbX on X. In parti-

cular, later on we will need the Čech functor in this context, where it is still exact and

defines with the same arguments as before the derived functor Rj from DðAbX Þ into

DðAbXÞ.

(2) As j  is fully faithful, the essential image of DðX Þ under this functor is easily

seen to consist of all complexes N  in DðXÞ for which the transition maps

pabðN aÞ 
!N b are quasi-isomorphisms for all simplices a; b with a � b. In this case
the natural map j C�ðN Þ 
!N  is a quasi-isomorphism, and 2.28 implies that for
each complex M 2 DðX Þ, there are isomorphisms
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ExtiX ðN ; j
MÞ ffi ExtiXðC�ðN Þ;MÞ; i 2 Z: &

We now turn to the construction of algebra resolutions and resolvents.

2.31. A morphism R 
! ~R of DG algebras overW is called free if there is a gra-
ded free DGR-module F  such that ~R ffi SR ðF Þ asR-algebras, where the sym-
metric algebra functor is to be understood in the graded context. Analogously we say

that ~R is locally free if ~Ra;x is free as Ra;x-algebra for each simplex a and each
x 2Wa. The composition of (locally) free morphisms of DG algebras is again

(locally) free.

If R 
!S is any morphism of DG algebras over W, a factorization

R 
! ~R 
!S with R 
! ~R locally free and ~R 
!S a surjective quasi-
isomorphism of DG algebras will be called a DG algebra resolution of S over
R. Such a DG algebra resolution will be called free if ~R is free.
The result 2.25 together with the next one are the crucial ingredients in the con-

struction of cotangent complexes following Quillen’s original approach [Qui1],

[Qui2]. In his framework of closed model categories, the free morphisms are the cofi-

brations and the surjective quasi-isomorphisms are the acyclic fibrations.

PROPOSITION 2.32. Every morphism R 
!S of DG algebras admits a free DG

algebra resolution.

Proof. According to our general assumption on DG algebras, the R-module S
is in CohR, and so 2.19 and 2.21(a),(b) guarantee a projective approximation of S
in form of a morphism of DG R-modules from a graded free DG R-module, say
F ð0Þ 
!S. The induced morphism Rð0Þ :¼ SR ðF ð0Þ Þ 
!S of DG algebras induces
a surjection in cohomology and the structure map R 
!Rð0Þ is free.
Now assume constructed for some integer k5 0 a morphism of DG R-algebras

RðkÞ 
!S with RðkÞ free over R that is surjective in cohomology and such that
HiðRðkÞ Þ 
!HiðSÞ is an isomorphism for i > 
k. As the kernel of the surjection

H
kðRðkÞ Þ 
!H
kðSÞ is coherent, one may choose a graded free coherent OW-

module F
k
1 that is concentrated in degree 
k
 1 and a morphism

j: F
k
1 
!RðkÞ of graded OW -modules of degree 1 that maps F
k
1 into the

cycles of RðkÞ and such that the sequence of OW-modules

F
k
1 
!H
kðRðkÞ Þ 
!H
kðSÞ 
! 0
is exact. Now set

Rðkþ1Þ ffi SRðkÞ ðF

k
1
 �OW

RðkÞ Þ ffi SR ðF
k
1 �OW
RÞ �R RðkÞ

and use j to extend the given differential. This DG algebra is free over RðkÞ and the
structure map is an isomorphism in degrees greater than 
ðkþ 1Þ. The composed

map, say, g: F
k
1 
!RðkÞ 
!S maps F
k
1 into the boundaries, hence we can

find a lifting ~g: F
k
1 
!S
k
1 so that g ¼ @ ~g. There is a unique homorphism of
RðkÞ -algebras Rðkþ1Þ 
!S that restricts to ~g on F
k
1 . By construction it is also
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a morphism of DG algebras, and it is surjective in cohomology with HiðRðkþ1Þ Þ 
!

HiðSÞ an isomorphism for each i > 
ðkþ 1Þ. Finally set ~R ¼

!
lim

k
RðkÞ . &

To remember the graded free DGR-modules F
k �OW
R that were successively

adjoined in the construction of the algebra resolution we also write ~R ¼
R½F
k �OW

R; k5 0�; and the sequence of free DG algebra morphisms

R ,! � � � ,! ~RðkÞ :¼ R½F
i �OW
R; k5 i5 0� ,! � � � ,! ~R

is sometimes called the associated Postnikov tower. This construction is useful for

inductive proofs. For example, one easily shows in this way the following result that

we will use later on.

LEMMA 2.33. Let S be a free R-algebra on W over Y. Every OY-linear derivation

d: R 
!M into a module M 2 CohS extends to an OY-linear derivation
~d: S 
!M.

Following [Fle1], we now introduce the notion of a resolvent (see also [Pal]).

DEFINITION 2.34. Given a morphism of complex spaces f : X
!Y, a resolvent for

X over Y consists of a triple X ¼ ðX;W;RÞ satisfying the following conditions.

(1) X ¼ ðXaÞa2A is the simplicial space associated to some locally finite covering

ðXiÞi2I of X by Stein compact subsets as in 2.2

(2) W ¼ ðWaÞa2A is a smoothing of f. By this we mean that there is a factorization

where W ¼ ðWaÞa2A is a simplicial system of Stein compact sets, i is a closed

embedding and ~f is smooth, i.e. for every point x 2Wa the analytic algebra

OWa;x is smooth over OY; ~faðxÞ
.

(3) R is a DG algebra resolution of OW 
!OX , see 2.31.

The resolvent X is said to be free ifW is a free smoothing as in 2.2 andR is a free
OW -algebra.

Given X and W, we will sometimes also refer to R as a resolvent of OX . The

preceding results have the following application.

COROLLARY 2.35. A free resolvent ðX;W;RÞ of X over Y exists and one may

assume that OW 
!R0
 is an isomorphism, thus that R ¼ OW ½F
k ; k5 1� with
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suitable graded free OW -modules F
k concentrated in degree 
k. For any resolvent,

the induced functor ð Þ � ROX : D


cohðRÞ 
!D
cohðXÞ is an exact equivalence of

categories.

Remark 2:36. Up to this point, all results are valid with insignificant modi-

fications for a finitely presented morphism X
!Y of arbitrary locally Noetherian

schemes if one replaces ‘Stein compact set’ by ‘affine scheme’. If one further replaces

‘coherent’ by ‘quasi-coherent’, the preceding results hold even for any morphism of

schemes. &

We finish this section with the relevant results on cotangent complexes, and here

we need characteristic zero, as otherwise DG algebra resolutions are not sufficient,

[Qui2], [Qui3].

2.37. Let R be a DG algebra over a simplicial scheme of Stein compact sets W as
before. By definition, OWa�YWa ffi OWa

~�OY
OWa , where ~� denotes the analytic tensor

product. Abusively, we set

R �OY
R :¼ R �OW

ðOW
~�OY

OW Þ �OW
R;

and note that R �OY
R is naturally a DG algebra over the simplical scheme

W �Y W ¼ fWa �Y Waga2A of Stein compact sets, see 2.2.

Let m: R �OY
R 
!R denote the multiplication map and set

I :¼ kerm � R �OY
R. The DG R-module O1R=Y ¼ I=I2 is the module of (ana-

lytic) differential 1-forms of R over Y. As R has coherent homogeneous compo-
nents by hypothesis, O1R=Y is a DG R-module in Coh ðRÞ. The universal

derivation d: R 
!O1R=Y maps a local section f of Ra to the class

df ¼ 1� f
 f� 1 2 I amod I2a: It is a map of degree zero that has the desired univer-
sal property with respect to homogeneous Y-derivations into graded R-modules in
CohR. More precisely, with DeriYðR;N Þ the group of Y-derivations of degree i
into the R-module N , one has a natural inclusion

Homi
R ðO

1
R=Y;N Þ � !

ð Þ�d
DeriYðR;N Þ

that becomes an isomorphism for N 2 Coh R. As the classes df locally generate
O1R=Y, its differential, inherited from R �OY

R, is uniquely determined through
@ðdf Þ ¼ dð@f Þ:

The module of (analytic) differential forms of degree k5 0 is the DG R-module
Ok

R=Y :¼ Lk
RO

1
R=Y, the alternating or (graded) exterior power of O1R=Y, see, for

example, [Lod 5.4.3]. These DG modules are again in CohR. For later use we recall
that (graded) symmetric and exterior powers are related through S

k
R ðO

1
R=Y½1�Þ ffi

Ok
R=Y½k�.
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2.38. For any resolvent X ¼ ðX;W;RÞ, the differential module O1R=Y is a locally
free R-module and so are the exterior powers Ok

R=Y. If the resolvent is free, then

these modules are even projective over R for k5 1.

For any resolvent, the natural maps Ok
R=Y
!Ok

R=Y �R OX for k5 0 are quasi-

isomorphisms by 2.17. The Čech-complex C�ðO1R=Y �R OX Þ on X is a cotangent

complex of X over Y and is denoted LX=Y. By construction, it is a complex in

D
cohðX Þ whose terms are flat OX-modules. The isomorphism class of LX=Y in

DðX Þ is well defined, see [Fle1], in the sense that it does not depend on the choice

of the resolvent ðX;W;RÞ. Furthermore, we set Lk
LX=Y :¼ C�ðOk

R=Y�R
OX Þ for k5 0: These complexes are also in D
cohðX Þ and their isomorphism classes

are again well defined. Indeed, they represent the derived exterior powers of LX=Y in

the sense of [DPu,Qui2] or [Ill, I.4.2.2].

The functoriality of the formation of the cotangent complex and its powers has the

following consequence: the natural morphisms of complexes of OXa -modules

Lk
LX=Y

���
Xa


!Ok
Ra=Y
�Ra OXa ð3Þ

are quasi-isomorphisms for each simplex a and each k5 0.

Recall that the tangent cohomology functors of X over Y are defined by

Ti
X=YðN Þ :¼ ExtiXðLX=Y;N Þ; i 2 Z;

for any OX-module, or, more generally, for any complex N in DðX Þ. Note that in

view of 2.30(2) and the quasi-isomorphism (3) for k ¼ 1 the right-hand side is

isomorphic to ExtiOX
ðO1R=Y �R OX ;N Þ. Thus, according to 2.25 (2),

Ti
X=YðN Þ ffi ExtiR ðO

1
R=Y;N Þ: ð4Þ

The following description in terms of free resolvents will be frequently used in this

paper.

PROPOSITION 2.39. If ðX;W;RÞ is a free resolvent of X over Y, then for every

complex N 2 DðX Þ and each integer i there are canonical isomorphisms

T i
X=YðN Þ ffi HiðHomR ðO

1
R=Y;

~NÞÞ; where N  
! ~N is a quasi-isomorphism of

N  :¼ j ðN Þ into a W-acyclic complex of OX-modules. Moreover, if N is a complex

of coherent OX-modules then these groups are as well isomorphic to HiðDerYðR;N ÞÞ.
Proof. The claimed isomorphism follows from (4) as O1R=Y is a projective

R-module for a free resolvent. The final assertion is a consequence of the usual
universal property of the module of analytic differentials, see 2.37. &

3. The Atiyah Class

We first define and investigate Atiyah classes and their powers on D
cohðRÞ for any
DG algebra R over a simplicial scheme of Stein compact sets W over a complex
space Y in terms of connections, then descend to D
cohðX Þ by means of resolvents
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and the Čech functor. We keep the notations of the preceding section, and una-

dorned tensor products will be over R. Moreover @ will indiscriminately denote
the differentials of the respective DG modules.

3.1. ATIYAH CLASSES VIA CONNECTIONS

Recall that a connection on an R-module M is a map of degree 0, H: M 
!

M � O1R=Y; that satisfies the usual product rule, Hðmf Þ ¼ HðmÞfþm� df, for local

sections m in Ma and f in Ra.

We first collect some basic and simple facts about connections.

LEMMA 3.1. Every projective R-module that locally vanishes above admits a

connection.

Proof. As the direct sum of a family of connections is again a connection, we may

restrict by 2.13 to the case that P ffi paðPaÞ, where Pa is a projective Ra-module

generated in a single degree, say k. If Pa is graded free, then Pa ffi V ½k� �C Ra with V

a finite-dimensional vector space over C, and the collection of maps

1� d : V ½k� �C Rb
!V ½k� �C O1Rb=Y
; a � b;

defines a connection on V ½k� �C paðRaÞ. In the general case Pa embeds into a free

module such that F a ffi V ½k� �C Ra ffi Pa �Qa. If H: paðF aÞ 
! paðF aÞ � O1R=Y is
a connection on paðF aÞ, then the composition

paðPaÞ 
!
incl:

paðF aÞ 
!
H

paðF aÞ � O1R=Y 
!
proj:

paðPaÞ � O1R=Y

is easily seen to be a connection on paðPaÞ. &

PROPOSITION 3.2. For any connection H: M 
!M � O1R=Y on a DG R-
module M, the map ½@;H� of degree 1 is a homomorphism of DG R-modules, so that

½@;H� ¼ @H
 H@ 2 Hom1R ðM;M � O1R=YÞ is a cycle. Its cohomology class in

H1ðHomR ðM;M � O1R=YÞÞ is independent of the choice of connection.

Proof. That ½@;H� is a homomorphism of right R-modules is easily verified by
explicit calculation. Moreover,

½@; ½@;H�� ¼ @½@;H� þ ½@;H�@ ¼ @ð@H
 H@Þ þ ð@H
 H@Þ@ ¼ @2H
 H@2 ¼ 0;

whence ½@;H� is a homomorphism of DG modules, thus a cycle.
If H1;H2: M 
!M � O1R=Y are connections, then H1 
 H2 is R-linear and so
½@;H1� ¼ ½@;H2� þ ½@;H1 
 H2�, which means that the cycles ½@;H1�; ½@;H2� are
cohomologous. &

This construction of a well defined cycle from a connection can be iterated: for

each k5 0, the cycle ½@;H� defines a morphism of DG R-modules of degree k,

½@;H�k: M 
!M � ðO
1
R=YÞ

�k

!
1�^k M � Ok

R=Y;
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where ^k: ðO1R=YÞ
�k

!Ok

R=Y is the natural projection. The class of ½@;H�
k in

HkðHomR ðM;M � Ok
R=YÞÞ is again independent of the chosen connection as fol-

lows from the case f ¼ idM
in the next result that deals more generally with the

functoriality of these iterated classes.

LEMMA 3.3. Let f : M 
!M0
 be a morphism of DG R-modules. If

H: M 
!M � O1R=Y and H0: M0
 
!M0

 � O1R=Y

are connections, then ð f� 1Þ � ½@;H�k and ½@;H0�k � f represent the same class in

HkðHomR ðM;M0
 � Ok

R=YÞÞ.

Proof. If k ¼ 0, the classes in question are equal to f itself. If k > 0, the map

g :¼ ð f� 1Þ � H � ½@;H�k
1 
 H0 � ½@;H0�k
1 � f : M 
!M0
 � Ok

R=Y

of degree k
 1 is R-linear. As ½@; g� is equal to ð f� 1Þ � ½@;H�k 
 ½@;H0�k � f the
claim follows. &

Applying the preceding result when f is a homotopy equivalence between projec-

tive approximations of the same DG R-module shows that the following definition
is independent of the choice of projective approximation or connection on it.

DEFINITION 3.4. Let M be a DG R-module that is bounded above with
coherent cohomology. Let P 
!M be a projective approximation as in 2.19 and

let H be a connection on P that exists by 3.1. The Atiyah class ofM with respect to

R=Y is the image of ½@;H� under the isomorphism

H1ðHomR ðP;P � O1R=YÞÞ ffi Ext
1
R ðM;M � O1R=YÞ

½@;H� jjjj! AtðMÞ;

and the class of ½@;H�k is mapped to the kth power of the Atiyah class of M,

½@;H�k jjjj! AtkðMÞ 2 Ext
k
R ðM;M � Ok

R=YÞ:

3.5. Now let j: R 
!S be a morphism of DG algebras over W and M an

R-module with connection H. The composition

M 
!
H�1 M � O1R=Y � S 
!

1�dj
M � O1S=Y !

ffi
ðM � SÞ �S O

1
S=Y

extends by the product rule to a connection HS on the S-moduleM � S. IfM is

a DG R-module, one verifies easily that

½@;HS �
k
¼ ð1� ^kdjÞ � ð½@;H�k � SÞ;

where ^kdj: ðLk
RO

1
R=YÞ � S ffi Lk

S ðO
1
R=Y � SÞ 
!Lk

SO
1
S=Y is the morphism of

DG S-modules induced by dj. These considerations imply the following result.
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PROPOSITION 3.6. Let j: R 
!S be a morphism of DG algebras over W and

M 2 D
cohðRÞ. Under the natural maps induced by dj,

ð^kdjÞ: Ext
k
R ðM;M � Ok

R=YÞ 
! ExtkS ðM � S;M � Ok
S=YÞ;

the powers of the Atiyah class of M are mapped to those of M � S. &

3.7. The definition of a connection does not involve the grading of the underlying

R-module. In particular, if H is a connection on the DGR-moduleM, it is as well

one on the shifted module M½i� for each integer i. As @M½i� ¼ ð
1Þ
i@M

, the cano-

nical identification

ExtkR ðM;M � Ok
R=YÞ 
!

½i�

ffi
ExtkR ðM½i�;M½i� � Ok

R=YÞ

for M in D
cohðRÞ maps At
k
ðMÞ to ð
1Þ

kiAtkðM½i �Þ, thus, in short,

AtkðM½i �Þ ¼ ð
1Þ
kiAtkðMÞ½i �:

3.8. The sign in this last equality disappears if one changes slightly the point of view:

recall that for any DG R-modulesM;N  and any integer k one has a natural iso-
morphism of DG R-modules that moves the shift functor Tk to the second factor,

ðM �N Þ½k� 
!
ffi M � ðN ½k�Þ; Tkðm� nÞ jjjj! ð
1Þkjmjm� Tkn;

where m is a local homogeneous section of M and n is a local section of N .
Composing AtkðMÞ with this isomorphism yields then a morphism

M !
AtkðMÞ ðM � Ok

R=YÞ½k� 
!
ffi M � ðO

k
R=Y½k�Þ 
!

ffi M � S
k
ðO1R=Y½1�Þ

that we denote, abusively, again by AtkðMÞ. In this form, 3.3 and 3.7 translate into

the following

PROPOSITION 3.9. The powers of the Atiyah class define morphisms of exact

functors

Atkð Þ: id
!ð Þ � S
k
ðO1R=Y½1�Þ; k5 0;

on D
cohðRÞ that commute with the shift functor. &

3.2. ATIYAH CLASSES OF COHERENT OX-MODULES

Now we descend to X. Let F 2 D
cohðX Þ be a complex and ðX;W;RÞ a resolvent of
the morphism of complex spaces X! Y. Associating to these data the complex of

OX-modules F  with F a ¼ F jXa, the powers of the Atiyah classes of F are defined
to be the images of AtkðF Þ under the isomorphism

ExtkX
�
F ;F  � Ok

R=Y � OX

	
ffi ExtkX F ;F � Lk

LX=Y

� 	
;

AtkðF Þ jjjj!AtkðF Þ:
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THEOREM 3.10. The Atiyah classes AtkðF Þ 2 ExtkXðF ;F � Lk
LX=YÞ are well

defined for each F 2 D
cohðX Þ.

Proof. To compare the Atiyah classes formed with DG algebra resolutions R
and R0 of OX over W, note first that by 2.32 there is a free R �OW

R0 algebra
that constitutes a resolvent of OX . Thus we may suppose that R0 is an R-
algebra. In this case 3.6 gives the independence from the choice of DG algebra

resolution.

The construction is as well independent of the embedding X �W. With

similar arguments as above it suffices to compare two embeddings X �W
and X �W0 that are related by a smooth map p: W0 
!W. If R is a
locally free OW-algebra forming a resolvent then we can take a free pR
algebra, say, R0 as a resolvent on W. Now a projective R-approximation P
of F  gives a projective R0-approximation P0 ¼ P �R R0, and 3.6 applies
again.

Finally, the independence from the choice of locally finite coverings by Stein

compact sets is easily seen considering refinements; we leave the simple details to

the reader. &

We now translate the earlier results on the naturality of Atiyah classes. The

following is an almost immediate consequence of 3.3.

PROPOSITION 3.11. For every morphism of complexes a : F 
!G of degree 0 in

D
cohðX Þ the diagram

commutes.

Proof. Consider as in 2.34 a resolvent of X over Y and choose projective

approximations P 
!F  and Q 
!G. There is a morphism ~a: P 
!Q lifting
the given morphism a and the assertion follows now easily from 3.3. &

For F 2 D
cohðX Þ as before, Ext
�
XðF ;F Þ :¼

L
i Ext

i
XðF ;F Þ carries a natural alge-

bra structure given by Yoneda product, and Ext�XðF ;F � Lk
LX=YÞ is a bimodule

over Ext�XðF ;F Þ.

PROPOSITION 3.12. The power AtkðF Þ of the Atiyah class of F is a ðgradedÞ

central element of degree k in the bimodule Ext�XðF ;F � Lk
LX=YÞ, which means that

x �AtkðF Þ ¼ ð
1ÞikAtkðF Þ � x for every element x 2 ExtiXðF ;F Þ.
Proof. By the preceding result and by 3.7 the diagram

A SEMIREGULARITY MAP FOR MODULES AND APPLICATIONS 161

https://doi.org/10.1023/A:1023999012081 Published online by Cambridge University Press

https://doi.org/10.1023/A:1023999012081


commutes. &

Using the isomorphisms S
k
ðLX=Y½1�Þ 
!

ffi
ðLk

LX=YÞ½k�, this compatibility with

morphisms can be summarized in analogy to 3.9 as follows.

COROLLARY 3.13. The powers of the Atiyah class define morphisms of exact

functors

Atkð Þ: id
!ð Þ � S
k
ðLX=Y½1�Þ; k5 0;

on D
cohðX Þ that commute with the shift functor. &

The Atiyah classes are as well compatible with mappings in the following sense.

PROPOSITION 3.14. Let

be a diagram of complex spaces and F 2 D
cohðX Þ. Under the natural map

ExtkXðF ;F � Lk
LX=YÞ 
!Ext

k
X 0 ðLf

ðF Þ;Lf ðF Þ � Lk
LX

0=Y 0 Þ

the Atiyah class AtkðF Þ is mapped onto the Atiyah class AtkðLf ðF ÞÞ.

Before giving the proof we have to choose compatible resolvents for X and X 0.

This is done as follows. Consider locally finite coverings fXjgj2J, fX
0
igi2I of X resp.

X 0 by Stein compact sets such that there is a map s: I! J with fðX 0iÞ � XsðiÞ for

all i 2 I. Let f : X 0 ¼ ðX
0
aÞa2A ! X ¼ ðXbÞb2B be the associated morphism of simpli-

cial spaces. There is a natural functor f : CohðXÞ ! CohðX0Þ which associates to

M 2 CohðXÞ the module with f ðMÞa :¼ ð f jXaÞ

ðMsðaÞÞ. Obviously f  trans-

forms locally free modules into locally free modules.

Choose embeddings Xj ,!Lj, X
0
i ,!Vi into Stein compact sets in C

nj � Y resp.

C
ni � Y 0 and take the diagonal embedding X 0i � L0i :¼ LsðiÞ �Y Vi. From the data

Xj � Lj and X 0i � L0i we construct smoothings X �W, X
0
 �W 0

 of X! Y and

X 0 ! Y 0, respectively, as explained in 2.2. The projections induce a system of com-

patible maps ~fa: W
0
a!WsðaÞ restricting to f on X0a. As above there is a natural func-

tor ~f : CohW ! CohW 0
 transforming locally free modules into such. Therefore, if

R ! OX is a resolvent then
~f ðRÞ is a locally free DG algebra overW 0

. The pro-

jection ~f ðRÞ ! OX0
can be factored through a quasi-isomorphism R0 ! OX0

such

that R0 is a free DG ~f ðRÞ-algebra, and we take this as a resolvent for X 0 over Y 0.
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We remark that one has a natural functor ~f 
1: AbðWÞ ! AbðW 0
Þ on the category

of simplicial systems of Abelian groups on W with ~f 
1ðAÞa :¼ ~f 
1ðAsðaÞÞ.

After these preparation we can easily deduce 3.14.

Proof of 3:14. Let F  ! ~F be a quasi-isomorphism into a W-acyclic module,

P ! ~F a projective approximation, and let H: P ! P � O1R=Y be a connection.
Using the product rule, the composed map

~f 
1P !
~f 
1ðHÞ ~f 
1P � ~f
1R

~f 
1ðO1R=YÞ 
!
~f 
1P � ~f
1R O

1
R0=Y 0

can be extended to a connection H0 on P0 :¼ ~f 
1P � ~f
1R R
0
. Hence, under the

natural map

ExtkR ðP;P � Ok
R=YÞ 
!Ext

k
R0 ðP

0
;P0 � Ok

R0=Y 0 Þ

the Atiyah class AtkðPÞ maps onto AtkðP0Þ. Since the module on the left is iso-
morphic to ExtkXðF ;F � Lk

LX=YÞ and the module on the right is isomorphic to

ExtkX 0 ðLf
F ;Lf F � Lk

LX 0=Y 0 Þ, the result follows. &

COROLLARY 3.15. Let

be a diagram of complex spaces and a: Lf F ! F 0 a morphism of complexes of

sheaves, where F 2 D
cohðX Þ and F 0 2 D
cohðX
0Þ. Then the diagram

commutes.

Proof. This is an immediate consequence of 3.11 and the fact that

Lf AtkðF Þ ¼ AtkðLf F Þ. &

In the final result of this section we explain how to compute the Atiyah class using

the second fundamental form. Slightly more generally it is convenient to show the

following result.

PROPOSITION 3.16. Let X be smooth over Y and let 0! F 0 
!
j

F 
!
p

F 00 ! 0 be

an exact sequence of coherent sheaves on X. Assume that there is a map

H: F ! F 00 � OX=Y satisfying the product rule Hð faÞ ¼ Hð f Þaþ pð f Þ � da for local
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sections f in F and a in OX. The linear map s :¼ H � j: F 0 
!F 00 � O1X=Y: is then

OX-linear, and if

d0: HomðF 0;F 00 � O1X=YÞ ! Ext1ðF 0;F 0 � O1X=YÞ;

d00: HomðF 0;F 00 � O1X=YÞ ! Ext1ðF 00;F 00 � O1X=YÞ

denote the boundary operator in the respective long exact Ext-sequences then

d0ðsÞ ¼ AtðF 0Þ and d00ðsÞ ¼ 
AtðF 00Þ:

If F itself admits a connection, say, H1: F ! F � O1X=Y, then this result applies to
H :¼ p� 1 � H1, and the map s becomes the usual second fundamental form. This
shows thus in particular how to compute the Atiyah class using the second funda-

mental form.

Proof. Let ðX;W;RÞ be a resolvent of X as in 2.34. There are projective

approximations P0, P ffi P0 � P00, P00 of F 0, F , F 00, respectively that fit into a
commutative diagram

Consider connections H0, H00 on P0, P00, respectively, and equip P with the connec-
tion H0 � H00. Using the isomorphisms

HomðF 0;F 00 � O1X=YÞ ffi H
�ðHomðP0;F 00 � O1R=YÞÞ;

Ext1ðF 00;F 00 � O1X=YÞ ffi H1ðHomðP00;F 00 � O1R=YÞÞ;

d00ðsÞ can be computed as follows. The linear map s � p0 can be extended to a linear
map ~s: P ! F 00 � O1R=Y, and ~s � @ is zero on P0 and so defines a map s00: P00 !
F 00 � O1R=Y that represents 
d00ðsÞ. Taking as extension the map ~s :¼ H � p

ðp00 � 1Þ � H00 � ~p we get ~s � @ ¼ 
ðp00 � 1Þ � H00@ � ~p, and so ðp00 � 1Þ� H00@ represents
d00ðsÞ. By construction it also represents 
AtðF 00Þ, proving the second part of the
result. The equality d0ðsÞ ¼ AtðF 0Þ follows with a similar argument and is left to
the reader. &

Remarks 3:17: (1) If X is smooth over Y and if F is a coherent OX-module then

the Atiyah class of AtðF Þ is the cohomology class that is represented by the
extension

0! F �OX
O1X=Y
!

j
P1ðF Þ :¼ p1ðF Þ �OX�YX

OX�YX=J 2
!
p

F ! 0; ðÞ

where J � OX�YX is the ideal of the diagonal and where we consider P1ðF Þ as an
OX-module via the second projection p2. Using 3.16 a simple proof can be given
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as follows. The map H0: p1ðF Þ ! F �OX
O1X=Y given by Hð f� aÞ :¼ f� da for local

sections f of F , a of OX, is easily seen to factor through a map H: P1ðF Þ !
F �OX

O1X=Y that satisfies the product rule required in 3.16. The map s :¼ H � j is just
the identity on F �OX

O1X as O
1
X=Y is identified with J =J 2 via da jjjj!1� a
 a� 1.

Hence, 3.16 shows that AtðF Þ is represented by 
d00ðsÞ, where d00: HomðF�
O1X=Y;F � O1X=YÞ ! Ext1ðF ;F � O1X=YÞ is the boundary map. In view of [ALG,

X.126, Cor.1(b)] this proves the remark.

(2) In order to check that the sign of our Atiyah classes is correct, consider the case

that X ¼ P
n andM ¼ OP

nð1Þ. It is well known that the extension class of the Euler

sequence

0
!O1Pn ð1Þ 
!
j

Onþ1
P
n ¼

Mn

i¼0
eiOP

n 
!
p

OP
n ð1Þ 
! 0

in Ext1Pn ðOP
n ð1Þ;O1Pnð1ÞÞ ffi H1ðPn;O1PnÞ ffi C represents the first Chern class

c1ðOP
nð1ÞÞ. Explicitly, the maps j; p are given by jðxidxj 
 xjdxiÞ ¼ ejxi 
 eixj and

pðeiÞ ¼ xi, respectively, with x0; . . . ; xn the homogeneous coordinates of P
n. The

module Onþ1
P
n admits a unique connection with HðeiÞ ¼ 0, and the corresponding

map s in 3.16 is easily seen to be -id on O1Pn ð1Þ. Hence, it follows from 3.16 that

c1ðOP
nð1ÞÞ ¼ 
AtðOP

n ð1ÞÞ. &

Summing up we have a naturally defined class

expð
AtðF ÞÞ ¼
X
k

ð
1ÞkAtkðF Þ=k! 2
Y
k

ExtkXðF ;F � Lk
LX=YÞ;

the Atiyah–Chern character, for every complex F in D
cohðX Þ.

4. The Semiregularity Map

4.1. A SEMIREGULARITY MAP FOR MODULES

Recall that a complex F over a complex space X is called perfect if it admits locally a
quasiisomorphism to a bounded complex of free coherent OX-modules. For instance,

every OX-module on a complex manifold when considered as a complex concentra-

ted in degree 0 is perfect. If G 2 DðX Þ is a complex then for every perfect complex F
there is a natural trace map

Tr: ExtkXðF ;F � GÞ 
!HkðX;GÞ; k5 0;

see [Ill]. These maps are compatible with taking cup products: if x 2 ExtjXðG;G0Þ,
where G0 is another complex in DðX Þ, then the diagram

commutes. For instance, applying the trace map to the Atiyah classes we obtain for

every perfect complex F well defined classes
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chkðF Þ :¼ Trðð
1ÞkAtkðF ÞÞ=k! 2 HkðX;Lk
LX=YÞ;

that are the components of the Chern character chðF Þ ¼ Tr expð
AtðF ÞÞ of F . If X
is a manifold and F is a vector bundle then this gives the usual Chern character of X,
see [At, OTT], and in the general algebraic case it is Illusie’s [Ill] description.

DEFINITION 4.1. Let X! Y be a morphism of complex spaces and let F be a

perfect complex of OX-modules. The map

s :¼ Trð � expð
AtðF ÞÞÞ:Ext2XðF ;F Þ 
!
Y
k

Hkþ2ðX;Lk
LX=YÞ

is called the semiregularity map for F .

Slightly more generally, for every coherent OX-module N and every r5 0 there

are maps

s¼ sN :¼Trð � expð
AtðF ÞÞÞ :ExtrXðF ;F �N Þ 
!
Y
k

HkþrðX;N �Lk
LX=YÞ;

to which we will also refer as the semiregularity map.

To formulate the next proposition, set L :¼ LX=Y and note that the group

A :¼
L

i A
i with

Ai :¼
M
j

ExtiþjX ðF ;F � Lj
LÞ ffi

M
j

ExtiXðF ;F � S jðL½1�ÞÞ

carries a natural algebra structure that is associative but in general not graded com-

mutative. Moreover, M :¼
L

i M
i with Mi :¼

L
j Ext

i
XðF ;F � N � S jðL½1�ÞÞ is a

graded A-bimodule. Every element x 2 T r
1
X=YðN Þ ffi Ext

r
XðL½1�;N Þ defines a deriva-

tion hx; i: A!M of degree r which is induced by the composition

L�L
!
D

L � L�L
!
x�idN � L�L;

where D is the indicated component of the comultiplication on L�L. Thus, for ele-
ments o1 2 Ai, o2 2 A we have

hx;o1o2i ¼ hx;o1io2 þ ð
1Þ
iro1hx;o2i:

In particular, for F ¼ OX, this gives a derivation hx; i from the cohomology algebraL
H iþjðX;Lj

LÞ into
L

H iþjðX;N � Lj
LÞ. Note that using resolvents one can check

all this very explicitly.

PROPOSITION 4.2. Let X! Y be a morphism of complex spaces. If F is a perfect

complex on X and N is an OX-module, then the diagram
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commutes, where sk denotes the kth component of sN .

Proof. We need to show for x 2 T r
1
X=YðN Þ that

Tr hx;AtðF Þi �At
k
ðF Þ
k!

 !
¼ x; Tr

Atkþ1ðF Þ
ðkþ 1Þ!

 !* +
:

As the trace map is compatible with taking cup products, the diagram

commutes, where as before L ¼ LX=Y. Therefore

Tr x;
Atkþ1ðF Þ
ðkþ 1Þ!

* +
¼ x;Tr

Atkþ1ðF Þ
ðkþ 1Þ!

 !* +
: ð1Þ

As hx; i is a derivation of degree r on Ext�XðF ;F � S
�
ðL½1�ÞÞ and

AtkðF Þ 2 A0 ffi Ext0XðF ;F � S
�
ðL½1�ÞÞ, we obtain that

hx;Atkþ1ðF Þi ¼
X
AtiðF Þhx;AtðF ÞiAtk
iðF Þ:

For homogeneous endomorphisms f; g the trace satisfies Trð fgÞ ¼ ð
1Þj f jjgjTrðgf Þ,

whence taking traces yields

Tr x;
Atkþ1ðF Þ
ðkþ 1Þ!

* +
¼ Tr hx;AtðF Þi �At

k
ðF Þ
k!

 !
:

Comparing with (1), the result follows. &

In case that X is smooth and Y is a reduced point the theorem above specializes to

the following corollary.

COROLLARY 4.3. For every complex manifold X and every coherent OX-module F
there is a commutative diagram

In case of compact algebraic manifolds the map h; chkþ1ðF Þi on H1ðX;YXÞ has

the following geometric interpretation; see [Blo, 4.2], or, for a more general state-

ment, 5.7, 5.8. Given an infinitesimal deformation of X represented by a class

x 2 H1ðX;YXÞ, the unique horizontal lift of chkþ1ðF Þ relative to the Gauss–Manin
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connection stays of Hodge type ðkþ 1; kþ 1Þ if and only if hx; chkþ1ðF Þi ¼ 0. In the
next result we will show that hx;
AtðF Þi gives the obstruction for deforming F in
the direction of x. Thus, the semiregularity map sk relates the obstruction to deform
F along x with the obstruction that its Chern class chkþ1ðF Þ stays of pure Hodge
type along x.

PROPOSITION 4.4. Let f : X! Y be a morphism of complex spaces and let X � X 0

be a Y-extension of X by a coherent OX-module N so that X 0 defines a class

½X 0� 2 T1X=YðN Þ. If F is a coherent OX-module then under the composed map

ob:T1X=YðN Þ !
h;
AtðF Þi

Ext2XðF ;F � N Þ 
!can Ext2XðF ;F �N Þ

one has obð½X 0�Þ ¼ 0 if and only if there is an OX 0-module F 0 extending F to X 0, i.e.

there is an exact sequence of OX 0-modules 0! F �N ! F 0 ! F ! 0:

Proof. In the algebraic case this is shown in [Ill, IV.3.1.8]. In the analytic case we

can proceed as follows. Let ðX;W;RÞ be a free resolvent of X over Y as in 2.34
and let g: P ! F  be a projective approximation of F  as an R-module. A
Y-extension ½X 0� of X gives rise to an extension ½X 0� of X byN . SinceW is smooth
over Y, the embedding X ,!W can be lifted to a Y-map X 0 ,!W, and the sur-

jection of algebras p: R ! OX to a map of OW-algebras p
0: R ! OX 0

. With @ the

differential on R, the map x :¼ 
p0@: R ! N  is a Y-derivation of degree 1 that

represents the class of ½X 0� in

T1X=YðN Þ ffi H1ðDerYðR;N ÞÞ ffi Ext1R ðO
1
R=Y;N Þ:

If one equips the trivial extension R½N � with the differential ðr; nÞ jjjj!ð@ðrÞ; xðrÞÞ, the
map p0 þ idN : R½N � ! OX 0

becomes a quasi-isomorphism of DG algebras that

restricts to the identity on N .
Let now H: P ! P � O1R=Y be a connection. Contracting with x and projecting

onto F  gives a map Hx: P ! F  �N  of degree 1 satisfying the product rule
Hxð prÞ ¼ Hxð pÞrþ ð
1Þ

jpjgð pÞ � xðrÞ for local sections r in R and p in P . The class
obðF Þ is represented by the map


ðg� xÞ � ½@;H� ¼ ½@;Hx� ¼ Hx@: P 
!F  �N 

of degree 2; note that by 2.28, 2.25(3) and 2.23

Ext2XðF ;F �N Þ ffi H 2ðHomR ðP;F  �N ÞÞ: ðÞ

If the class obðF Þ vanishes then ½@;Hx� ¼ ½@; h� for some R-linear map
h: P ! F  �N  of degree 1. The differential p; f� nð Þ jjjj! @ð pÞ; ðHx 
 hÞð pÞ

� �
defines then on P � F  �N  the structure of a DG module over R½N � and we
denote this DG module P½F  �N �. Using the exact cohomology sequence associ-
ated to the exact sequence of DG modules 0! F  �N  ! P½F  �N � !
P ! 0; it follows that the OX 0

module H0ðP½F  �N �Þ is an extension of F 
by F  �N . Gluing yields an OX 0 modules F 0 which is an extension of F by F �N .
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Conversely assume that there exists such an extension F 0 of F by F �N . As P is
projective the map g: P ! F  can be lifted to a map of R-modules g0: P ! F 0. A
simple calculation shows that d :¼ 
g0@: P ! F  �N  satisfies the product rule
dð prÞ ¼ dð pÞrþ ð
1Þjpjgð pÞ � xðrÞ for sections r in R and p in P. Hence h ¼

Hx 
 d is R-linear and satisfies ½@; h� ¼ ½@;Hx�, whence the cohomology class of

½@;Hx� in H 2ðHomðP;F  �N ÞÞ vanishes. As this class represents obðF Þ under
the isomorphism ðÞ, the result follows. &

Later on we will apply the semiregularity map to modules on the total space of a

deformation of a complex space. In order to verify that such a module has locally

finite projective dimension, the following standard criterion is useful.

PROPOSITION 4.5. Let f : X! S be a flat morphism of complex spaces and F a

complex in D
cohðX Þ. If the restriction F � OX
OXs

to every fibre Xs :¼ f 
1ðsÞ is a

perfect complex on Xs, then F is a perfect complex on X.

This is an immediate consequence of the following simple lemma from commuta-

tive algebra.

LEMMA 4.6. Let A! B be a flat morphism of local Noetherian rings and let F � be a

complex of B-modules with finite cohomology that is bounded above. If F � � AA=mmmmmA is

a perfect complex of B=mmmmmAB-modules then F � is a perfect complex of B-modules.

Proof. For the convenience of the reader we include the simple argument. We

may assume that F � is a complex of finite free B-modules with Fi ¼ 0 for i� 0. By

assumption F � � A=mmmmmA is a perfect complex and so for k! 0 the complex

F �ðkÞ : . . .! Fk
1 
!
@

F k ! F k=@Fk
1! 0

has the property that F �ðkÞ � A=mmmmmA is exact with ðF k=@Fk
1Þ � A=mmmmmA a free

B=mmmmmA B-module. Using induction on n and the long exact cohomology sequences

associated to the exact sequences of complexes

0
!F �ðkÞ �mmmmmn
A=mmmmm

nþ1
A 
!F �ðkÞ � A=mmmmmnþ1

A 
!F �ðkÞ � A=mmmmmn
A
! 0

it follows that F �ðkÞ � A=mmmmmn
A is exact and that ðF k=@Fk
1Þ � A=mmmmmn

A is a free

B=mmmmmn
A B-module. Hence, F �ðkÞ is exact and F k=@Fk
1 is free as a B-module, proving

the lemma. &

Remark 4:7: (1) We note that the construction of the semiregularity map is

compatible with morphisms. More precisely, given a diagram of complex spaces as in

3.14 and a perfect complex F on X, for any coherent OX-module N the diagram
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commutes. This follows from 3.14 and the fact that the trace map is compatible with

taking inverse images.

(2) If in 4.1 the support of F is contained in a closed subset, say, Z of X then the
semiregularity map admits a factorization

ExtrXðF ;F � N Þ 
!sZ
Y
k

Hkþr
Z ðX;N � Lk

LX=YÞ 
!
can Y

k

HkþrðX;N � Lk
LX=YÞ:

This follows as the trace map factors by [Ill] through the local cohomology.

That the powers of the Atiyah classes are graded central elements by 3.12 allows

the following glimpse at the relevance of the semiregularity map for deformation

problems. Let

½ ; �: ExtiXðF ;F Þ � ExtjXðF ;F Þ 
! ExtiþjX ðF ;F Þ; ½x; z� :¼ xz
 ð
1Þijzx;

denote the graded Lie algebra structure underlying the Yoneda product on the

Ext-algebra. Centrality of the Atiyah classes together with the fact that the trace van-

ishes on commutators implies then the following result.

COROLLARY 4.8. The family of semiregularity maps

s: ExtrXðF ;F Þ 
!
Y
k

HkþrðX;Lk
LX=YÞ; r5 0;

vanishes on ½Ext�XðF ;F Þ;Ext�XðF ;F Þ� � Ext�XðF ;F Þ: &

As is well known, and will be recalled in Section 6 below, the vector space

Ext1XðF ;F Þ is the tangent space to a semi-universal deformation of F , if it is finite
dimensional. The obstructions to lift such tangent directions to second order lie in

½Ext1XðF ;F Þ;Ext1XðF ;F Þ� � Ext2XðF ;F Þ, and these obstructions are thus annihilated
by the semiregularity map.

4.2. A SEMIREGULARITY MAP FOR SUBSPACES

Let X be a complex space, Z � X a closed complex subspace and N a coherent

OX-module. In this part we will show how to define a semiregularity map on

T 2Z=XðOZ � OX
N Þ provided that OZ has locally finite projective dimension as an

OX-module. In particular, this will give a generalization of Bloch’s semiregularity

map to arbitrary subspaces of manifolds. The idea is to define first a map from

T 2Z=XðOZ � N Þ into Ext2XðOZ;OZ � N Þ and then to compose this with the semi-
regularity map for F ¼ OZ as defined in the previous part. The key technical lemma

is as follows.

LEMMA 4.9. Let Z � X be a closed embedding of complex spaces.

170 RAGNAR-OLAF BUCHWEITZ AND HUBERT FLENNER

https://doi.org/10.1023/A:1023999012081 Published online by Cambridge University Press

https://doi.org/10.1023/A:1023999012081


ð1Þ For each complex of OZ-modules M there are natural maps

EðkÞ: Tk
Z=XðMÞ 
!ExtkXðOZ;MÞ; k 2 Z:

In case M ¼ OZ, the map Eð�Þ: T �Z=XðOZÞ ! Ext�XðOZ;OZÞ is a morphism of

graded Lie algebras.

ð2Þ Let X! Y be a morphism of complex spaces and let N be a coherent OX-module.

With T k
1
X=YðOZ � N Þ ! Tk

Z=XðOZ � N Þ the boundary map in the long tangent

cohomology sequence associated to the triple Z! X! Y, the composition

Tk
1
X=YðN Þ 
!

can
Tk
1
X=YðOZ � N Þ ! Tk

Z=XðOZ � N Þ 
!E
ðkÞ

ExtkXðOZ;OZ � N Þ

is given by x jjjj!hx;
ð
1ÞkAt ðOZÞi.

Proof. Let ðX;W;RÞ be a free resolvent for X over Y as in 2.34 and choose a
quasi-isomorphism M ! fM into a W-acyclic complex of OZ-modules, where

M and OZ denote the simplicial sheaves on W associated to OZ and M,

respectively. We choose a free algebra resolution R 
!
i S ! OZ of the compo-

sition R ! OX ! OZ . As S ! �S :¼ S �R OX is a quasi-isomorphism, the

triple ðZ;X; �SÞ provides a free resolvent of Z over X. Hence

Ti
Z=XðMÞ ffi HiðHom �S ðO

1
�S=X;

fMÞÞ ffi HiðHomS ðO
1
S=R ;

fMÞÞ: ðÞ

Composing the natural inclusions, see 2.37,

HomS ðO
1
S=R ;

fMÞ ,!DerR ðS; fMÞ ,!HomR ðS; fMÞ ðÞ

with HomR ðS; fMÞ ! HomR ðQ; fMÞ, where Q ! S is an R-projective
approximation, gives the desired map in (1). If M ¼ OZ, then T �Z=XðOZÞ ffi

H�ðDerR ðS;SÞÞ and Ext�XðOZ;OZÞ ffi Ext
�
R ðS;SÞ, and the inclusion of deriva-

tions into endomorphisms is a morphism of DG Lie algebras that induces a mor-

phism of graded Lie algebras in cohomology.

To show (2), note first that OZ � N  is represented by S �R N . Consider a
derivation d 2 DerYðR;N Þ of degree k
 1 that represents the cohomology class
x in Tk
1

X=YðN Þ. Its image in Tk
1
X=YðOZ � N Þ is then represented by 1� d 2 DerY

ðR;S �N Þ. Under the isomorphism in ðÞ, the image of the latter element in

Tk
Z=XðOZ � N Þ is represented by a R-derivation ½@; ~d�, where ~d: S ! S �N  is
a derivation restricting to 1� d on R. Let now H: S ! S � O1R=Y be a derivation
extending 1� d, where d is the universal derivation on R, see 2.33. Clearly H is a
connection on S. If h is one of the maps ð1� dÞ � H or ~d from S to S �N  then
the product rule hðsrÞ ¼ hðsÞrþ ð1Þjsjðk
1Þ sdðrÞ is satisfied for local sections s in

S and r in R. It follows that the difference ~d
 ð1� dÞ � H is R-linear and so
½@; ~d� and ½@; ð1� dÞ � H� represent the same cohomology class in HkðHomR
ðS;S �N ÞÞ. As

h½d�;AtðOZÞi ¼ ð1� dÞ � ½@;H� ¼ ð
1Þk
1½@; ð1� dÞ � H�;

A SEMIREGULARITY MAP FOR MODULES AND APPLICATIONS 171

https://doi.org/10.1023/A:1023999012081 Published online by Cambridge University Press

https://doi.org/10.1023/A:1023999012081


by definition, and as d is of degree k
 1, we have

x jjjj!½@; ~d� ¼ ð
1Þk
1h½d�;AtðOZÞi ¼ hx;
ð
1Þ
kAtðOZÞi;

as required. &

DEFINITION 4.10. Let X! Y be a morphism of complex spaces and let Z � X be

a closed complex subspace of X such that OZ has locally finite projective dimension

over OX. The composition of the canonical map T 2Z=XðOZÞ ! Ext2XðOZ;OZÞ of 4.9

(1) with the semiregularity map s defined in 4.1 yields a map

t :T 2Z=XðOZÞ 
!
Y
k50

Hkþ2ðX;Lk
LX=YÞ;

which we call the semiregularity map for Z.

Again we have such a semiregularity map more generally for any coherent

OX-module N and any r5 0,

tN :¼ sN � E
r : T r

Z=XðOZ � N Þ 
!
Y
k5 0

HkþrðX;N � OX
Lk

LX=YÞ:

Note that this gives in particular a semiregularity map for every closed subspace Z of

a complex manifold X. Combining 4.2 and 4.9 we obtain the following result.

PROPOSITION 4.11. With the notations and assumptions as in 4:10, the diagram

commutes, where tk
1 is the ðk
 1Þ
st component of the semiregularity map tN .

For instance, for Y a reduced point, X smooth, and Z a closed subscheme of

codimension k in X, we can rephrase 4.11 as follows.

COROLLARY 4.12. For a complex manifold X and a subspace Z of codimension k

the diagram

commutes, where ½Z � denotes the fundamental class of Z in HkðX;Ok
XÞ.
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Proof. For a manifold, T r
1
X=YðOXÞ ffi Hr
1ðX;YXÞ, and according to Grothendieck,

[Gro, 4(16)], see also [Mur, 2.18], the fundamental class of Z is given by

½Z � ¼
ð
1Þk
1

ðk
 1Þ!
ckðOZÞ ¼ chkðOZÞ;

whence the result follows from 4.11. &

Let X! Y be a morphism of complex spaces and let Z � X be a closed complex

subspace of X. In the final result of this section we consider for a coherent

OX-module N the boundary map d in the long exact tangent cohomology sequence

� � � 
!T 1Z=YðOZ �N Þ 
!T 1X=YðOZ �N Þ 
!d T 2Z=XðOZ �N Þ ! � � �

for the triple Z! X! Y. The exactness of this sequence gives immediately the

following interpretation of the composed map

g: T 1X=YðN Þ 
!
can

T 1X=YðOZ �N Þ 
!d T 2Z=XðOZ �N Þ

in terms of extensions.

LEMMA 4.13. Let X 0 be an extension of X by N . The image of the class

½X 0� 2 T1X=YðN Þ under g vanishes, gð½X 0�Þ ¼ 0, if and only if there is an extension Z0 of

Z by OZ �N that fits into a commutative diagram

&

Remark 4:14. (1) The construction of the canonical map Eð�Þ in 4.9 (1) is com-
patible with morphisms of complex spaces. More precisely, assume given a diagram

of complex spaces as in 3.14 and a closed subspace Z of X. With Z0 :¼ f 
1ðZÞ � X 0,

the diagram

commutes for every coherent OZ-module M.

(2) In analogy with 4.7, the construction of the semiregularity map t is also com-
patible with morphisms of complex spaces. This follows from 4.7, using the preced-

ing remark. We leave the straightforward formulation and its proof to the reader.

(3) It follows from 4.7(2) that the semiregularity map t factors through local
cohomology,
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T r
Z=XðOZ � N Þ 
!tZ

Y
k

Hkþr
Z ðX;N � Lk

LX=YÞ 
!
can Y

k

HkþrðX;N � Lk
LX=YÞ:

Finally, we wish to point out that 4.8 carries over as well to the family of semiregu-

larity maps for subspaces, the comparison map Eð�Þ: T �Z=XðOZÞ ! Ext�XðOZ;OZÞ

being a morphism of graded Lie algebras.

5. Applications to the Variational Hodge Conjecture

Let X be a compact complex algebraic manifold so that its cohomology admits a

Hodge decomposition HkðX;CÞ ffi
L

pþq¼k H
qðX;Op

XÞ: Recall that a cohomology

class

a 2 Hp;pðX;QÞ :¼ HpðX;Op
XÞ \H

pðX;QÞ

is called algebraic if an appropriate multiple ka; k 2 N, is represented by an algebraic

cycle Z of codimension p in X, in the sense that ka ¼ ½Z �, the cohomology class of
the cycle. The famous and so far unsolved Hodge conjecture asks wether every class

in Hp;pðX;QÞ is algebraic.

In [Gro], Grothendieck proposed the following weaker version that is called the

variational Hodge conjecture. Let p: X! S be a deformation of a compact algebraic

manifold X0 ¼ p
1ð0Þ over a smooth germ ðS; 0Þ. The local system R2pfðCÞ �OS

carries then the natural Gauss–Manin connection. Assume that a is a horizontal sec-
tion of RpfðO

p
X=SÞ in the sense that a can be lifted locally to a horizontal section in

R2pfðO
5 p
X=SÞ � R2pfðCÞ �OS, see also 5.4.

The variational Hodge conjecture asks now: If the restriction of a to the special
fibre, að0Þ 2 HpðX0;O

p
X0
Þ, is algebraic, is then aðsÞ 2 HpðXs;O

p
Xs
Þ algebraic for all

s 2 S near 0, where Xs :¼ p
1ðsÞ?
In this section we will give an affirmative answer to this problem if the class að0Þ is

the pth component chpðE0Þ of the Chern character of some coherent sheaf E0 for
which the pth component of the semiregularity map, Ext2X0ðE0; E0Þ 
!
Hpþ1ðX0;O

p
1
X0
Þ; is injective. We will then call E0 in brief a p-semiregular sheaf.

Slightly more generally, with n the dimension of X0 it is convenient to introduce

for any subset I � f0; . . . ; ng the following notion: E0 is called I-semiregular if the part

of the semiregularity map

sI: Ext2X0ðE0; E0Þ 
!
Y
p2I

Hpþ1ðX0;O
p
1
X0
Þ

is injective. The main result of this section is the following theorem.

THEOREM 5.1. Let p: X! S be a deformation of a compact complex algebraic

manifold X0 over a smooth germ S ¼ ðS; 0Þ and set Xs :¼ p
1ðsÞ for s 2 S. Assume that

ðapÞp2I is a horizontal section in
Q

p2I R
ppðO

p
X=SÞ. If there is an I-semiregular sheaf E0

on X0 with
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apð0Þ ¼ chpðE0Þ 2 HpðX0;O
p
X0
Þ; p 2 I;

then apðsÞ 2 HpðXs;O
p
Xs
Þ is algebraic for all s 2 S near 0 and each p 2 I.

In analogy with the notion of a I-semiregular sheaf on X0, a complex subspace

Z0 � X0 will be called I
 semiregular if the part of the semiregularity map

tI : T 2Z0=X0 ðOZ0Þ 
!
Y
p2I

Hpþ1ðX0;O
p
1
X0
Þ

is injective. We will also derive the following variant of 5.1 that generalizes a result of

S. Bloch [Blo].

THEOREM 5.2. Let p : X! S and ðapÞp2I be as in 5:1. If there is an I-semiregular

subspace Z0 � X0 with apð0Þ ¼ chpðOZ0 Þ for p 2 I then apðsÞ is algebraic for all s 2 S

near 0 and each p 2 I.

For the proof of these results we need a few preparations.

LEMMA 5.3. Let X � X 0 be an extension of a complex space X by a coherent

OX-module M and assume that the morphism x: LX=X 0 !M of degree 1 in the derived

category DðX Þ represents the class ½X 0� 2 T1X=X 0 ðMÞ ffi Ext
1
XðLX=X 0 ;MÞ: If LX=X 0 
!

þ1

LX 0 � OX denotes the canonical map of degree 1, then the diagram

commutes in DðX Þ.

Proof. Let ðX 0;W
0
;R 0Þ be a free resolvent of X 0 and choose a free graded DG

R0-algebra R that provides a DG algebra resolution p: R ! OX of the

composition R0 
!
p0

OX 0 ! OX . By 2.25, the induced map R �R0 OX 0 ! OX is a

quasiisomorphism and so ðX;W :¼ X 0;R �R0 OX 0
Þ constitutes a free resolvent

for X over X 0. Thus by 2.39

T1X=X 0 ðMÞ ffi H1ðDerOX 0


ðR �R0 OX 0 ;MÞÞ ffi H1ðDerR0 ðR;MÞÞ; ðÞ

and moreover

LX=X 0 ffi C�ðO1R�R0

OX 0

=OX 0



�OX Þ ffi C�ðO1R=R0 �OX Þ;

where C� is the C̆ech functor as in 2.27. By construction, R is a free R0-algebra and
so admits an augmentation, say, b: R ! R0. Clearly, the R0-linear map b will not
be a morphism of DG algebras in general, but the commutative diagram
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shows that the R0-derivation 
p0b@: R ! OX 0 factors through a derivation

x: R !M that in turn represents ½X
0� 2 T1X=X 0 ðMÞ under the isomorphism ðÞ,

see [Flel, (3.13)]. The map LX=X 0 
!
þ1

LX 0 �OX is induced by the map of complexes

½@; db�: O1R=R0 
!O1R0 �R; and composition with the canonical map

O1R0 �R ! O1X0 �OX yields the map 
dp
0 � db � @. As this map coincides with

the R0-derivation d � x: R !M 
!
d

O1X0 �OX under the identification

HomR ðO
1
R=R0 ;O

1
X0
�OX Þ ffi DerR0 ðR;O

1
X0
�OX Þ;

the result follows. &

5.4. Let p: X! S be a deformation of a Kähler manifold X0 over an artinian germ

S ¼ ðS; 0Þ. The canonical exact sequence

0
!OX �OS
O1S
!O1X
!O1X=S
! 0

induces a morphism O1X=S
!
þ1 OX � O1S of degree 1 in the derived category DðX Þ and

as well, by taking exterior powers, morphisms

HX=S: O
p
X=S
!

þ1
Op
1

X=S �OS
O1S; p5 1;

that we call the Gauss–Manin connections. These maps induce the classical Gauss–

Manin connections

HX=S: H
qðX;Op

X=SÞ 
!Hqþ1ðX;Op
1
X=SÞ �OS

O1S:

Recall that the spectral sequence

E
pq
1 ¼ HqðX;Op

X=SÞ ) HpþqðX;O�X=SÞ ffi HpþqðX0;CÞ �C OS

degenerates and that, by Griffiths’ transversality theorem, the canonical connection

H on HpþqðX;O�X=SÞ satisfies

HðHqðX;O5 p
X=SÞÞ � Hqþ1ðX;O5 p
1

X=S Þ �OS
O1S

and induces just the map HX=S above (see [Gri2]). We will call a class a inHqðX;Op
X=SÞ

in brief horizontal if it can be lifted to a horizonal section in

HpþqðX;O5 p
X=SÞ � HpþqðX0;CÞ �C OS:

In particular, the following well known result holds.

LEMMA 5.5. A horizontal class a 2 HqðX;Op
X=SÞ satisfies HX=SðaÞ ¼ 0. &
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5.6. Let p: X! S be as in 5.4 and assume that S ,!S0 is an extension of the artinian

germ S by a coherent OS-module N such that there is a smooth morphism

p0: X 0 
!S0 restricting to p over S. We will suppose henceforth that the map

d : N 
!O1S0 �OS0
OS ðÞ

is injective. Let

H0 :¼ 1OS
�OS0

HX 0=S0 : O
q
X=S
!Oq
1

X=S �OS0
O1S0

be the map induced by the Gauss–Manin connection for X 0 ! S0 and denote by the

same symbol the induced map in cohomology,

H0: HpðX;Oq
X=SÞ 
!Hpþ1ðX;Oq
1

X=SÞ �OS0
O1S0 :

LEMMA 5.7 ([Blo]). With notation and assumptions as in 5:6, a horizontal class

a 2 HqðX;Op
X=SÞ can be lifted to a horizontal section in HqðX 0;Op

X 0=S0 Þ if and only if

H0ðaÞ ¼ 0 in Hqþ1ðX;Op
1
X=SÞ �OS0

O1S0 . &

Now return to the notation and assumption in 5.4. The extension X 0 of X

by N X :¼ OX �OS
N gives a class x 2 T1XðN XÞ or, equivalently, a morphism

x : LX
!N X of degree 1 in the derived category DðX Þ. Taking exterior powers

yields a map, denoted by the same symbol,

x: Lp
LX
!Lp
1

LX � N X
!
can

Op
1
X=S �N X:

The next result describes how this map relates to the map H0 introduced in 5.6.

LEMMA 5.8. The diagram

in DðX Þ is commutative.

Proof. For suitable representatives of the cotangent complexes involved there is a

commutative diagram of exact sequences of complexes of OX-modules

by 5.3 and our assumption that d is injective on N . In DðX Þ this gives rise to a

commutative diagram
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ðyÞ

As well, the commutative diagram of exact sequences of OX-modules

yields in DðX Þ a commutative diagram

Combining this square with the one in (y) gives the result for p ¼ 1. The general case

follows from this by taking appropriate exterior powers. &

The key observation in proving 5.1 is the following proposition. We keep the nota-

tion and assumptions as introduced in 5.4 and 5.6.

PROPOSITION 5.9. Assume E is a coherent S-flat sheaf on X such that E0 :¼ EjX0 is
I-semiregular, where X0 ¼ p
1ð0Þ. The following conditions are then equivalent.

ð1Þ The sheaf E can be extended to a deformation E 0 on X 0 over S0.

ð2Þ The partial Chern character chIðEÞ :¼ ðchpðEÞÞp2I 2
Q

p2I H
pðX;Op

X=SÞ can be lifted

to a horizontal section in
Q

p2I H
pðX 0;Op

X 0=S0 Þ.

Proof. Let x 2 T1XðN XÞ be the class corresponding to the extension X ,!X 0, given

by a morphism x : LX=X 0 
!N X in the derived category. The result 5.8 induces a

commutative diagram

where H0 is the Gauss–Manin connection.
The relative partial Chern character chIðEÞ 2

Q
p2I H

pðX;Op
X=SÞ is the image of the

absolute partial Chern character ch0IðEÞ :¼ ðTrðð
AtðEÞÞ
p=p!ÞÞp2I in

Q
p2I H

pðX;Lp
LXÞ.
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Using 5.7 and the injectivity of 1� d in the diagram above, it follows that (2) is equiva-

lent to

(3) Contracting against x sends the absolute partial Chern character to zero,

hx; ch0IðEÞi ¼ 0:

Now, 4.2 yields a commutative diagram

and sI;N is injective by 5.10 below. It follows that obðxÞ ¼ 0 if and only if (3) holds.
On the other hand, by 4.4, the condition obðxÞ ¼ 0 is equivalent to (1), so the result
follows. &

LEMMA 5.10 With notation as above, if E0 is I-semiregular then the map sI;N is

injective.

The proof follows by a simple induction on the length of N . The initial step for
N ffi C is equivalent to the assumption as sI;C is the corresponding partial semiregu-
larity map for E0 in view of the isomorphisms

Ext2XðE; E �OS
CÞ ffi Ext2X0 ðE0; E0Þ; as E is S
flat;

Hpþ1ðX;Op
1
X=SÞ �OS

C ffi Hpþ1ðX0;O
p
1
X0
Þ; by base change:

The induction step is left to the reader. &

Proof of Theorem 5:1. Let Sn be the nth infinitesimal neighbourhood of 0 in S so

that Sn ,!Snþ1 is an extension of Sn by N n ¼ mmmmmnþ1=mmmmmnþ2, where mmmmm � OS;0 is the

maximal ideal. The map d : N n
!O1Snþ1
�OSn

is injective, and applying 5.9

repeatedly we see that E0 can be lifted to a deformation En on Xn for all n. Let E be a
versal deformation of E0 which is a coherent module on X�S T; where ðT; 0Þ is a

complex space germ over ðS; 0Þ. Using versality there are ðS; 0Þ–morphisms

jn: ðSn; 0Þ 
!ðT; 0Þ with ð1� jnÞ

ðEÞ ffi En and jnþ1jSn ¼ jn. Hence ðT; 0Þ 
!ðS; 0Þ

admits a formal section, namely �j :¼ lim
 


jn: ðŜ; 0Þ 
!ðT; 0Þ. By Artin’s approxi-

mation theorem, we can find a convergent section j: ðS; 0Þ 
!ðT; 0Þ. Now
F :¼ ð1� jÞðEÞ is a coherent S-flat module on X that induces E0 on the special fibre.
The uniqueness of the horizontal lifting gives that ap ¼ chpðF Þ as sections in
RpfðO

p
X=SÞ for each p 2 I. Hence apðsÞ ¼ chpðF jXsÞ is algebraic for all s 2 S near 0

and each p 2 I. &
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The proof of 5.2 is similar. The sole difference is that in order to derive the analo-

gue of 5.9, one has to use 4.11 and 4.13 instead of 4.2 and 4.4. We leave the technical

details to the reader. &

6. Deformation Theory

Before formulating the main results we review some basic notation and facts

about deformation theories. In contrast to [Sch] we will not use the language of

deformation functors but instead employ deformation groupoids as in [Rim, Fle2,

BFl]. Most deformations will take place over AnS, ArtS, or An̂S, the categories of

germs of complex spaces, Artinian complex spaces, or formal complex spaces res-

pectively, over a fixed germ S ¼ ðS; 0Þ.

6.1. Let p: E
!B be a functor between categories. We will denote objects of B

by capital letters whereas the objects of E will be written in lower case. To indicate

that a is an object of E over S 2 B we write simply a jjjj!S, although this is not a

morphism!

Recall that a morphism a0 
! a over f : S0 
!S is Cartesian if every morphism

b
! a over f factors uniquely into b 
!
~g

a0 
! a with pð ~gÞ ¼ idS0 . If a
0 
! a is a

cartesian morphism over f : S0 
!S, one sets, slightly abusively, a�S S
0 :¼ a0.

Following [Rim], a fibration in categories is a functor p: E
!B with the following

properties:

(FC1) For every morphism f : S0 
!S in B and every object a over S there is a

morphism a0 
! a over f that is cartesian.

(FC2) Compositions of Cartesian morphisms are Cartesian.

The category B is often called the basis of the fibration. For S 2 B the fibre EðS Þ is

the subcategory of E whose objects are those a 2 E with pðaÞ ¼ S, and whose mor-

phisms j are the ones over idS, that is pðjÞ ¼ idS.
Recall that a groupoid is a category in which all morphisms are isomorphisms.

A fibration in categories p: E
!B is called a fibration in groupoids if each fiber

EðS Þ is a groupoid.

These notions provide a natural framework for deformation theory. As an

example let us consider deformations of complex spaces.

EXAMPLE 6.2. Let E be the category whose objects are the germs of flat holo-

morphic maps f : ðX;X0Þ 
!ðS; 0Þ, where X0 ¼ f 
1ð0Þ. The morphisms into a second

object given by g: ðY;Y0Þ ! ðT; 0Þ are all cartesian squares
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The functor p:E! AnS assigns to f its basis ðS; 0Þ.

In a similar way one treats (flat) deformations of singularities, coherent sheaves, or

embedded deformations.

6.3. Let B be one of the categories AnS;ArtS or An̂S. Abusing notation again, we

write a ,! a0 when the underlying morphism in B is an embedding. A fibration in

groupoids p: E! B is a deformation theory if the following homogeneity property

is satisfied.

ðHÞ For every diagram in E,

with i: S ,!S0 an extension by a coherent OS;0-moduleM and a: S! T a finite map

of germs, the fibred sum b0 ¼ a0
‘

a b exists in E.

We remark that b0 lies necessarily over S0
‘

S T, which in turn exists as an analytic

germ by [Schu].

The condition of homogeneity can be weakened to so-called semihomogeneity, see

[Rim]. We remark that the main applications of this section remain true under this

weaker condition in view of the results of [Fle2]. Note, however, that in all reason-

able geometric situations condition (H) above is satisfied.

If a0 2 Eð0Þ is a specific object over the reduced point, then a deformation of a0
over a germ S ¼ ðS; 0Þ is an object a 2 EðS Þ together with a morphism a0! a that

lies necessarily over 0 ,!ðS; 0Þ.

Let B again be one of the categories ArtS;AnS or An̂S and let p: E! B be a fibred

groupoid, S ¼ ðS; 0Þ a germ of a complex space and a 2 EðS Þ an object over S. For a

coherent OS-moduleM an extension of a by M is a morphism a ,! b such that the

underlying morphism S ,!T :¼ pðbÞ is an extension of S by M. Two extensions

a ,! b and a ,! b0 are said to be isomorphic if there is a morphism b! b0 that is

compatible with a ,! b, a ,! b0 and induces the identity on M. We denote by

Exða;MÞ the set of such isomorphism classes.
In contrast, consider extensions a ,! b with pðbÞ ¼ S ½M�, the trivial extension.

Two such extensions b ¼ ða ,! bÞ and b0 ¼ ða ,! b0Þ will be called S ½M�-isomorphic
if there is a morphism of extensions b! b0 over idS ½M�. The corresponding set of iso-

morphism classes will be denoted Exða=S;MÞ. This vector space is commonly called
the space of infinitesimal deformations (of first order).

We recall the following facts, see, e.g., [Fle1, Fle2].

PROPOSITION 6.4. ð1Þ The vector spaces Exða;MÞ, Exða=S;MÞ define ðcovariantÞ
functors with respect to M 2 CohðS Þ. They are compatible with direct products: for

coherent OS-modules M;N and for F one of these functors, one has naturally

FðM�N Þ!$ FðMÞ � FðN Þ:
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ð2Þ The functors in ð1Þ are OS-linear, i.e. they carry natural OS-module structures.

Moreover, they are half-exact.

ð3Þ There is a functorial exact sequence

T 0S=SðMÞ 
!
dKS

Exða=S;MÞ ! Exða;MÞ ! T1S=SðMÞ: &

Note that a functor G: CohðS Þ ! Sets compatible with finite direct products and

satisfying Gð0Þ 6¼ ; always carries a natural OS-module structure, whence the first

part of ð2Þ is a consequence of ð1Þ. Moreover, if G0: CohðS Þ ! Sets is a second such

functor, and if G! G0 is a morphism of functors, then the maps GðMÞ ! G0ðMÞ
are necessarily OS-linear.

We will refer to the sequence in ð3Þ as the Kodaira–Spencer sequence. Moreover,

dKS is the so called Kodaira–Spencer map.

6.5. Let p: E! ArtS be a deformation theory and consider its completion

p̂: Ê! An̂S, as described ðduallyÞ in [Rim]. Recall that a deformation a 2 ÊðS Þ is

called formally versal if it satisfies the following lifting property: for every morphism

b ,! b0 in Ê lying over a closed embedding T ,!T 0, and for every map f : b! a, there

is a morphism f 0: b0 ! a lifting f. Moreover, a is said to be formally semiuniversal if

the induced map of tangent spaces TT 0;0! TS;0 is independent of the lifting.

By the theorem of Schlessinger ðsee ½Rim�Þ, if Exða0;CÞ is a vector space of finite

dimension then a formally versal deformation of a0 exists. Moreover, we have the

following criterion for formal versality.

PROPOSITION 6.6 ([Fle2]). Let a be a deformation of a0 over the base S 2 An̂S. The

following statements are equivalent.

ð1Þ The deformation a is formally versal.

ð2Þ Exða;MÞ ¼ 0 for every finite OS-module M.

ð3Þ Exða;OS=mmmmmSÞ ¼ 0.

In case S=S is smooth, T1S=SðMÞ vanishes for every M and so, in view of the

Kodaira–Spencer sequence, a is formally versal if and only if the Kodaira–Spencer

map dKS: T 0S=SðOS=mmmmmSÞ ! Exða=S;OS=mmmmmSÞ is surjective.

Next, we give a simple proof of a result by Z. Ran [Ran1]. We state more generally

a relative version over an arbitrary base S. To formulate the last part of it, recall that
an artinian germ T 2 AnS is curvilinear if OT ffi CvX b=ðXnÞ as local C-algebras.

THEOREM 6.7. If a0 2 Eð0Þ admits a formally semi-universal deformation a 2 ÊðS Þ

over some formal germ S, then the following conditions are equivalent.

ð1Þ The germ ðS; 0Þ is smooth over a closed subspace of the completion ðŜ; 0Þ.
ð2Þ The functor M jjjj! Exða=S;MÞ is right exact on CohðS Þ.
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ð3Þ For every b 2 EðT Þ over an artinian germ T 2 AnS, the map of infinitesimal defor-

mations Exðb=T;OTÞ 
!Exðb=T;OT=mmmmmT Þ is surjective. Moreover, if S is a

reduced point, then these are equivalent to the following condition.

ð4Þ The map in ð3Þ is surjective for every b 2 EðT Þ over an Artinian curvilinear germ

T 2 AnS.

Proof. For ð1Þ ) ð2Þ observe that the map T 0S=SðMÞ ! Exða=S;MÞ is sur-
jective due to the versality of a. In turn, by 6.8 below, the functor M jjjj!

T 0S=SðMÞ ffi DerSðOS;MÞ is right exact as S is smooth over a subspace of Ŝ. Thus,
Exða=S;MÞ is right exact inM as well. To show ð2Þ ) ð3Þ, let b, T be as in (3). By

versality, there is a morphism b! a that lies over some S-morphism T! S. If now

b ,! b0 is an extension of b over T ,!T ½M�, then the homogeneity condition yields
an extension a ,! a0 :¼ a

‘
b b
0 over S ,!S ½M� that satisfies b0 ¼ a0 �S T. Thus, there

is a natural isomorphism

Exða=S;MÞ ffi Exðb=T ;MÞ

for every Artinian OT-moduleM, whence (2) implies (3). In order to show (3))(1)

consider the nth infinitesimal neighborhood Sn of 0 in S and set an :¼ a�S Sn.

Repeating the argument just given, we have Exða=S;MÞ ffi Exðan=Sn;MÞ for any
M 2 CohðSnÞ. Hence there is a commutative diagram

Since a is formally semiuniversal, the map ðdKSÞ0 is bijective and ðdKSÞn is surjective.
By assumption bn is surjective and so an is surjective too. Now the result follows
from the Jacobian criterion 6.8 below.

It is obvious that (3) implies (4). Finally, (4))(1) follows with the same reasoning

as above from the smoothness criterion given in 6.8 (5). &

In the proof above we have referred to the following smoothness criteria that are

essentially reformulations of the Jacobian criterion.

LEMMA 6.8. For a morphism A! B of complete analytic C-algebras the following

conditions are equivalent.

ð1Þ There is an ideal a � A and an isomorphism of A-algebras

B ffi ðA=aaaaaaaaaaaaÞvT1; . . . ;Tkb for some k5 0;

ð2Þ The B-module O1B=A is free;

ð3Þ The functor M jjjj!DerAðB;M Þ is right exact on finite B-modules;
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ð4Þ With Bn :¼ B=mmmmmnþ1
B , the natural map DerAðB;BnÞ ! DerAðB;CÞ is surjective for

all n.

If A ¼ C, then these conditions are also equivalent to:

ð5Þ The natural map DerCðB;C Þ ! DerCðB;CÞ is surjective for any artinian curvi-

linear B-algebra C ffi CvX b=ðX nÞ.

Proof. The implications (1))(2))(3))(4))(5) are obvious. To show (4))(1),

note first that

DerAðB;BÞ ffi lim
 
DerAðB;BnÞ

as B is complete. Hence (4) implies that DerAðB;BÞ ! DerAðB;CÞ is surjective. This

means that there are derivations d1; . . . ; dr: B! B and elements x1; . . . ; xr 2 mmmmmB such

that detðdiðxjÞÞ 62 mmmmmB, where r:¼ dimCDerAðB;CÞ. By the criterion of Lipman and

Zariski, see [Mat, 30.1], there is then an isomorphism B ffi C vX1; . . . ;Xrb, where C
is an A-subalgebra of B. By construction, DerAðC;CÞ ¼ 0, and so C must be a quo-

tient of A, which gives (1).

Finally, assume that A ¼ C and that (5) is satisfied. Writing B ¼ R=I with

R :¼ CvX1; . . . ;Xrb and I � mmmmm2
R, we need to show that I ¼ 0. If not, choose a power

series f 6¼ 0 of minimal order in I. After a linear change of coordinates we may

assume that f ¼ X n
1 þ g with g 2 ðX2; . . . ;XrÞmmmmmn
1

R . Now consider the curvilinear

B-algebra C ¼ B=ðX2; . . . ;XrÞ ffi CvX1b=ðX n
1Þ. The derivation @=@X1 on R induces a

derivation B! C that by assumption can be lifted to a derivation B! C. Compos-

ing with R! B yields a derivation, say, d: R! C with dðI Þ ¼ 0. Using the product
rule and the fact that dðXiÞ � 0mod mmmmmC for i5 2, it follows that dðgÞ ¼ 0. On the
other hand, dðX1Þ � 1mod mmmmmC, whence

dð f Þ ¼ nX n
1
1 dðX1Þ ¼ nX n
1

1 � 1C 6¼ 0 in C;

and this is a contradiction. &

Remark 6:9: In case A 6¼ C, the condition (5) above is no longer equivalent to the

other ones as the following example shows. Consider a C-algebra A ffi R=I, with

R ffi CvX1; . . . ;Xkb, and assume that there is an element a 2 R that is integral over I

but not in I. If �a denotes the residue class of a in A, then the reader may verify that

the A-algebra B :¼ AvT b=ð �aT Þ satisfies (5) although it is not smooth over a quotient
of A.

DEFINITION 6.10. An obstruction theory for a 2 ÊðS Þ over a formal germ S 2 An̂S

consists in a functor

Obða;
Þ: CohartðS Þ 
!CohartðS Þ;

satisfying the following condition:

ðOb1Þ There is a morphism of functors
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ob: T1S=SðMÞ 
!Obða;MÞ; M 2 CohartðS Þ;

so that the sequence

Exða;MÞ 
!T1S=SðMÞ 
!
ob
Obða;MÞ

is exact for each M.

In other words, if a S-extension S ,!S0 of S by M 2 CohartðS Þ is given, then

obð½S0�Þ ¼ 0 in Obða;MÞ if and only if we can find an extension a ,! a0 of a by M
over S ,!S0. As an immediate consequence of the Kodaira–Spencer sequence we

obtain the following standard estimate.

COROLLARY 6.11. Let a 2 ÊðS Þ be a formally semiuniversal deformation of a0 and

assume that there is an obstruction theory for a. With

k:¼ dimC Exða0;CÞ and t:¼ dimCObða;CÞ;

the basis S of a can be realized as a subspace of the formal germ ðS�C
k; 0Þ̂ cut out by

at most t equations. In particular, dimS5 dimSþ k
 t:

Proof. As was already observed in the proof of 6.7, we have Exða0;CÞ ffi

Exða=S;CÞ, and, as a is formally semi-universal, the map T 0S=SðCÞ ! Exða=S;CÞ is

bijective. Hence, we can write OS;0 ffi LvX1; . . . ;Xkb=I with L :¼ OŜ;0. By definition,

T1S=SðCÞ ffi HomðI=mmmmmI;CÞ, and so the dimension of T1S=SðCÞ is just the minimal

number of generators of I. In the extended Kodaira–Spencer sequence

� � � 
!Exða;CÞ 
!T1S=SðCÞ 
!Obða;CÞ

the module Exða;CÞ vanishes by the versality of a. Hence, T1S=SðCÞ injects into

Obða;CÞ and the minimal number of generators of I is bounded by t. &

Let S be a formal germ over ðS; 0Þ and let L :¼ OS;0, A :¼ OS;0 denote the asso-

ciated local rings. It is well known that for a coherent OS-module M the group

T1S=SðMÞ is canonically isomorphic to T1A=LðM Þ, the group of L-algebra extensions
of A byM :¼M0. This group always contains Ext

1
AðO

1
A=L;M Þ that can be identified

as the subgroup of those extensions whose associated Jacobi map is injective, see 9.2.

In case M ¼ C, it contains in turn a further distinguished subspace, ExcA=LðCÞ, the

space of curvilinear extensions, see 9.1 and 9.2. With these notations, the following

improvement of 6.7, due to Kawamata, can also easily be deduced.

COROLLARY 6.12. Let a 2 ÊðS Þ be a formally semiuniversal deformation of a0 that

admits an obstruction theory Obða;
Þ. If V:¼ obðExcA=LðCÞÞ � Obða;CÞ is the sub-

space of curvilinear obstructions, then

dimS5 dimSþ dimC Exða0;CÞ 
 dimC V:
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Proof. Note that V ffi ExcA=LðCÞ as T1S=SðCÞ injects into Obða;CÞ. By 9.2, the

vector space ExcA=LðCÞ is dual to I=ðJþmmmmmI Þ, where I is as in the proof of 6.11 and

J is the integral closure of mmmmmI in I. Now the result follows from 9.3. &

In the proofs of the preceding two corollaries we only used the module Obða;CÞ so

that it would have been sufficient to have just this module of obstructions at our dis-

posal. However, the next result requires the full strength of the notion of obstruction

theory.

PROPOSITION 6.13. Let p: E! AnS be a deformation theory and a 2 ÊðS Þ an

object over a germ S 2 An̂S that admits an obstruction theory M jjjj!Obða;MÞ. If there
exists a transformation c: Obða;MÞ ! GðMÞ into a left exact functor G on CohartðS Þ

then the following hold.

ð1Þ The restriction of c � ob to Ext1SðO
1
S=S;MÞ ,!T1S=SðMÞ is the zero map. In other

words, if S ,!S0 is an extension of S by M 2 CohartðS Þ such that the Jacobi map

M
!O1S0=S �OS is injective, then c ob½S0�ð Þ ¼ 0:

ð2Þ If a is formally versal, then dimS5 dimC Exða0;CÞ 
 dimC K with K :¼

kerðObða;CÞ ! GðCÞÞ.

Proof. The injective hull J of M can be obtained as a limit lim
!

J a with

M � J a � J and each J a finite Artinian. As

Ext1SðO
1
S=S;MÞ ! lim

!
Ext1SðO

1
S=S;J aÞ ffi Ext

1
SðO

1
S=S;J Þ ¼ 0

is the zero map, there is an index a so that Ext1SðO
1
S=S;MÞ ! Ext1SðO

1
S=S;J aÞ is

already zero. Restricting the map ob to Ext1SðO
1
S=S;
Þ yields a commutative

diagram

and (1) follows.

In order to derive (2), note that the map ob embeds T1S=SðCÞ into Obða;CÞ, as a is

formally versal, and under this map Ext1SðO
1
S=S;CÞ becomes thus isomorphic to a

subspace of K by (1). As HomSðO
1
S=S;CÞ is isomorphic to Exða0;CÞ, the space of infi-

nitesimal deformations, the claim follows from 9.4. &

In practice, it is cumbersome to construct obstruction theories for objects over an

arbitrary formal germ S. The following considerations show that it is essentially suf-

ficient to check the existence of obstruction theories over an Artinian base.
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DEFINITION 6.14. Let p: E! AnS be a deformation theory. An obstruction the-

ory for E consists in a collection of obstruction theories Obða;
Þ for every a 2 EðS Þ

over an Artinian germ S 2 ArtS satisfying the following condition.

ðOb2Þ For every inclusion T ,!S in ArtS and every a 2 EðS Þ there are functorial iso-

morphisms

Obða�S T;MÞ 
!
ffi
Obða;MÞ; M 2 CohðT Þ;

such that the diagram

commutes.

If E admits an obstruction theory and if a 2 EðS Þ over S 2 An̂S is a formally versal

deformation, then for every module M 2 CohartðS Þ the sequence of groups

Obðan;MÞn�0, where an :¼ ajSn is the restriction to the nth infinitesimal neighbour-

hood Sn of 0 2 S, is essentially constant. Accordingly,

Obða;MÞ :¼ Obðan;MÞ; n� 0;

constitutes an obstruction theory for a as the sequences

Exðan;MÞ 
!T1Sn=SðMÞ 
!Obðan;MÞ

are exact for n� 0, and taking the direct limit results in the exact sequence

Exða;MÞ ffi lim
!
Exðan;MÞ 
!T1S=SðMÞ ffi lim

!
T1Sn=SðMÞ 
!Obða;MÞ:

Assume now that E admits an obstruction theory and that for every a 2 EðS Þ over

an Artinian germ S there is a transformation Obða;
Þ ! Gða;
Þ into a left exact

functor Gða;
Þ on CohartðS Þ. Furthermore, suppose that for every inclusion

T ,!S in ArtS there is an isomorphism Gða�S T;MÞ!
ffi
Gða;MÞ, M 2 CohT such

that the diagram

commutes. Under these assumptions we get the following corollary.

COROLLARY 6.15. If a 2 Ê is a formally versal deformation of a0, then

dimS5 dimC Exða0;CÞ 
 dimC kerðObða0;CÞ ! Gða0;CÞÞ:
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Proof. Indeed, the functor Gða;MÞ :¼ Gðan;MÞ; n� 0; is left exact on CohartðS Þ

and satisfies the assumptions of 6.13. &

7. Applications

7.1. DEFORMATIONS OF MODULES

Let f : X! S be a flat holomorphic map and 0 2 S a fixed point. In the following we
will consider deformations of coherent modules on X. These deformations constitute

a deformation theory p: E! AnS, where the objects over a germ S ¼ ðS; 0Þ 2 AnS

are coherent S-flat modules F on XS :¼ X�S S. A morphism into another module

E 2 EðT Þ is given by a morphism of S-germs g: S! T together with an isomorphism

ðidX � gÞðF Þ!$ E.
For a germ S 2 AnS let fS: XS ! S denote the projection. There is a canonical

map T1S=SðN Þ ! T1XS
ð f SN Þ that assigns to an extension S0 of S by N 2 CohS the

extension XS0 of XS by f SN . If F 2 EðS Þ is a deformation over S then by 4.4

h½XS0 �;AtðF Þi ¼ 0 if and only if there is a module F 0 on XS0 that forms an extension

of F by F �OS
N :¼ F �f 
1

S
OS

f 
1S N ; observe that F � OXS
f SN ffi F �OXS

f SN as

F is flat over S. By a standard result in commutative algebra, see [Mat, 7.7], the

S0-module F 0 is then automatically flat. Hence, we obtain the following result.

LEMMA 7.1. The composed maps

ob: T1S=SðN Þ 
!
can

T1XS
ð f SN Þ !

h;
AtðF Þi
Ext2XS

ðF ;F �OS
N Þ

for N 2 CohS define an obstruction theory for the deformation theory of coherent

modules on X in the sense of 6:10; 6:14.

It is well known that the space of infinitesimal deformations of F over S ½N � is just
Ext1XS

ðF ;F �OS
N Þ. Applying the results of the previous sections we obtain the

following theorem.

THEOREM 7.2. Assume that X is proper and smooth over S and that X0 :¼ f 
1ð0Þ is

bimeromorphically equivalent to a Kähler manifold. Let F 0 be a coherent module on X0
and let S ¼ ðS; 0Þ 2 AnS be the basis of a semiuniversal deformation of F 0. If

s: Ext2X0ðF 0;F 0Þ 
!
Q

n5 0H
nþ2ðX0;O

n
X0
Þ denotes the semiregularity map as in 4:1,

then the following hold.

ð1Þ dimS5 dimC Ext
1
X0
ðF 0;F 0Þ 
 dimC ker s.

ð2Þ If s is injective then S is smooth at 0 over a closed subspace of Ŝ.

Proof. Let F be a deformation of F 0 over an Artinian germ T 2 ArtS, whence F
is an OXT

-module that is flat over T and restricts to F 0 on X0. By 4.1, for every

coherent module N on T there is a semiregularity map
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sN : Ext
2
XT
ðF ;F �OT

N Þ 
!
Y
n5 0

Hnþ2ðXT;N �OT
On

XT=T
Þ;

and by 4.7(1), this map is compatible with base change. According to [Del1], the

functor

N jjjj
! HpðXT;N �OT
Oq

XT=T
Þ; N 2 CohT;

is exact; note that using the results of [Fuj], Deligne’s original result extends to the

case of compact manifolds that are bimeromorphically equivalent to Kähler mani-

folds with the same proofs as in (loc. cit.). Applying 6.13, claim (1) follows.

Finally assume that s ¼ sC is injective. Using induction on the length of N it fol-

lows easily that sN is injective for all N 2 CohT. In particular, the functor N jjjj!

Ext2XT
ðF ;F �OT

N Þ is exact on the left and therefore N jjjj!Ext1XT
ðF ;F �OT

N Þ is
exact on the right. Now 6.7 shows that S is smooth over a closed subspace of Ŝ,
as claimed. &

In case of deformations of modules on a fixed complex space X ¼ X0, that is, when

S is a reduced point, the result above holds without assuming that X is smooth.

THEOREM 7.3. Let F 0 be a coherent module on X with a finite-dimensional space of

infinitesimal deformations Ext1XðF 0;F 0Þ, and let S 2 An̂S be the basis of a formally

semiuniversal deformation of F 0. If F 0 has locally finite projective dimension as an

OX-module, then the semiregularity map

s: Ext2XðF 0;F 0Þ 
!
Y
n5 0

Hnþ2ðX;Ln
LXÞ

is defined and dimS5 dimC Ext
1
XðF 0;F 0Þ 
 dimC kers. In particular, if s is injective

then S is smooth.

Proof. Let F be a deformation of F 0 over an Artinian germ T 2 AnS, whence F
is an OX�T-module that is flat over T and induces F 0 on X. The functor

N jjjj
!HpðX� T;N �OT
Lq

LX�T=TÞ ffi N �C HpðX;Lq
LXÞ; N 2 CohT;

is exact. As the semiregularity map is compatible with base change T! S, see 4.7,

the result follows as before from 6.13. &

As a special case this contains the result of Artamkin and Mukai, [Art, Muk], that

the injectivity of the Trace map Ext2XðF 0;F 0Þ 
!H 2ðX;OXÞ implies smoothness of

the basis of the semi-universal deformation of F 0.
The proof of the following variant is similar and left to the reader.

PROPOSITION 7.4. Let X be a complex space embedded into a complex manifold M.

Let F 0 be a coherent OX-module with dimC Ext
1
XðF 0;F 0Þ <1. The dimension of the

basis ðS; 0Þ of a formally semiuniversal deformation of F 0 satisfies then dimS5
dimC Ext

1
XðF 0;F 0Þ 
 ker dimC s0, where
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s0: Ext2XðF 0;F 0Þ 
!
can

Ext2MðF 0;F 0Þ 
!
s Y

n5 0

Hnþ2ðM;On
M Þ:

is the composition of the semiregularity map for F 0 as coherent OM-module with the

canonical map between Ext-functors. If s0 is injective then S is smooth. &

Remarks 7:5. (1) If in 7.3 the module F is supported on a closed subspace Z of X
then the map s factors through a map

sZ: Ext2XðF 0;F 0Þ 
!
Y
n50

Hnþ2
Z ðX;L

n
LXÞ;

see 4.7 (2). It is clear from the proof that the conclusion of 7.3 also holds with sZ
instead of s.

(2) Ideally, the map t in 7.4 should factor through a map Ext2XðF 0;F 0Þ 
!Q
n50 IH

nþ2;n, where IH denotes intersection cohomology.

7.2. THE HILBERT SCHEME

If f : X! S is a holomorphic map, let HX=S be the relative Douady space of X that

represents the Hilbert functor Hilb: AnS ! Sets, where HilbðS Þ is the set of all

closed subspaces of XS :¼ X�S S that are proper and flat over S. In this section

we will give several smoothness criteria for the Douady space that generalize results

of [Blo, Kaw1, Ran2].

For this, it is convenient to consider the deformation theory associated to the Hil-

bert functor. More generally, we will study the deformation theory p: E! AnS,

where an object of E over a germ S 2 AnS is a subspace Z � XS that is flat over

S. Note that Z is not required to be proper over S. A morphism of Z into another

object, say, Z0 � XS0 consists in a morphism g: S0 ! S such that ðidX � gÞ
1ðZÞ ¼ Z0.

It is well known and easy to see that this constitutes a deformation theory as

explained in Section 6. Let ExðZ=S;N Þ, N 2 CohðS Þ, be the space of infinitesimal

deformations of Z � XS. The following lemma is well known.

LEMMA 7.6. If Z � XS is an S-flat subspace with ideal sheaf J � OXS
, then there is

an isomorphism ExðZ=S;N Þ ffi HomXS
ðJ ;OZ �OS

N Þ, where OZ �OS
N :¼

OZ �f 
1
S
OS

f 
1S N . &

Note that HomXS
ðJ ;OZ �OS

N Þ is just T1X=ZðOZ �OS
N Þ. In case that Z is locally

a complete intersection in X this is just the space of sections of the normal bundle

N Z=X of Z in X.

In order to describe an obstruction theory for Z we will assume for simplicity that

f is flat; see Remark 7.11 (3) for the general case. In the flat case, there is for any

coherent OS-module N a canonical map T1S=SðN Þ 
!
a

T1XS=S
ðOXS

�OS
N Þ that
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assigns to an extension ½S0� of S byN the extension ½XS0 � of X byN XS
:¼ OXS

�OS
N .

Composing this with the map g considered in 4.13, we get a map

ob :T1S=SðN Þ 
!T 2Z=XS
ðOZ �OS

N Þ:

Applying 4.13, gives the following lemma.

LEMMA 7.7. If f : X! S is flat, then the map ob constitutes an obstruction theory

for Z. &

Let f : X! S be a flat map, ðS; 0Þ a germ over S ¼ ðS; 0Þ, and let Z � XS be an

S-flat subspace with special fibre Z0 over 0 2 S. If OZ0 has locally finite projective

dimension as a module on X0 :¼ f 
1ð0Þ then by 4.5 the sheaf OZ has finite projective

dimension over X. Hence, applying 4.10 yields a semiregularity map

tN :T 2Z=XS
ðN ZÞ 
!

Y
n5 0

Hnþ2ðXS;N�OS
Ln

LXS=SÞ; N 2 CohS:

In case of smooth maps f we get the following result.

THEOREM 7.8. Assume that X is proper and smooth over S and that X0 :¼ f 
1ð0Þ is

bimeromorphically equivalent to a Kähler manifold. Let Z0 � X0 be a closed subspace.

If

t:T 2Z0=X0 ðOZ0 Þ 
!
Y
n5 0

Hnþ2ðX0;O
n
X0
Þ:

denotes the semiregularity map for Z0 � X0, then the following hold.

ð1Þ If t is injective then the Douady space HX=S is smooth over a closed subspace of S
in a neighborhood of its point ½Z0�.

ð2Þ The dimension of HX=S at ½Z0� satisfies

dim½Z0�HX=S 5 dimC T1Z0=X0 ðOZ0 Þ 
 dimC ker t:

The proof follows again from 6.13 along the same line of arguments as in 7:2: &

We note that in general the injectivity of t does not imply thatHX=S is smooth over

S. For instance, let X! S be a smooth family of surfaces over a germ ðS; 0Þ and
consider a curve C � X0. The semiregularity map H1ðC;N C=X0Þ ! H 2ðX0;OX0 Þ is

dual to the restriction map H 0ðX0;oX0 Þ ! H 0ðC;oX0 �OX0
OC Þ as we will show in

Section 8. If X! S is a versal family of K3-surfaces and C is a connected reduced

curve on X0, then this restriction map is bijective. Hence HX=S is smooth over a

closed subspace of S at ½C�. However, this subspace cannot be all of S since there
are no curves on the general K3-surface.

In the absolute case, when S is a reduced point, the following stronger result holds.
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THEOREM 7.9. Let Z be a closed subspace of a complex space X with a finite-

dimensional space of infinitesimal embedded deformations T1Z=XðOZÞ and let S 2 An̂S

be the basis of a formally semiuniversal deformation of Z. Assume that OZ has locally

finite projective dimension as OX-module. With

t:T 2Z=XðOZÞ 
!
Y
n50

Hnþ2ðX;Ln
LXÞ

the semiregularity map, the following hold.

ð1Þ The dimension of S satisfies

dimS5 dimC T1X=ZðOZÞ 
 dimC ker t:

In particular, if t is injective then S is smooth.

ð2Þ If Z is compact then dim½Z �HX5 dimC T1X=ZðOZÞ 
 dimC ker t. In particular, if t
is injective then HX is smooth at ½Z �. &

In the smooth case this specializes further to the following corollary.

COROLLARY 7.10. Let Z � X be a compact subspace of a complex manifold X.

With

t:T 2Z=XðOZÞ 
!
Y
n50

Hnþ2ðX;On
XÞ

the semiregularity map, we have dim½Z �HX 5 dimC T1Z=XðOZÞ 
 dimC ker t. In parti-

cular, if t is injective then HX is smooth at ½Z �. &

As well, the result 7.4 can be formulated in the case of deformations of subspaces.

We leave the straightforward formulation and its proof to the reader.

Remarks 7:11: (1) Note that for a locally complete intersection Z � X with

normal bundle N Z=X there is a canonical isomorphism Tk
Z=XðMÞ ffi Hk
1

ðZ;N Z=X �MÞ for every OZ-module M and k5 0. Hence, in this case the state-

ments 7.8–7.10 above hold with T 2Z=XðOZÞ replaced by H1ðZ;N Z=XÞ.

(2) In analogy with 7.5(1), the map t in 7.10 factors through a map

tZ : T 2Z=XðOZÞ !
Q

n5 0H
nþ2
Z ðX;O

n
XÞ, see 4.14 (3). It is clear from the proof that

the conclusion of 7.10 remains true for tZ instead of t. A similar remark applies
to 7.9.

(3) We note that there is also an obstruction theory for embedded deformations if

f:X! S is not flat. To show this, let S be a space over S and Z � XS an S-flat sub-

space. Consider XS and Z as subspaces of X� S via the diagonal embedding. For a

coherent OS-module N there are natural maps

T1S=SðN Þ 
!
a

T1X�S=S�SðOX�S �OS
N Þ 
!

b
T1X�S=S�SðOZ �OS

N Þ;
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In terms of extensions, if S0 is an extension of S by N then að½S0�Þ ¼ ½X� S0� and

bð½X� S0�Þ is the induced extension of X� S by OZ �OS
N . The embedded deforma-

tion Z � XS can be extended to an embedded deformation Z � XS0 if and only if

að½X� S0�Þ is in the image of the natural map

g:T1Z=SðOZ �OS
N Þ ! T1X�S=S�SðOZ �OS

N Þ:

This map embeds into a long exact cohomology sequence: namely, if C� denotes the
mapping cone of LX�S=S�S�OX�S

OZ ! LZ=S, then the cokernel of g embeds into
Ext2ZðC�;N �OS

OZÞ. Thus the composition

T1S=SðN Þ 
!
b � a

T1X�S=S�SðOZ �OS
N Þ ! Ext2ZðC�;OZ �OS

N Þ

gives an obstruction theory.

Note that in case of a flat map f:X! S, the complexes

LXS=S � OXS
OZ and LX�S=S�S � OX�S

OZ

are quasi-isomorphic. Hence, C� becomes quasi-isomorphic to the mapping cone of
LXS=S � OXS

OZ ! LZ=S and so is quasi-isomorphic to LZ=XS
. This is the same

obstruction theory we described before.

In the general case, the reader may easily verify that there is a natural map

LZ=XS
! C� that induces a map

Ext2ZðC�;OZ �OS
N Þ 
!T 2Z=XS

ðOZ �OS
N Þ:

Taking the composition with the map t as defined in 4.10, we arrive at a semiregu-
larity map also in this case.

7.3. THE QUOT-FUNCTOR

Let f:X! S be a holomorphic map and E a coherent sheaf on X. Generalizing

partly the results of the previous part we will study the Quot-space QE=S that was

constructed as a complex space by Douady in the absolute case and by Pourcin in

the relative case, see [Dou, Pou]. We remind the reader that it represents the functor

QuotE=S:AnS ! Sets, where QuotE=SðS Þ is the set of all quotients of ES :¼ pSðEÞ that
are proper and flat over S; here pS:XS :¼ X�S S! X denotes the projection.

Again it is convenient to consider the associated deformation theory, say,

p:E! AnS. An object of E over a germ S 2 AnS is a quotient Q of ES that is flat

over S. A morphism of Q into another object, say, Q0 defined over the germ S0 is

given by a morphism g:S0 ! S such that ðidX � gÞðQÞ ¼ Q0 as quotients of ES0 . It

is well known and easy to see that this constitutes a deformation theory as in Section

6. The space of infinitesimal deformations ExðQ=S;N Þ, N 2 CohðS Þ, is described in

the following well known lemma.
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LEMMA 7.12. If ES ! Q is an S-flat quotient with kernel F :¼ kerðES ! QÞ then
there is a natural isomorphism ExðQ=S;N Þ ffi HomXS

ðF ;Q�OS
N Þ. &

In case E is flat over S, there is, furthermore, a well-known obstruction theory for
Q. Since there seems to be no explicit reference for this in the relative case, we
describe in brief the construction. First note the following simple lemma whose proof

is left to the reader.

LEMMA 7.13. Let X be a complex space and X � X 0 an extension of X by a coherent

OX-module I . For coherent OX-modules G, H consider the map

m:Ext1X 0 ðG;HÞ ! HomOX
ðG� I ;HÞ

that assigns to an X 0-extension ½G0� 2 Ext1X 0 ðG;HÞ the homomorphism mðG0Þ obtained
from the multiplication map G0 � I ! G0 through the natural factorization

G0 � I 
!
proj

G� I 
!
mðG0Þ

H ,! G0:

The map m is functorial in G and H and thus is GðX 0;OX 0 Þ-linear. Moreover, ker m is

canonically isomorphic to Ext1XðG;HÞ. &

We note that m can also be described as a boundary map in the spectral sequence
E
pq
2 ¼ Ext

p
XðT orOX 0

q ðG;OXÞ;HÞ ) Ext
pþq
X 0 ðG;HÞ. However, the more explicit descrip-

tion given above is better suited for our needs.

Let us return to the situation as described before 7.13, and consider the composi-

tion of the canonical maps

T1S=SðN Þ 
!
a
Ext1XS0

ðES; ES �OS
N Þ 
!

b
Ext1XS0

ðES;Q�OS
N Þ;

where a maps an extension ½S0� of S by N onto the class of ES0 . Furthermore, there is

an exact Ext-sequence

Ext1XS0
ðQ;Q�OS

N Þ!
g
Ext1XS0

ðES;Q�OS
N Þ!d Ext1XS0

ðF ;Q�OS
N Þ:

For G ¼ ES;H ¼ ES �OS
N , the map m described in 7.13 associates to ES0 just the

identity on ES �OS
N . Using again 7.13, the diagram

commutes, whence the extension d � bð½ES0 �Þ maps to 0 under m and so can be iden-
tified with an element of Ext1XS

ðF ;Q�OS
N Þ. In other words, d � b � a factors

through a map
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ob: T1S=SðN Þ 
!Ext1XS
ðF ;Q�OS

N Þ:

If obð½S0�Þ vanishes then bð½ES0 �Þ is in the image of g, and the corresponding extension
Q0 gives a lifting of Q to S0. This establishes the following result.

PROPOSITION 7.14. If E is flat over S then the map ob just defined provides an

obstruction theory for E. &

It is now immediate how to define a semiregularity map on Ext1XS
ðF ;Q�OS

N Þ.

DEFINITION 7.15. Let X! S and E be as above and let Q be an S-flat quotient of
ES over some germ S ¼ ðS; 0Þ over S. Assume that Q has locally finite projective

dimension on X. The composition of the boundary map Ext1XS
ðF ;Q�OS

N Þ !
Ext2XS

ðQ;Q�OS
N Þ with the semiregularity map s defined in 4.1 yields a map

t:Ext1XS
ðF ;Q�OS

N Þ 
!
Y
n5 0

Hnþ2ðXS;N �OS
Ln

LXS=SÞ

that we call the semiregularity map for Q.

Now it is possible to deduce results analogous to 7.8–7.10 and 7.4. As a sample we

restrict to the following application; the proof is similar to that of 7.8 and left to the

reader.

THEOREM 7.16. Assume that X is proper and smooth over S and that X0 :¼ f 
1ð0Þ

is bimeromorphically equivalent to a Kähler manifold. Let E be a S-flat coherent sheaf
on X and E0! Q0 be a quotient of E0 :¼ EjX0. With F 0 the kernel of E0! Q0 and

t: Ext1X0ðF 0;Q0Þ 
!
Y
n5 0

Hnþ2ðX0;O
n
X0
Þ

the semiregularity map for Q0, the following hold.

ð1Þ If t is injective then the Quot-space QE=S is smooth over a closed subspace of S in a

neighborhood of ½Q0�.
ð2Þ The dimension of the Quot-space QE=S at the point ½Q0� satisfies

dim½Q0�QE=S 5 dimCHomX0ðF 0;Q0Þ 
 dimC ker t: &

Considering a subspace of X as a quotient of OX, the Douady space becomes a

special case of the Quot-space. However, note that 7.16 does not imply the corre-

sponding result for the Douady space. The reason is that the obstruction theory

for the Quot-functor does not specialize to the obstruction theory for the Hilb-

functor. For instance, if Z � X is a complete intersection of dimension 0 then

T 2Z=XðOZ �OS
N Þ vanishes while Ext1XðJ ;OZÞ is isomorphic to the space of sections

of the second exterior power of the normal bundle of Z in X. In general, T 2 provides
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a much smaller obstruction theory than the Ext1-functor. Hence it is worthwhile to

treat these cases separately.

Remark 7:17: In analogy with 7.11(3), we note that E need not be flat over S in
order to obtain an obstruction theory for the Quot-functor. Indeed, with S, N , Q as
in 7.12 and S0 an extension of S by N , consider the composition

T1S=SðN Þ 
!
a
Ext1X�S0 ðp


SðEÞ; pSðEÞ �OS

N Þ 
!
b
Ext1X�S0 ðp


SðEÞ;Q�OS

N Þ;

where pS:X� S! S denotes the projection. Here a maps an extension ½S0� of S by
N onto the class of pS0 ðEÞ. Now

Ext1X�S0 ðp

SðEÞ;Q�OS

N Þ ffi Ext1XS0
ðE�OS

OS;Q�OS
N Þ;

with E�OS
OS :¼ pSðEÞ�OX�S0

OXS0
. For Q to be extendable to S0, the element

b � að½S0�Þ must be in the image of the map g in the following exact sequence:

Ext1XS0
ðQ;Q�OS

N Þ 
!
g
Ext1XS0

ðE�OS
OS;Q�OS

N Þ 
!d Ext1XS0
ðF �;Q�OS

N Þ;

where F � is the mapping cone of E�OS
OS ½
1� ! Q½
1�. As before, one can verify

that d � b � a factors through a map

ob:T1S=SðN Þ 
!Ext1XS
ðF �;Q�OS

N Þ;

and this map constitutes an obstruction theory. The reader may easily check that this

gives rise to a semiregularity map on Ext1XS
ðF �;Q�O SN Þ.

7.4. DEFORMATIONS OF MAPPINGS

In this part we will generalize the semiregularity map for embedded deformations,

see 4.10, to deformations of holomorphic maps X0! Y0. For the special case that

X0 is a stable curve over an algebraic manifold Y0, such a semiregularity map was

independently constructed by K. Behrend and B. Fantechi in order to define refined

Gromov–Witten invariants in certain situations. We consider the following setup.

7.18. Let p:Y! S ¼ ðS; 0Þ be a fixed germ of a flat holomorphic mapping,

set Y0 :¼ p
1ð0Þ and let f0:X0! Y0 be a morphism of complex spaces with X0
compact. By a deformation of X0=Y0 over a germ ðS; 0Þ 2 AnS we mean a com-

mutative diagram

ð1Þ
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such that q is flat and proper and f induces f0 on the special fibre X0 ¼ q
1ð0Þ. This

deformation is, abusively, denoted by X=YS. Such deformations form in a natural

way a deformation theory over AnS.

It is well known, and follows easily from the existence of the (relative) Douady

space, that there are always convergent versal deformations of X0=Y0, see [Fle2,

BKo].

The infinitesimal deformations of X0=Y0 can be described as follows. Let X=YS be

a deformation of X0=Y0 over S as in (1) and let N be a coherent OS-module. An

S0 :¼ S ½N �-extension of f:X! YS by N consists in a deformation X 0=YS0 of

X0=Y0 over S
0 as in the diagram

ð2Þ

that induces on S the given deformation X=YS as in (1). Let ExðX=YS;N Þ denote the
group of these extensions. An S ½N �-extension X 0=YS ½N � of X=YS corresponds to an

extension of X by N X :¼ N �OS
OX that is a space over YS. Hence we obtain the

following lemma.

LEMMA 7.19. There is a canonical isomorphism ExðX=YS;N Þ ffi T1X=YS
ðN XÞ. &

Next we will describe obstructions for extending deformations. Let X=YS be as in

(1) and let S ,!S0 be an extension of S by N . The extension YS0 of YS by

N YS
:¼ N �O SOYS

gives an element ½YS0 � of T
1
YS
ðN YS

Þ. The composition of the

two canonical maps

g:T1YS
ðN YS

Þ 
!Ext1XðLf
ðLYS=SÞ;N XÞ 
!T 2X=YS

ðN XÞ

admits the following interpretation in terms of extensions.

LEMMA 7.20. The class of the extension YS0 is mapped to 0 under g if and only if

there is an extension X 0 of X by N X together with a map f 0:X 0 ! YS0 that induces f on

Y and the identity on N X. In particular, the composite map

ob:T1S=SðN Þ 
!
can

T1YS
ðN YS

Þ 
!
g

T 2X=YS
ðN XÞ

provides an obstruction theory in the sense of 6:10.

Proof. To prove this statement, we use the existence of tangent functors Ti
f ð
Þ for

holomorphic mappings as constructed in [Fle1], see also [Ill]. These functors fit into

an exact sequence

� � � 
!T1f ðN YS
Þ 
!

b
T1YS
ðN YS

Þ 
!
g

T 2X=YS
ðN XÞ 
! � � � ; ðÞ
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see [Fle1, 3.4]. The group T1f ðN YS
Þ is canonically isomorphic to the set of all iso-

morphism classes of extensions of f by N YS
. Such extension is a holomorphic map

f 0:X 0 ! Y 0, where X 0, Y 0 are extensions of X, YS by N X, N YS
, respectively, with

f 0 inducing the map f on X and the identity on N X; see [Fle1, 3.16] for details. More-

over, the map b in ðÞ assigns to ½f 0� the extension ½Y 0�. In view of the exactness of the
sequence ðÞ this proves the lemma. &

In a next step, we generalize 4.9(1) to arbitrary mappings.

PROPOSITION 7.21. For every morphism of complex spaces f:X! Y and every

complex of OX-modules M bounded below there are canonical maps

Tk
X=YðMÞ 
!ExtkYðRfðOXÞ;RfðMÞÞ; k 2 Z:

In case M ¼ OX, this specializes to a map of graded Lie algebras

T �X=YðOXÞ ! Ext�YðRfðOXÞ;RfðOXÞÞ:

Proof. Let ðX;W;RÞ be a free resolvent for X over Y and letM ! fM be a

quasi-isomorphism into a W-acyclic complex fM of OX-modules as in 2.15. We

need to construct a map

Tk
X=YðMÞ ffi HkðHomR ðO

1
R=Y;

fMÞÞ 
!Ext
k
YðRfðOXÞ;RfðMÞÞ:

Let f 
1ðOYÞ be the topological preimage of the sheaf OY and let f

1
 ðOYÞ be the asso-

ciated simplicial sheaf of rings on X. As the topological restriction RjX is a sheaf
of Abelian groups on X, we can form its associated �Cech complex and so we can

consider the composed map

HomR ðO
1
R=Y;

fMÞ ,!DerYðR; fMÞ

,!Homf
1 ðOYÞ
ðR; fMÞ 
!Homf 
1ðOYÞ

ðC�ðRjXÞ;C�ðfMÞÞ;
ðÞ

where the first two maps are the natural inclusions and the last one is given by the
�Cech functor. There is always a natural morphism Homð
;
Þ !RHomð
;
Þ, thus

taking cohomology we obtain a natural map

Tk
X=YðMÞ 
!Extkf 
1ðOYÞ

ðC�ðRjXÞ;C�ðfMÞÞ ffi Ext
k
f 
1ðOYÞ

ðOX;MÞ; ðÞ

where the final isomorphism results from the fact that the complexes C�ðRjXÞ and
C�ð fMÞ are quasi-isomorphic to OX, resp. M, see 2.28. Composing ðÞ with

Rf:Ext
k
f 
1ðOYÞ

ðOX;MÞ 
!ExtkOY
ðRfðOXÞ;RfðMÞÞ

gives the desired map. If M ¼ OX, then replacing fM by R and C�ð fMÞ by

C�ðRjXÞ, the first inclusion in ðÞ becomes bijective, and so the argument shows
the compatibility with the Lie algebra structure. &

In the next lemma we provide a criterion as to when RfðOXÞ is a perfect complex

on YS. We keep the notation introduced in 7.18.
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LEMMA 7.22. If Y is smooth over S, then RfðOXÞ is a perfect complex on YS.

Proof. For every coherent OS-module N the natural map

RfðOXÞ � N ! RfðN XÞ

is a quasi-isomorphism. Applying this to N ¼ OS=mmmmmS the claim follows from

4.5. &

We are now able to apply the constructions of the previous section to define a

semiregularity map for deformations of mappings. Let Y! S and f:X! YS be as

in 7.18 and assume moreover that Y! S is smooth. We define a semiregularity map

tN :T 2X=YS
ðN XÞ !

Y
p50

Hpþ2ðYS;N � Op
YS=S
Þ

as the composition of the two maps

T 2X=YS
ðN XÞ 
!

can
Ext2YS

ðRfðOXÞ;RfðOXÞ�N Þ 
!s
Y
p50

Hpþ2ðYS;N � Op
YS=S
Þ;

where the first map is as in 7.21 and s is the semiregularity map defined in 4.1.
In analogy with 7.9 we are now able to deduce the following result.

THEOREM 7.23. Assume that p:Y! S is proper and smooth and that Y0 :¼ f 
1ð0Þ

is bimeromorphically equivalent to a Kähler manifold. Let f0:X0! Y0 :¼ p
1ð0Þ be a
proper holomorphic map and denote S ¼ ðS; 0Þ the basis of the semi-universal defor-

mation of X0=Y. If

t0:T 2X0=Y0 ðOX0Þ 
!
Y
p50

Hpþ2ðY0;O
p
Y0
Þ

is the semiregularity map as above, then the following hold.

ð1Þ dimS5 dimC T1X0=Y0ðOX0 Þ 
 dimC ker t0.
ð2Þ If t0 is injective, then S is smooth at 0 over a closed subspace of S.

Remarks 7:24. (1) In the special case that S is a reduced point, Y ¼ Y0 is a

compact complex manifold of dimension d, and f:X! Y is a map from a rational

curve X into Y, the group T 2ðX=Y;OXÞ is isomorphic to the group H1ðX; f ðYYÞÞ,

where YY is the tangent bundle of Y. Thus the top component of the semiregularity

map provides a map H1ðX; f ðYYÞÞ 
!HdðY;Od
2
Y Þ; and we recover the map

constructed by Behrend and Fantechi.

(2) The results 7.3 and 7.4 also admit generalizations to the case of deformations

of mappings. We leave the straightforward formulation and proof to the reader.

8. Comparison with Bloch’s Semiregularity Map

8.1. Assume that X is a compact complex manifold and Z � X is a locally complete

intersection of (constant) codimension q with ideal sheaf J � OX. In this section we
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will compare our semiregularity map from 4.10 with the semiregularity map defined

in [Blo]. Observe that for a locally complete intersection Tk
Z=XðOZÞ ffi Hk
1ðZ;N Z=XÞ

for all k, where N Z=X ffi ðJ =J 2Þ
_ :¼ HomOZ

ðJ =J 2;OZÞ is the normal bundle of Z

in X. Bloch’s semiregularity map is constructed as follows. With m :¼ dimZ, there is

a natural pairing

Omþ1
X � Lq
1N _Z=X !

1�Lq
1 �d Omþ1
X � Oq
1

X �OZ 
!
^

oX �OZ;

where �d: N _Z=X ffi J =J 2 ! O1X �OZ is the map induced by the differential

d:J ! O1X. Equivalently, this amounts to a map

Omþ1
X 
!Lq
1N Z=X � oX ffi N _Z=X � oZ; ð1Þ

where we have used the adjunction formula oZ ffi detN Z=X � oX and the isomor-

phism Lq
1N Z=X ffi N _Z=X � detN Z=X. Dualizing the induced map in cohomology

Hm
kðX;Omþ1
X Þ ! Hm
kðZ;N _Z=X � oZÞ gives a map

tB:HkðZ;N Z=XÞ 
!HqþkðX;Oq
1
X Þ; ð2Þ

and Bloch’s semiregularity map is just this map for k ¼ 1. We will compare it with

the component

t:HkðZ;N Z=XÞ ffi T kþ1
Z=XðOZÞ 
!HqþkðX;Oq
1

X Þ

of our semiregularity map defined in 4.10.

PROPOSITION 8.2. The maps tB and t coincide.

For the proof, we need a more explicit description of the semiregularity map. First

observe that

Hp X;Hq
ZðO

q
1
X Þ

� �

!
ffi

H
qþp
Z ðX;O

q
1
X Þ ; p5 0;

as Hi
ZðO

q
1
X Þ ¼ 0 for i 6¼ q; for the algebraic case, see [Blo], whereas in the analytic

case this follows from [Sche]. To proceed further we describe the local cohomology

sheaves Hq
ZðO

q
1
X Þ in terms of a Cousin-type complex.

8.3. Let E be a vector bundle on X and let Z be as above. Assume U � X is an open

subset such that the ideal J � OU of Z \U � U is generated by sections

f1; . . . ; fq 2 GðU;OUÞ. For an index a ¼ ða1; . . . ; apÞ with 14a1 < � � � < ap 4 q set

jaj ¼ p and Ua :¼ fx 2 U j faðxÞ 6¼ 0g, where fa ¼
Qp

i¼1 fai . Consider basis elements

dfa :¼ dfa1 ^ � � � ^ dfap and the Cousin complex

C�ZðEjUÞ : 0! EjU ¼: ðEjU;Þdf; !
Y
jaj¼1

Eadfa! � � � !
Y
jaj¼q

Eadfa! 0;

where Ea :¼ jaðEjUaÞ with ja the inclusion Ua ,! U. The differential on C�ZðEjUÞ is
given by @ðdfaÞ :¼ 


Pq
i¼1 dfi ^ dfa. The minus sign occurs in order to have an exact

sequence of complexes
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0! C�ðfUi \Ug; EÞ½
1� ! C�ZðEjUÞ ! EjU! 0;

where C� :¼ C�ðfUi \Ug; EÞ is the sheafified C̆ech complex; observe that the differen-
tial on C�½
1� is the negative of the differential on C�! It is well known that
Hp

ZðEjUÞ ffi HpðC�ZðEjUÞÞ. Note that C�ZðOUÞ carries a graded algebra structure via

dfadfb :¼ dfa ^ dfb and that C�ZðEjUÞ is a graded module over C�ZðOUÞ.

In [Blo, p.61], Bloch defines a natural map

m:N Z=X
!Hq
ZðX;O

q
1
X Þ

that is locally given as follows. Multiplying the element

o :¼
df1
f1
^ � � � ^

dfq
fq

� �
2 GðU;Hq

ZðOXÞÞ

with df1 ^ � � � ^ dfq gives a form o� df1 ^ � � � ^ dfq in H 0 U;Hq
ZðX;O

q
XÞ

� �
that is

independent of the choice of the equations f1; . . . ; fq. The map m is then given by con-
traction against o� df1 ^ � � � ^ dfq, which yields for a linear map j:J 
!OZ the

explicit expression

mðjÞ ¼
X
ð
1Þi
1o � jð fiÞ � df1 ^ � � � ^cdfi ^ � � � ^ dfq: ð3Þ

Now tB in 8.1 (2) is the composition

HkðZ;N Z=XÞ 
!
m

Hk X;Hq
ZðX;O

q
1
X Þ

� �
ffi H

qþk
Z ðX;O

q
1
X Þ 
!

can
HqþkðX;Oq
1

X Þ;

see (loc. cit.) for a proof. To compare this map with our semiregularity map, observe

first that t also admits a factorization

HkðZ;N Z=XÞ ffi T kþ1
Z=XðOZÞ 
!H

qþk
Z ðX;O

q
1
X Þ 
!

can
HqþkðX;Oq
1

X Þ;

see 4.7. As taking traces is compatible with localization, to deduce 8.2 it is sufficient

to show the following lemma.

LEMMA 8.4. The diagram of OZ-modules

commutes.

Proof. This is a local calculation, so we may suppose X Stein and Z defined by

equations f1; . . . ; fq so that the Koszul complex K�ð f;OXÞ is an OX- resolution of the

sheaf OZ. More explicitly, set
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K
p :¼ Kpðf;OXÞ ¼
M

i1<���<ip

OXgfi1 ^ � � � ^ gfip ;

with the Koszul differential given by @ðgfjÞ ¼ fj. Note that K
� is the free graded alge-

bra over OX with generators gfi 2 K
1, 14 i4 q, in (cohomological) degree 
1 and

that @ is a derivation of degree 1. In particular,

ExtkXðOZ;OZ�OX
MÞ ffi HkðHomXðK

�;K� �OX
MÞÞ; k5 0;

for every coherent OX-module M. Consider on K� the connection

H:K� 
!K� � O1X with H gfi1 ^ � � � ^ gfip
� 	

¼ 0 :

The Atiyah class of OZ is now the element of Ext
1
XðOZ;OZ � O1XÞ represented by

½@;H�:K� 
!K� � O1X, an OX-linear map of degree 1. Note that H as well as ½@;H�
are derivations on the ring K� and that ½@;H�ðgfiÞ ¼ 
1� dfi. Thus, the map

½@;H�q
1=ðq
 1Þ!:K� 
!K� � Oq
1
X ;

which is only nonzero on K
qþ1 and K
q, is given there by

gf1 ^ � � � ^ bgfi ^ � � � ^ gfq jjjj
! ð
1Þ
q
2ð Þ1� ðdf1 ^ � � � ^cdfi ^ � � � ^ dfqÞ

gf1 ^ � � � ^ gfq jjjj
!
X
i

ð
1Þ
q
1
2ð Þþigfi � df1 ^ � � � ^cdfi ^ � � � ^ dfq:

Consider now �j 2 HomXðJ ;OZÞ ffi Ext
1
XðOZ;OZÞ and write �jð fiÞ ¼ �ji with

sections ji of OX. Under the isomorphism Ext
1
XðOZ;OZÞ ffi H1ðHomXðK

�;K�ÞÞ, the

element �j corresponds to the derivation j:K� ! K� with jðgfiÞ ¼ ji. The composi-

tion j � ½@;H�q
1=ðq
 1Þ! is a map of degree q and is therefore determined by the

component

j � ½@;H�q
1=ðq
 1Þ!:K
q
!K0 � Oq
1
X

gf1 ^ � � � ^ gfq jjjj
!
X
ð
1Þ

q
1
2ð Þþiji � df1 ^ � � � ^

cdfi ^ � � � ^ dfq:
Note that j � ½@;H�q
1 represents h½ �j�;Atq
1ðOZÞi.

Nowwe wish to take traces to produce an element inHq
ZðX;O

q
1
X Þ. Let C�Z ¼ C�ZðOXÞ

be the Cousin complex, see 8.3. Let ĝfi be the basis of HomXðK

1;OXÞ dual to gfi

and set

ĝfa :¼ ĝfa1 ^ � � � ^ ĝfap ¼ ð
1Þ
p
2ð Þĝfap ^ � � � ^ ĝfa1 :

With this convention, ð
1Þ
p
2ð Þĝfa is the basis element dual to gfa :¼ gfa1 ^ � � � ^ gfap

and the differential on HomXðK
�;OXÞ is given by multiplying from the left with



P

fi � ĝfi. The computation above gives that

j � ½@;H�q
1=ðq
 1Þ! ¼ ĝf1 ^ � � � ^ ĝfq
X
ð
1Þqþiji � df1 ^ � � � ^

cdfi ^ � � � ^ dfq:
Using 8.5 below, this is mapped under the trace map to
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ð
1Þq
1
df1 ^ � � � ^ dfq

f1 � � � fq

X
ð
1Þi
1ji � df1 ^ � � � ^

cdfi ^ � � � ^ dfq:
Comparing with ð3Þ above, the result follows. &

It remains to verify the following lemma.

LEMMA 8.5. The trace map ExtqXðOZ;OZÞ 
!Hq
ZðOXÞ maps the class of

ĝf1 ^ � � � ^ ĝfq 2 HomXðK

q;OXÞ � HomXðK

�;K�Þ onto the class of

df1 ^ � � � ^ dfq
f1 � � � fq

:

Proof. As C�Z is a sheaf of flat OX-modules, the complex K� � C�Z is quasi-
isomorphic to OZ � C�Z ffi OZ. Therefore, the canonical projection C�Z ! C0Z ¼
OX induces a quasi-isomorphism K� � C�Z
!K�. In a first step, we construct a

section of this projection,

as follows. The map ĝfa jjjj!dfa=fa, where ĝfa ¼ ĝfa1 ^ � � � ^ ĝfap is as above, realizes
HomXðK�;OXÞ as a subcomplex of C�Z. We define c to be the composition

K� 
!HomXðK�;K�Þ ffi K� �HomXðK�;OXÞ ,!K� � C�Z;

where the first map is given by k jjjj!k � id. As the identity corresponds to the elementP
ð
1Þ

jaj
2ð Þgfa � ĝfa in K� �HomXðK

�;OXÞ, the map c is given explicitly by

k jjjj
! k �
X
a

ð
1Þ
jaj
2ð Þgfa � dfa=fa:

Now we can define the local trace map HomXðK�;K�Þ ! C�Z as the composition of

HomXðK�;K�Þ ffiHomXðK�;OXÞ �K� 
!
1�c

HomXðK�;OXÞ �K� � C�Z 
!
Tr�1 C�Z:

The image of ĝf1 ^ � � � ^ ĝfq under these maps is just given by

ĝf1 ^ � � � ^ ĝfq jjjj
!
1�c

ĝf1 ^ � � � ^ ĝfq �
X
a

ð
1Þ
jaj
2ð Þgfa � dfa=fa

jjjj
!
Tr�1 df1 ^ � � � ^ dfq

f1 � � � fq
;

as desired. &

8.6. Another application of the above construction concerns the infinitesimal Abel–

Jacobi map. Let X be an n-dimensional compact algebraic manifold and Z � X a

closed submanifold of codimension q. The infinitesimal Abel–Jacobi map is the
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differential at ½Z � of the Abel–Jacobi map HilbX
! JqðX Þ into the intermediate

Jacobian JqðX Þ; see, for example, [Gre, Gri2], or [Voi] in the analytic case. This

differential can be considered as a map b:H 0ðZ;N Z=XÞ 
!HqðX;Oq
1
X Þ that has the

same homological description in terms of Serre duality as Bloch’s semiregularity map

and is just the map tB in 8.1 (2) for k ¼ 0, see (loc. cit.).

Applying 8.2, we obtain the following description of the infinitesimal Abel–Jacobi

map.

PROPOSITION 8.7. The infinitesimal Abel–Jacobi map fits into the commutative

diagram

&

This statement should generalize. There should be an Abel–Jacobi map for defor-

mations of arbitrary coherent sheaves on a compact algebraic manifold such that its

differential is essentially given by multiplication with powers of the Atiyah class as

above. More precisely, let us pose the following problem.

PROBLEM 8.8. For a coherent sheaf F 0 on a compact algebraic manifold X the

Chern character chkðF 0Þ is a well defined class in the Chow group CHk
ðX ÞQ. Assume

that the sheaf F on X� S is a semi-universal deformation of F 0 over a germ
S ¼ ðS; 0Þ. If F s denotes the restriction of F to the fibre X ffi X� fsg, then the fol-

lowing should hold:

(1) The map s jjjj
! chkðF sÞ provides a family of k-dimensional cycles on X.

(2) Integrating over a (topological) ð2kþ 1Þ-chain in X with boundary

chkðF sÞ 
 chkðF 0Þ gives a holomorphic map S 
!
jk

J kðX Þ.

(3) The derivative of jk is given by

T0S 
!
ffi
Ext1XðF 0;F 0Þ !

Trh;ð
AtðF 0ÞÞk=k!i Hkþ1ðX;Ok
XÞ:

9. Appendix: Infinitesimal Deformations and Integral Dependence

We recall first the definition of integral dependence, see [ZSa1]. Let R be a ring and

I � R an ideal. An element x 2 R is integral over I if there is an equation

xn þ a1x
n
1 þ � � � þ an ¼ 0

with an 2 I n.

For instance, every element of I is integral over I. The set �I � R of all elements

from R that are integral over I is an ideal, the integral closure of I in R.
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We remind the reader of the following criterion for integral dependence that we

formulate for our purposes as follows. Let k be an algebraically closed field and

let A ¼ ðA;mmmmmÞ be a local Noetherian complete k-algebra with residue field k. If

I � mmmmm is an ideal, then f is in the integral closure of I if and only if for every ‘arc’

a:A! kvT b the element að f Þ is contained in aðI ÞkvT b.

9.1. For the main result of this section we consider the following setup. Let L! A

be a morphism of complete Noetherian k-algebras with residue field k and assume

that A ffi R=I with R :¼ LvX1; . . . ;Xsb and I � mmmmmLRþ ðX1; . . . ;XsÞ
2. It is well known

that for every finite A-module M there is a canonical isomorphism

T1A=LðM Þ ffi coker HomAðO
1
A=L;M Þ 
!HomAðI;M Þ

� �
; ðÞ

where T1A=LðM Þ is the first tangent cohomology. The elements of T
1
A=LðM Þ corre-

spond to isomorphism classes of algebra extensions ½A0� of A by M. On the level

of such algebra extensions the isomorphism above is given as follows. If

½A0� 2 T1A=L is an algebra extension of A by M, let p0:R! A0 be a morphism of L-
algebras lifting the given map p:R! A. Restricting p0 to I gives a map

jA0 :¼ p0jI: I!M, and the correspondence ðÞ assigns to ½A0� the residue class of this

homomorphism. As I � mmmmmLRþ ðX1; . . . ;XsÞ
2, we get in particular that

T1A=LðkÞ ffi HomAðI; kÞ: ðÞ

There is always a canonical inclusion of Ext1AðO
1
A=L;M Þ into T1A=LðM Þ. In case

M ¼ k, another important subspace of T1A=LðkÞ is Ex
c
A=LðkÞ, the space of curvilinear

extensions. This is, by definition, the subspace generated by all curvilinear extensions

½A0�, which are those extensions that fit into a commutative diagram of L-algebras

ðDÞ

We will give the following characterizations of these subspaces.

THEOREM 9.2. ð1Þ If k is algebraically closed then under the isomorphism ðÞ the

subspace ExcA=LðkÞ of T1A=LðkÞ corresponds to the subspace HomAðI=J; kÞ of

HomAðI; kÞ, where J is the integral closure of mmmmmI in I.

ð2Þ The elements of Ext1AðO
1
A=L;M Þ ,!T1A=LðM Þ correspond to those extensions ½A0� of

½A� by M for which the associated Jacobi map j:M! O1A0=L �A0 A is injective.

ð3Þ If Char k ¼ 0 and L ¼M ¼ k, then there are inclusions

ExcA=kðkÞ � Ext
1
AðO

1
A=k; kÞ � T1A=kðkÞ:

Proof. For (1), let A0 be a curvilinear extension of A by k and let p0:R! A0 be a

morphism of L-algebras lifting the given map p:R! A, so that jA0 ¼ p0jI: I! k
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corresponds under ðÞ to the extension ½A0�. By the valuative criterion of integral

dependence mentioned above, J is in the kernel of p0, whence jA0 2 HomAðI=J; kÞ.

Thus ExcA=LðkÞ � HomAðI=J; kÞ. To show equality, assume that a is a k-linear form

on HomAðI; kÞ that vanishes on Ex
c
A=LðkÞ. We need to show that a vanishes on

HomAðI=J; kÞ. Such a linear form can be written as HomAðI; kÞ 3 f jjjj!að f Þ ¼ fðxÞ for

some x 2 I. By assumption, for every curvilinear extension A0 of A by k, the element

aðjA0 Þ ¼ jA0 ðxÞ vanishes. Applying the valuative criterion of integral dependence it

follows that x 2 J and so a vanishes on HomAðI=J; kÞ, as desired.

In order to deduce (2) note that the map Ext1AðO
1
A=L;M Þ ! T1A=LðM Þ assigns to an

extension 0!M! E!
q

O1A=L ! 0 the algebra extension ½A0� of A byM that is the

quotient of the trivial extension A½E� by the ideal kerððd;
qÞ:A½E� ! O1A=LÞ, where d
is the differential. The reader may easily verify that then E ffi O1A0=L �A0 A and that

the Jacobi map j becomes the inclusion ofM into E, whence j is injective. Conversely,

if for an extension ½A0� the map j is injective, then it is easily seen that the construc-

tion just described recovers ½A0� from the extension E :¼ O1A0=L �A0 A of O
1
A=L by M.

Finally for (3), if ½A0� is a curvilinear extension as in the diagram (D) in 9.1, then

the composed map k!
j
O1A0=L �A0 A! kvtb=ðtnÞ � dt is the map 1 jjjj!dðtnÞ and so is

injective. Hence, j is also injective, proving the inclusion ExcA=kðkÞ � Ext
1
A

ðO1A=k; kÞ. &

The following result shows how to bound the dimension of A in terms of its curvi-

linear extensions, as

ExcA=LðkÞ ffi HomAðI=J; kÞ ffi HomkðI=ðJþmmmmmI Þ; kÞ

by the preceding result. Kawamata [Kaw2] attributes the corresponding geometric

argument to Mori.

PROPOSITION 9.3. Let A ¼ R=I be a quotient of a local ring ðR;mmmmm; kÞ modulo an

ideal I � mmmmm. If J � I is integral over mmmmmI, then dim A5 dim R
 dimkðI=ðJþmmmmmI ÞÞ.

Proof. Replacing J by JþmmmmmI we may assume that J ( mmmmmI. Choose elements

x1; . . . ; xs 2 I that form a basis of the k-vector space I=J and consider the natural

ring homomorphism

k½X1; . . . ;Xs� !
M1
n¼0

ðI n=mmmmmI nÞTn ¼ R½IT �=mmmmmR½IT �

given by Xi jjjj! �xiT 2 ðI=mmmmmI ÞT. In a first step we prove that this map is finite. In fact,

the elements �f T; f 2 J, generate the ring R½IT �=mmmmmR½IT � as an algebra over

k½X1; . . . ;Xs�, and if f
n þ a1f

n
1 þ � � � þ an ¼ 0 is an equation of integral dependence

for such an f 2 J over mmmmmI, the coefficients satisfy an 2 ðmmmmmI Þn, whence ð �fT Þn ¼ 0 and

finiteness follows. This implies

dim R½IT �=mmmmmR½IT �4 s: ð1Þ

As R½IT �=mmmmmR½IT � appears as the special fibre of
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R=I! GIðRÞ :¼
M1
n¼0

I n=I nþ1;

we obtain

dim R½IT �=mmmmmR½IT �5 dim GIðRÞ 
 dim R=I ¼ dim R
 dim R=I;

see [Mat, Thms.15.1, 15.7]. Together with (1) the result follows. &

For the next result we have to assume that the ground field k has characteristic

zero.

PROPOSITION 9.4. If L! A is a morphism of local Noetherian complete k-algebras

with residue fields k, then

dim A5 dimkHomAðO
1
A=L; kÞ 
 dimkExt

1
AðO

1
A=L; kÞ:

Proof. In the absolute case, where L ¼ k, this is a result due to Scheja and Storch,

see [SSt, 3.5]. Alternatively, it follows from the chain of inequalities

dim A5 dim R
 dimkðI=JþmmmmmI Þ ¼ dimkHomAðO
1
A=k; kÞ 
 Ex

c
A=kðkÞ

5 dimkHomAðO
1
A=k; kÞ 
 Ext

1
AðO

1
A=k; kÞ;

where we have applied 9.3 and 9.2.

To deduce the general case, set �A :¼ A=mmmmmLA. The spectral sequence

E
pq
2 ¼ Ext

p
�A
ðTorAq ðO

1
A=L;

�AÞ; kÞ ) Ext
pþq
A ðO

1
A=L; kÞ

yields

HomAðO
1
A=L; kÞ ffi Hom �AðO

1
�A=k

; kÞ and Ext1AðO
1
A=L; kÞ ( Ext

1
�A
ðO1�A=k; kÞ:

Hence the result follows from the chain of inequalities

dimA5 dim �A5 dimkHom �AðO
1
�A=k

; kÞ 
 dimkExt
1
�A
ðO1�A=k; kÞ

5 dimkHomAðO
1
A=L; kÞ 
 dimkExt

1
AðO

1
A=L; kÞ: &
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