# Vector Fields and the Cohomology Ring of Toric Varieties 

Kiumars Kaveh


#### Abstract

Let $X$ be a smooth complex projective variety with a holomorphic vector field with isolated zero set $Z$. From the results of Carrell and Lieberman there exists a filtration $F_{0} \subset F_{1} \subset \cdots$ of $A(Z)$, the ring of $\mathbb{C}$-valued functions on $Z$, such that $\operatorname{Gr} A(Z) \cong H^{*}(X, \mathbb{C})$ as graded algebras. In this note, for a smooth projective toric variety and a vector field generated by the action of a 1-parameter subgroup of the torus, we work out this filtration. Our main result is an explicit connection between this filtration and the polytope algebra of $X$.


## 1 Introduction

Let $X$ be a smooth projective variety over $\mathbb{C}$ with a holomorphic vector field $\mathcal{V}$ such that $\operatorname{Zero}(\mathcal{V})$ is non-trivial and isolated. In [3, 4], using the Koszul complex of the vector field $\mathcal{V}$, Carrell and Lieberman prove that the coordinate ring $A(Z)$ of the zero scheme $Z$ of $\mathcal{V}$ admits a filtration $F_{0} \subset F_{1} \subset \cdots$ such that the associated graded $\operatorname{Gr} A(Z)$ is isomorphic to $H^{*}(X, \mathbb{C})$ as graded algebra. In this paper, for a smooth projective toric variety, we work out this filtration. Our main result is a natural isomorphism between $\operatorname{Gr} A(Z)$ and Brion's description of the polytope algebra (see [1]). We also give direct proofs that the usual relations in the cohomology of a toric variety hold in $\operatorname{Gr} A(Z)$.

For the vector field $\nu$, in the toric case, we take the generating vector field of a 1-parameter subgroup $\gamma$, in general position, of the torus $T$, so that the fixed point set $Z$ of $\gamma$ is the same as the fixed point set of $T$. Any lattice polytope $\Delta$ normal to the fan of $X$, determines a line bundle $L_{\Delta}$ on $X$. We show that $c_{1}\left(L_{\Delta}\right)$, the first Chern class of this line bundle, under the isomorphism $H^{*}(X, C) \cong \operatorname{Gr} A(Z)$, is represented by the the function $f_{\Delta} \in A(Z)$ given by the simple formula:

$$
f_{\Delta}(z)=\left\langle\gamma, v_{z}\right\rangle \quad \forall z \in Z,
$$

where $v_{z}$ is the vertex of $\Delta$ corresponding to a fixed point $z$. Multiplication by $f_{\Delta}$ is the Lefschetz operator in $H^{*}(X, \mathbb{C}) \cong \operatorname{Gr} A(Z)$. From these functions $f_{\Delta}$ we obtain the functions $f_{\rho}$ in $\operatorname{Gr} A(Z)$ corresponding to $D_{\rho}$, the cohomology classes of the orbit closures of codimension 1. It is known that these span $H^{2}(X, \mathbb{C})$ as a vector space and generate $H^{*}(X, \mathbb{C})$ as an algebra. Using this, we then construct the filtration $F_{0} \subset F_{1} \subset \cdots$ of $A(Z)$ (Theorem 4.3).

From [1], $H^{*}(X, C)$ can be realized as a quotient of the algebra of continuous functions on the fan of $X$ whose restriction to each cone is a polynomial. Let $p$ be

[^0]a continuous function on the fan whose restriction to each cone of maximal dimension is a homogeneous polynomial of degree $k$, representing a cohomology class in $H^{2 k}\left(X,(C)\right.$. We show that $p$ corresponds to the function $f \in F_{k} A(Z)$ defined by
$$
f(z)=p_{\mid \sigma_{z}}(\gamma)
$$
where $\sigma_{z}$ is the cone of maximal dimension corresponding to a fixed point $z$ (Theorem 5.2).

This paper is motivated in part by a comment of T. Oda. In [8, p. 417], Oda briefly comments about how to explain the results of Carrell-Lieberman in the toric case: as Khovanskii has shown in [6], composition of $\gamma$ and the moment map of the toric variety $X$ defines a Morse function on $X$ whose critical points are the fixed points (see Remark 4.8). Since the number of critical points of index $i$ is the $i$-th Betti number, Oda suggests that the grading on the fixed point set induced by the Morse index is the grading in Carrell-Lieberman and hence gives the cohomology algebra. It is not difficult to see that this is not necessarily correct. ${ }^{1}$ (See also Example 6.1.)

The present note is closely related to the work of V. Puppe [10] which gives a similar filtration in the topological setting.

In Section 2, we discuss Carrell-Lieberman results on the connection between the zeros of holomorphic vector fields and cohomology. In Section 3 we discuss the classical results on the cohomology of toric varieties. In Section 4, we work out the Carrell-Lieberman filtration in the toric case. The main result of the paper, that is the connection between the polytope algebra and the Carrell-Lieberman filtration, is discussed in Section 5. In Section 6 we see two examples in dimension 2.

## 2 Zeros of Holomorphic Vector Fields and Cohomology

Let $X$ be a smooth projective variety over $\mathbb{C}$. The purpose of this section is to give a brief survey of the results of Carrell and Lieberman on the connection between the zeros of vector fields and cohomology. We start with the Koszul complex of a holomorphic vector field $\mathcal{V}$ on $X$. Let $\mathcal{O}_{X}$ be the sheaf of holomorphic functions on $X$. The vector field $\mathcal{V}$ defines a derivation $\mathcal{V}: \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}$, which extends to give a contraction operator $i(\mathcal{V}): \Omega^{p} \rightarrow \Omega^{p-1}$ on the sheaves of holomorphic $p$-forms on $X$ such that $i(\mathcal{V})^{2}=0$. In addition, for all $\phi, \omega \in \Omega^{*}$,

$$
i(\mathcal{V})(\phi \wedge \omega)=i(V) \phi \wedge \omega+(-1)^{p} \phi \wedge i(\mathcal{V}) \omega
$$

if $\phi \in \Omega^{p}$. Thus we get a complex $K^{*}$ of sheaves

$$
0 \rightarrow \Omega^{n} \rightarrow \Omega^{n-1} \rightarrow \cdots \rightarrow \Omega^{1} \rightarrow \mathcal{O}_{X} \rightarrow 0
$$

where $n=\operatorname{dim} X$, and, in turn, a spectral sequence whose first term is $E_{1}^{-p, q}=$ $H^{q}\left(X, \Omega^{p}\right)$ with first differential $i(\mathcal{V})$. In [3] Carrell and Lieberman prove that if

[^1]$\mathcal{V}$ has zeros, then every differential in this spectral sequence is zero. Consequently $E_{1}=E_{\infty}$, and we obtain a (C-algebra isomorphism
$$
\bigoplus_{s} H^{q+s}\left(X, \Omega^{q}\right) \cong \bigoplus_{s} F_{s} H^{q}\left(K^{*}\right) / F_{s-1} H^{q}\left(K^{*}\right)
$$

Here $H^{q}\left(K^{*}\right)$ denotes the hypercohomology of this Koszul complex and $F_{\bullet}$ is its canonical filtration.

They also prove that when $\mathcal{V}$ has isolated zeros the hypercohomology groups $H^{q}\left(K^{*}\right)$ vanish for $q>0$ (see [3]). $\operatorname{Zero}(\mathcal{V})$ can be viewed as the scheme $Z$ defined by the sheaf of ideals $i(\mathcal{V}) \Omega^{1} \subset \mathcal{O}_{X}$, so when this scheme is finite (and non trivial), we get the following result:

Theorem 2.1 ([2, Theorem 5.4]) Suppose $X$ admits a holomorphic vector field $V$ with $\operatorname{Zero}(\mathcal{V})$ isolated but non-trivial, then $H^{p}\left(X, \Omega^{q}\right)=\{0\}$ for all $p \neq q$ (hence $\left.H^{p}\left(X, \Omega^{p}\right)=H^{2 p}(X, C)\right)$. Moreover, the coordinate ring $A(Z)$ of the zero scheme $Z$ of $\mathcal{V}$ admits an increasing filtration $F_{\bullet}=F_{\bullet} A(Z)$ such that
(1) $F_{i} F_{j} \subset F_{i+j}$, and
(2) $H^{*}(X, \mathbb{C})=\bigoplus_{i \geq 0} H^{2 i}(X, \mathbb{C}) \cong \bigoplus_{i \geq 0} \operatorname{Gr}_{i}(A(Z))=\operatorname{Gr} A(Z)$,
where the displayed summands are isomorphic over $(\mathbb{C}$. Here

$$
\operatorname{Gr}_{i}(A(Z)):=F_{i} A(Z) / F_{i-1} A(Z) .
$$

For the rest of this section we assume that the zero set $Z$ is isolated (but nonempty). Let $E \rightarrow X$ be a holomorphic vector bundle and $\mathcal{E}$ its sheaf of holomorphic sections. One says that $E$ is $\mathcal{V}$-equivariant if the derivation $\mathcal{V}$ of $\mathcal{O}_{x}$ lifts to $\mathcal{E}$. That is, there exists a $\left(\mathbb{C}\right.$-linear sheaf homomorphism $\tilde{\mathcal{V}}: \mathcal{E} \rightarrow \mathcal{E}$ such that if $\sigma \in \mathcal{E}_{x}$ and $f \in \mathcal{O}_{X, x}$ then

$$
\tilde{\mathcal{V}}(f \sigma)=\mathcal{V}(f) \sigma+f \tilde{\mathcal{V}}(\sigma) .
$$

Hence $\tilde{\mathcal{V}}$ defines an $\mathcal{O}_{Z}$-linear map $\tilde{\mathcal{V}}_{Z}: \mathcal{E}_{Z} \rightarrow \mathcal{E}_{Z}$, where $\mathcal{E}_{Z}=\mathcal{E} \otimes_{\mathcal{O}_{X}} \mathcal{O}_{Z}$.
Let us recall the Chern-Weil construction. Let

$$
c(\mathcal{E}) \in H^{1}\left(X, \operatorname{Hom}(\mathcal{E}, \mathcal{E}) \otimes \Omega^{1}\right)
$$

denote the Atiyah-Chern class of $\mathcal{E}$, and let $p: \operatorname{Hom}(\mathcal{E}, \mathcal{E})^{\otimes l} \rightarrow \mathcal{O}_{X}$ be any $\mathcal{O}_{X}$-linear map. Then $p(c(\varepsilon))$ is a well-defined element of $H^{l}\left(X, \Omega^{l}\right)$. On the other hand, $p$ also defines a map $p_{Z}: \operatorname{Hom}\left(\varepsilon_{Z}, \varepsilon_{Z}\right)^{\otimes l} \rightarrow \mathcal{O}_{Z}$. This means that $p_{Z}\left(\tilde{\mathcal{V}}_{Z}^{\otimes l}\right)$ gives a welldefined global section of $\mathcal{O}_{Z}$, that is, $p_{Z}\left(\tilde{\mathcal{V}}_{Z}^{\otimes l}\right) \in A(Z)$. We have,

Theorem 2.2 ([2, Theorem 5.5]) If $p$ has degree l, then $p\left(\tilde{\mathcal{V}}_{Z}^{\otimes l}\right) \in F_{l} A(Z)$, and in the associated graded algebra, i.e., in $\operatorname{Gr}_{l} A(Z), p\left(\tilde{V}_{Z}^{\otimes l}\right)$ corresponds to $p(c(\mathcal{E})) \in H^{l}\left(X, \Omega^{l}\right)$ $=H^{2 l}(X, \mathbb{C})$, where $c(\mathcal{E})$ denotes the Atiyah-Chern class of $\mathcal{E}$.

Later, we will use the above theorem to identify a function in $A(Z)$ corresponding to the Chern class of a line bundle on a toric variety. As the vector field $\mathcal{V}$ we take the generating vector field of a 1-parameter subgroup, in general position, of the torus.

## 3 Preliminaries on the Cohomology of Toric Varieties

Let $T$ be the algebraic torus $\left(\mathbb{C}^{*}\right)^{d}$. As usual, $N$ denotes the lattice of 1-parameter subgroups of $T, N_{\mathbb{R}}$ the real vector space $N \otimes_{\mathbb{Z}} \mathbb{R}, M$ the dual lattice of $N$ which is the lattice of characters of $T$, and $M_{\mathbb{R}}$ the real vector space $M \otimes_{\mathbb{Z}} \mathbb{R}$. A vector $n=$ $\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d} \cong N$ corresponds to the 1-parameter subgroup $t^{n}=\left(t^{n_{1}}, \ldots, t^{n_{d}}\right)$. Similarly, a covector $m=\left(m_{1}, \ldots, m_{d}\right) \in\left(\mathbb{Z}^{d}\right)^{*} \cong M$ corresponds to the character $x^{m}=x_{1}^{m_{1}} \cdots x_{d}^{m_{d}}$. We use $\langle\rangle:, N \times M \rightarrow \mathbb{Z}$ for the natural pairing between $N$ and $M$.

Let $X$ be a $d$-dimensional smooth projective toric variety. Let $\Sigma \subset N_{\mathbb{R}}$ be the simplicial fan corresponding to $X$. We denote by $\Sigma(i)$ the set of all $i$-dimensional cones in $\Sigma$. For each $\rho \in \Sigma(1)$, let $\xi_{\rho}$ be the primitive vector along $\rho$, i.e., the smallest integral vector on $\rho$.

There is a one-to-one correspondence between the orbits of dimension $i$ in $X$ and the cones in $\Sigma(d-i)$. The fixed points of $T$ correspond to the cones in $\Sigma(d)$. In a smooth toric variety all the orbit closures are smooth; the cohomology class dual to the closure of the orbit corresponding to $\rho \in \Sigma(1)$ is denoted by $D_{\rho} \in H^{2}(X, \mathbb{C})$. It is well known that the cohomology algebra of a toric variety is generated by the classes $D_{\rho}$. More precisely, we have,

Theorem 3.1 (see [5, p. 106]) Let X be a smooth projective toric variety. Then

$$
H^{*}(X, \mathbb{C})=\mathbb{Z}\left[D_{\rho}, \rho \in \Sigma(1)\right] / I
$$

where I is the ideal generated by all
(i) $\quad D_{\rho_{1}} \cdots D_{\rho_{k}}, \quad \forall \rho_{1}, \ldots, \rho_{k}$ not in a cone of $\Sigma$, and
(ii) $\sum_{\rho \in \Sigma(1)}\left\langle\xi_{\rho}, u\right\rangle D_{\rho}, \quad \forall u \in M$.

Now, let $\Delta \subset M_{\mathbb{R}}$ be a simple rational polytope normal to the fan $\Sigma$. The polytope $\Delta$ defines a diagonal representation $\pi: T \rightarrow G L(V)$ where $\operatorname{dim}_{\mathbb{C}}(V)=$ the number of lattice points in $\Delta$. Fix a basis for $V$ so that $T$ acts by diagonal matrices. If the mutual differences of the lattice points in $\Delta$ generate $M$, then we get an embedding of $X$ in $\mathbb{P}(V)$ as the closure of the orbit of $(1: 1: \cdots: 1)$. In the rest of the paper, we assume that the above condition holds for $\Delta$.

The set of faces of dimension $i$ in $\Delta$ is denoted by $\Delta(i)$. There is a one-to-one correspondence between the faces in $\Delta(i)$ and the cones in $\Sigma(d-i)$ which in turn correspond to the orbits of dimension $i$ in $X$. Hence the fixed points of $T$ on $X$ correspond to the vertices of $\Delta$.

The support function $l_{\Delta}: N_{\mathbb{R}} \rightarrow \mathbb{R}$ is defined by $l_{\Delta}(\xi)=\max _{x \in \Delta}\langle\xi, x\rangle$.
Let $L_{\Delta}$ be the line bundle on $X$ obtained by restricting the dual of the universal subbundle on $\mathbb{P}(V)$ to $X$. We will need the following classical theorem which tells us how the first Chern class $c_{1}\left(L_{\Delta}\right)$ is represented as a linear combination of the classes $D_{\rho}$.

Theorem 3.2 With notation as above we have

$$
c_{1}\left(L_{\Delta}\right)=\sum_{\rho \in \Sigma(1)} l_{\Delta}\left(\xi_{\rho}\right) D_{\rho}
$$

## 4 The Filtration on $A(Z)$ in the Toric Case

As before, let $X$ be a smooth projective toric variety with fan $\Sigma$ and a lattice polytope $\Delta$ normal to the fan which gives rise to a representation $\pi: T \rightarrow G L(V)$ and a $T$-equivariant embedding of $X$ in $\mathbb{P}(V)$, for a vector space $V$ over $\mathbb{C}$. Let $\gamma \in N$ be a 1-parameter subgroup of $T$. We can choose $\gamma$ so that the set of fixed points of $\gamma$ is the same as the set of fixed points of $T$. We denote the set of fixed points by Z .

In this section, we construct a filtration $F_{0} \subset F_{1} \subset \cdots$ for $A(Z)$ such that $H^{*}(X, \mathbb{C}) \cong \operatorname{Gr} A(Z)$.

Notation In the following, $z$ denotes a fixed point, $\sigma_{z}$ the corresponding $d$-dimensional cone in $\Sigma$ and $v_{z}$ the corresponding vertex in $\Delta$. A 1-dimensional cone in $\Sigma$ is denoted by $\rho$ and the corresponding facet of $\Delta$ by $F_{\rho}$.

From Theorem 2.1 applied to the generating vector field of $\gamma$, there exists a filtration $F_{0} \subset F_{1} \subset \cdots$ of $A(Z)$, the ring of $\mathbb{C}$ valued functions on $Z$, so that $H^{*}(X, \mathbb{C}) \cong$ $\bigoplus_{i=0}^{\infty} F_{i+1} / F_{i}$, as graded algebras. In particular, we have $H^{2}(X, \mathbb{C}) \cong F_{1} / F_{0}$. The subspace $F_{0} A(Z)$ is just the set of constant functions. To determine the image of $H^{2}(X, \mathbb{C})$ in $\operatorname{Gr} A(Z)$ we need to determine $F_{1}$. We start by finding the representatives in $F_{1}$ for the Chern classes of the line bundles.

The 1-parameter subgroup $\gamma: \mathbb{C}^{*} \rightarrow T$ acts on $V$ via $\pi$ and hence the action of $\gamma$ on $X$ lifts to an action of $\gamma$ on the line bundle $L_{\Delta}$. Thus the generating vector field of $\gamma$ has a lift to $L_{\Delta}$. If we view $L_{\Delta}$ as $\{(x, l) \in X \times V \mid x=[l]\}$ then the action of $\gamma$ on $L_{\Delta}$ is given by:

$$
\gamma(t) \cdot(x, l)=\left(\pi\left(t^{\gamma}\right) x, \pi\left(t^{\gamma}\right) l\right)
$$

Now, from Theorem 2.2 we have,

Proposition 4.1 Under the isomorphism $F_{1} / F_{0} \cong H^{2}(X,(\mathbb{C})$, the first Chern class $c_{1}\left(L_{\Delta}\right)$ is represented by the function $f_{\Delta}$ defined by

$$
f_{\Delta}(z)=\left\langle\gamma, v_{z}\right\rangle, \quad \forall z \in Z
$$

where $v_{z}$ is the vertex of $\Delta$ corresponding to the fixed point $z$.
Proof In Theorem 2.2, take $E$ to be $L_{\Delta}$ and $p$ be the identity polynomial. The derivation $\tilde{\mathcal{V}}$ is just the derivation given by the $\mathrm{G}_{m}$-action of $\gamma$ on $L_{\Delta}$. Let $z$ be a fixed point and $(z, l) \in\left(L_{\Delta}\right)_{z}$ a point in the fiber of $z$. We have:

$$
\begin{aligned}
\gamma(t) \cdot(z, l) & =\left(z, \pi\left(t^{\gamma}\right) l\right) \\
& =\left(z,\left\langle\gamma, v_{z}\right\rangle l\right) .
\end{aligned}
$$

and hence $f_{\Delta}(z)=\left\langle\gamma, v_{z}\right\rangle$.
Next, we wish to determine the images of the classes $D_{\rho}, \rho \in \Sigma(1)$, in $F_{1} / F_{0}$. Fix a 1-dimensional cone $\rho$ in $\Sigma(1)$. Let $F_{\rho}$ be the facet of $\Delta$ orthogonal to $\rho$.

Let us assume that we can move the facet $F_{\rho}$ of $\Delta$ parallel to itself to obtain a new integral polytope $\Delta^{\prime}$ (Figure 1). The polytope $\Delta^{\prime}$ is still normal to the fan $\Sigma$. If

$\Delta$

Figure 1: Moving a facet $F_{\rho}$
the facet can not be moved, we can replace $\Delta$ with $k \Delta$, for a big enough integer $k$, to make this moving of a facet possible. Replacing $\Delta$ with $k \Delta$ does not affect the formula we are going to obtain for $D_{\rho}$. Let $F_{\rho}^{\prime}$ denote the facet of $\Delta^{\prime}$ obtained by moving $F_{\rho}$. The maximum of the function $\left\langle\xi_{\rho}, \cdot\right\rangle$ on $\Delta$ and $\Delta^{\prime}$ is obtained on the facets $F_{\rho}$ and $F_{\rho}^{\prime}$ respectively. For support functions of these polytopes we can write,

$$
\begin{gathered}
l_{\Delta}\left(\xi_{\rho}\right)=\left\langle\xi_{\rho}, \text { some point in } F_{\rho}\right\rangle, \\
l_{\Delta^{\prime}}\left(\xi_{\rho}\right)=\left\langle\xi_{\rho}, \text { some point in } F_{\rho}^{\prime}\right\rangle \\
l_{\Delta}\left(\xi_{\rho^{\prime}}\right)=l_{\Delta^{\prime}}\left(\xi_{\rho^{\prime}}\right), \quad \forall \rho^{\prime} \neq \rho
\end{gathered}
$$

We also have:

$$
\begin{gathered}
c_{1}\left(L_{\Delta}\right)=l_{\Delta}\left(\xi_{\rho}\right) D_{\rho}+\sum_{\substack{\rho^{\prime} \in \Sigma(1) \\
\rho^{\prime} \neq \rho}} l_{\Delta}\left(\xi_{\rho^{\prime}}\right) D_{\rho^{\prime}} \\
c_{1}\left(L_{\Delta^{\prime}}\right)=l_{\Delta^{\prime}}\left(\xi_{\rho}\right) D_{\rho}+\sum_{\substack{\rho^{\prime} \in \Sigma(1) \\
\rho^{\prime} \neq \rho}} l_{\Delta^{\prime}}\left(\xi_{\rho^{\prime}}\right) D_{\rho^{\prime}} .
\end{gathered}
$$

Hence

$$
c_{1}\left(L_{\Delta}\right)-c_{1}\left(L_{\Delta^{\prime}}\right)=\left(l_{\Delta}\left(\xi_{\rho}\right)-l_{\Delta^{\prime}}\left(\xi_{\rho}\right)\right) D_{\rho} .
$$

So

$$
D_{\rho}=\frac{c_{1}\left(L_{\Delta}\right)-c_{1}\left(L_{\Delta^{\prime}}\right)}{l_{\Delta}\left(\xi_{\rho}\right)-l_{\Delta^{\prime}}\left(\xi_{\rho}\right)}
$$

Now, let $z$ be a torus fixed point, $\sigma_{z}$ the corresponding $d$-dimensional cone, and $v_{z}$ and $v_{z}^{\prime}$ the corresponding vertices in $\Delta$ and $\Delta^{\prime}$ respectively. From Proposition 4.1, $D_{\rho}$ corresponds to the function $f_{\rho} \in F_{1} A(Z)$ given by,

$$
\begin{aligned}
f_{\rho}(z) & =\frac{f_{\Delta}(z)-f_{\Delta^{\prime}}(z)}{l_{\Delta}\left(\xi_{\rho}\right)-l_{\Delta^{\prime}}\left(\xi_{\rho}\right)} \\
& =\frac{\left\langle\gamma, v_{z}-v_{z}^{\prime}\right\rangle}{l_{\Delta}\left(\xi_{\rho}\right)-l_{\Delta^{\prime}}\left(\xi_{\rho}\right)}
\end{aligned}
$$

If $v_{z} \notin F_{\rho}$ then $v_{z}=v_{z}^{\prime}$ and hence $f_{\rho}(z)=0$. If $v_{z} \in F_{\rho}$ then $l_{\Delta}\left(\xi_{\rho}\right)=\left\langle\xi_{\rho}, v_{z}\right\rangle$ and $l_{\Delta^{\prime}}\left(\xi_{\rho}\right)=\left\langle\xi_{\rho}, v^{\prime}{ }_{z}\right\rangle$. We obtain that

$$
f_{\rho}(z)= \begin{cases}\frac{\left\langle\gamma, v_{z}-v_{z}^{\prime}\right\rangle}{\left\langle\xi_{\rho}, v_{z}-v_{z}^{\prime}\right\rangle} & \text { if } v_{z} \in F_{\rho} \\ 0 & \text { if } v_{z} \notin F_{\rho}\end{cases}
$$

Since $\Delta$ is a simple polytope, there are $d$ edges at the vertex $v_{z}$. If $v_{z} \in F_{\rho}$, then there is only one edge $e$ at $v_{z}$ which does not belong to $F_{\rho}$. The vector $v_{z}-v_{z}^{\prime}$, in fact, is along this edge. Note that the above formula for $f_{\rho}(z)$ does not depend on the length of the vector $v_{z}-v_{z}^{\prime}$ (i.e., how much we move the facet $F_{\rho}$ to obtain the new polytope $\left.\Delta^{\prime}\right)$. Let $u_{\sigma_{z}, \rho}$ be the vector along the edge $e$ normalized such that $\left\langle u_{\sigma_{z}, \rho}, \xi_{\rho}\right\rangle=1$. Then we have,

Proposition 4.2 With notation as above, the cohomology class $D_{\rho}$ is represented by the function $f_{\rho}$ in $F_{1} A(Z)$ defined by

$$
f_{\rho}(z)= \begin{cases}\left\langle\gamma, u_{\sigma_{z}, \rho}\right\rangle & \text { if } v_{z} \in F_{\rho} \\ 0 & \text { if } v_{z} \notin F_{\rho}\end{cases}
$$

Since $H^{2}(X, \mathbb{C})$ is spanned by the classes $D_{\rho}, \rho \in \Sigma(1)$ and $H^{*}(X, \mathbb{C})$ is generated in degree 2, from Theorem 2.2 we obtain,

Theorem $4.3 \quad F_{1} A(Z) / F_{0} A(Z)=\operatorname{Span}_{\mathbb{C}}\left\langle f_{\rho}, \rho \in \Sigma(1)\right\rangle$. Moreover, $F_{i} A(Z)=$ all polynomials of degree $\leq i$ in the $f_{\rho}$.

One can prove directly that the functions $f_{\rho}, \rho \in \Sigma(1)$, satisfy the relations in the statement of Theorem 3.1. More precisely,

Theorem 4.4 The functions $f_{\rho}, \rho \in \Sigma(1)$, satisfy the following relations:
(i) $f_{\rho_{1}} \cdots f_{\rho_{k}}=0, \forall \rho_{1}, \ldots, \rho_{k}$ not in a cone of $\Sigma$, and
(ii) $\sum_{\rho \in \Sigma(1)}\left\langle\xi_{\rho}, u\right\rangle f_{\rho}=$ some constant function on $Z, \forall u \in M$.

Proof (i) is straightforward because every $f_{\rho}$ is non-zero only at $z$ such that the corresponding vertex lies in the facet $F_{\rho}$ corresponding to $\rho$. Now, if $\rho_{1}, \ldots, \rho_{k}$ are
not in a cone of $\Sigma$, it means that the intersection of the corresponding facets $F_{\rho_{i}}$ is empty, i.e., the product of the $f_{\rho_{i}}$ is zero.

For (ii), let $z$ be a torus fixed point and, $\sigma_{z}$ and $v_{z}$ the corresponding $d$-dimensional cone and vertex, respectively. Let $A$ be the $d \times d$ matrix whose rows are vectors $\xi_{\rho}$ and let $B$ be the $d \times d$ matrix whose columns are vectors $u_{\sigma_{z}, \rho}$, where $\rho$ is an edge of $\sigma_{z}$. Since the cone at the vertex $v_{z}$, which is generated by the vectors $u_{\sigma_{z}, \rho}$, is dual to the cone $\sigma_{z}$, we get $A B=\mathrm{id}$. Now, we have

$$
\begin{aligned}
\sum_{\rho \in \Sigma(1)}\left\langle\xi_{\rho}, u\right\rangle f_{\rho}(z) & =\sum_{\rho \text { an edge of } \sigma_{z}}\left\langle\xi_{\rho}, u\right\rangle f_{\rho}(z) \\
& =\sum_{\rho \text { an edge of } \sigma_{z}}\left\langle\xi_{\rho}, u\right\rangle\left\langle\gamma, u_{\sigma_{z}, \rho}\right\rangle \\
& =(A \cdot u)^{t} \cdot(\gamma \cdot B)^{t} \\
& =\langle\gamma, u\rangle,
\end{aligned}
$$

where • means product of matrices and $\gamma$ is regarded as a row vector and $u$ is regarded as a column vector. So we proved that the expression (ii) is equal to $\langle\gamma, u\rangle$ which is independent of $z$ and hence is a constant function on $Z$.

Remark 4.5 One can introduce a finite subset $Z$ of the affine space $\mathbb{A}^{\Sigma(1)}$ such that $Z$ is isomorphic to $Z$, and the natural grading on the coordinate ring $A(Z)$ induced from the grading on $\mathbb{A}^{\Sigma(1)}$ coincides with the above filtration $F_{\bullet}$ given by the $f_{\rho}$. Define the function $\Theta: Z \rightarrow \mathbb{R}^{\Sigma(1)} \subset \mathbb{C}^{\Sigma(1)}$ by

$$
\Theta(z)_{\rho}=f_{\rho}(z)
$$

and let $Z=\Theta(Z)$.
Proposition 4.6 With the grading on $A(Z)$ as above, $\operatorname{Gr} A(Z) \cong H^{*}(X, \mathbb{C})$ as graded algebras.

Proof Immediate.
Remark 4.7 (Lefschetz operator) A lattice polytope $\Delta$ normal to the fan of $X$ gives rise to an embedding of $X$ in a projective space. The Lefschetz operator in $H^{*}(X, \mathbb{C}) \cong$ $\operatorname{Gr} A(Z)$ corresponding to this embedding is given by the multiplication by the function $f_{\Delta}$ (see Proposition 4.1).

Remark 4.8 Let $\mu: X \rightarrow M_{\mathbb{R}}$ be the moment map of the toric variety and, as before, $\gamma \in N$ a 1-parameter subgroup in general position. In [6] Khovanskii shows that the composition of $\gamma$ and $\mu$ defines a Morse function on $X$ whose critical points are the fixed points of $X$. The Morse index of a fixed point corresponding to a vertex $v_{z}$ is twice the number of edges at $v_{z}$ on which the linear function $\gamma$ is decreasing. Returning to the definition of the functions $f_{\rho}$ (Proposition 4.2), the linear function $\gamma$
is decreasing on the edge $e$ at $v_{z}$ if and only if $f_{\rho}(z)<0$. That is, the Morse index of a fixed point $z$ is equal to twice the number of negative coordinates of the point $\Theta(z) \in \mathbb{R}^{\Sigma(1)}$. Since the number of critical points of index $2 i$ is the $2 i$-th Betti number of $X$, we conclude the non-trivial relation that the number of points in $Z$ exactly $i$ of their coordinates are negative is equal to $\operatorname{dim} \mathrm{Gr}_{i} A(z)$.

## 5 Relation with the Polytope Algebra

Consider the abelian group generated by all the convex polytopes in a vector space subject to the relation

$$
[P \cup Q]+[P \cap Q]-[P]-[Q]=0
$$

whenever $P, Q$ and $P \cup Q$ are convex polytopes. This group can be equipped with a ring structure, product of two polytopes being their Minkowski sum. The ring we obtain is McMullen's polytope algebra (see [7, p. 86]). The polytope algebra plays an important role in the study of finitely additive measures on the convex polytopes. To each simplicial polytope $\Delta$, one can associate a subalgebra of the polytope algebra generated by all the polytopes whose facets are parallel to the facets of $\Delta$. It is called the polytope algebra of $\Delta$. For an integrally simple polytope $\Delta$, its polytope algebra coincides with the cohomology algebra of the corresponding toric variety $X$. There is a description of the polytope algebra of $\Delta$ as a quotient of the algebra of differential operators (see [9], and for more details [11]).

In [1], Brion gives a description of the polytope algebra of a polytope as a quotient of the algebra of continuous conewise polynomial functions. Let $\Sigma \subset N_{\mathbb{R}}$ be the normal fan of the polytope $\Delta$. Let $R$ be the algebra of all continuous functions on $N_{\mathbb{R}}$ which restricted to each cone of $\Sigma$ are given by a polynomial. Let $I$ be the ideal of $R$ generated by all the linear functions on $N_{\mathbb{R}}$. Then the polytope algebra of $\Delta$ is isomorphic to $R / I$.

There is a good set of generators for $R$ parameterized by the set of 1-dimensional cones $\Sigma(1)$. For each $\rho \in \Sigma(1)$, define $g_{\rho}: N_{\mathbb{R}} \rightarrow \mathbb{R}$ as a conewise linear function, supported on the cones containing $\rho$, as follows:
(i) $g_{\rho}=0$ on any cone not containing $\rho$, and
(ii) for a $d$-dimensional cone $\sigma$ containing $\rho$, the function $g_{\rho}$ restricted to $\sigma$ is the unique linear function defined by $g_{\rho}(x)=0$ for $x \in \rho^{\prime} \neq \rho, \rho^{\prime} \in \Sigma(1)$ and $g_{\rho}\left(\xi_{\rho}\right)=1$.
One can show that the $g_{\rho}$ are a set of generators for $R$. Moreover, by sending $g_{\rho}$ to $D_{\rho}$, we get an isomorphism between $R / I$ and $H^{*}(X, \mathbb{C})$. In particular, the images of the $g_{\rho}$ in $R / I$ satisfy the relations in Theorem 3.1.

In what follows, we show how this description of the cohomology is related to the $\operatorname{Gr} A(Z)$ description. Let $\gamma$ be a 1-parameter subgroup in general position. Take $p \in R$. For a cone $\sigma$ of maximum dimension, let $p_{\sigma}$ denote the restriction of $p$ to $\sigma$. Then $p_{\sigma}$ is a polynomial on $\sigma$. Since the vector space spanned by $\sigma$ is all of $N_{\mathbb{R}}$, the function $p_{\sigma}$ can be considered as a polynomial on all of $N_{\mathbb{R}}$. Thus it makes sense to evaluate $p_{\sigma}$ at $\gamma$. We define a homomorphism $\Phi: R \rightarrow A(Z)$ by $\Phi(p)=f$ where the
function $f$ is defined by

$$
f(z)=p_{\sigma_{z}}(\gamma) \quad z \in Z
$$

here $\sigma_{z}$ is the cone corresponding to the fixed point $z$.
Proposition 5.1 We can write $R=\bigoplus_{k=0}^{\infty} R_{k}$ where $R_{k}$ is the subspace of all conewise polynomial functions on $N_{\mathbb{R}}$ whose restriction to each cone is a homogeneous polynomial of degree $k$.

Proof Let $p \in R$ and let $p_{k}$ denote the function on $N_{\mathbb{R}}$ whose restriction to each cone $\sigma$ is the degree $k$ part of $p_{\sigma}$. We need to prove that $p_{k}$ belongs to $R$, that is, $p_{k}$ is continuous. Let $\sigma$ and $\tau$ be two adjacent cones and let $v \in \sigma \cap \tau$. Since $p$ is continuous, we have

$$
\begin{equation*}
p_{\sigma}(t v)=p_{\tau}(t v), \quad \forall t \in \mathbb{R} \tag{*}
\end{equation*}
$$

Let $p_{\sigma, k}(v)$ (respectively $p_{\tau, k}(v)$ ) denote the coefficient of $t^{k}$ in $p_{\sigma}(t v)$ (respectively $\left.p_{\tau}(t v)\right)$. From (*), we have

$$
p_{\sigma, k}(v)=p_{\tau, k}(v)
$$

But $p_{\sigma, k}=p_{k \mid \sigma}$ and $p_{\tau, k}=p_{k \mid \tau}$. Thus $p_{k \mid \sigma}$ and $p_{k \mid \tau}$ agree at the intersection of $\sigma$ and $\tau$ and hence $p_{k}$ is continuous, that is, $p_{k} \in R$.

Let $F_{\bullet}=F_{0} \subset F_{1} \subset \cdots$ be the filtration in the Carrell-Lieberman theorem (Theorem 2.1) where the vector field $\mathcal{V}$ is the generating vector field of a 1-parameter subgroup $\gamma$ in general position. The following theorem gives an explicit connection between the grading in $R$ by the $R_{k}$ and the Carrell-Lieberman filtration $F_{\bullet}$.

## Theorem 5.2

(i) $\Phi\left(g_{\rho}\right)=f_{\rho}$;
(ii) $\Phi\left(\oplus_{i=0}^{k} R_{i}\right)=F_{k}$.

Proof (i) Let $\rho \in \Sigma(1)$ and let $\sigma$ be a $d$-dimensional cone containing $\rho$. Since $\sigma$ is simplicial, the set $\left\{\xi_{\rho^{\prime}} \mid \rho^{\prime} \in \Sigma(1), \rho^{\prime} \subset \sigma\right\}$ form a basis for $N_{\mathbb{R}}$. Consider the linear function $l$ defined by $l\left(\xi_{\rho}\right)=1$ and $l\left(\xi_{\rho^{\prime}}\right)=0, \rho^{\prime} \subset \sigma$ and $\rho^{\prime} \neq \rho$. Let $A$ be the $d \times d$ matrix whose rows are vectors $\xi_{\rho}$ and $B$ be the $d \times d$ matrix whose columns are vectors $u_{\sigma, \rho^{\prime}}$, where $\rho^{\prime}$ is an edge of $\sigma$. Let $v$ be the vertex of $\Delta$ corresponding to $\sigma$. The cone at $v$ is dual to $\sigma$ and hence we have $A B=\mathrm{id}$. View $\gamma$ as a row vector. Then $\gamma$ in the basis $\xi_{\rho^{\prime}}, \rho^{\prime} \subset \sigma$ is $\gamma A^{-1}=\gamma B$. Thus, one sees that $l(\gamma)$ is equal to the $\rho$-th component of $\gamma B$. But this is the same as $f_{\rho}(z)$.
(ii) Each $p \in \bigoplus_{i=0}^{k} R_{i}$ can be written as a polynomial of degree $\leq k$ in the $g_{\rho}$. Also, each $f \in F_{k}$ can be written as a polynomial of degree $\leq k$ in the $f_{\rho}$. Now, (ii) follows from (i).

Now, let us define an algebra homomorphism $\Psi: R \rightarrow \operatorname{Gr} A(Z)=\bigoplus_{i=1}^{\infty} F_{i} / F_{i-1}$ as follows. For $p \in R_{k}$, let $\Psi(p)=\Phi(p) \in F_{k} / F_{k-1}$, and extend the definition of $\Psi$ to all of $R$ by linearity.

Theorem 5.3 $\Psi$ induces an isomorphism between $R / I$ and $\operatorname{Gr} A(Z)$.

Proof It follows from the definition that $\Psi$ is an algebra homomorphism. Since $R$ is generated by the $g_{\rho}$ and $\operatorname{Gr} A(Z)$ is generated by the images of the $f_{\rho}$, from Theorem 5.2(i) it follows that $\Psi$ is surjective. To prove the theorem we need to show that $\operatorname{ker}(\Psi)=I$. Let $l$ be a (global) linear function on $N_{\mathbb{R}}$. Then $\Phi(l)=f$ is a constant function on $Z$ defined by $f(z)=l(\gamma), \forall z \in Z$. Thus $\Phi(l)$ belongs to $F_{0}$, that is $\Psi(l)$, as an element of $F_{1} / F_{0}$, is zero. Thus, $l$ belongs to $\operatorname{ker}(\Psi)$. Since $I$ is the ideal of $R$ generated by the (global) linear functions, we see that $I \subset \operatorname{ker}(\Psi)$. But both of $R / I$ and $\operatorname{Gr} A(Z)$ are isomorphic, as graded algebras, to $H^{*}(X, \mathbb{C})$. Hence the dimensions of the graded pieces of $R / I$ and $\operatorname{Gr} A(Z)$ are the same. Since $I \subset \operatorname{ker}(\Psi)$, by comparing dimensions, we conclude that $I=\operatorname{ker}(\Psi)$ and the theorem is proved.

## 6 Examples

In this section we consider two examples in dimension 2, namely, $\mathbb{C} P^{2}$ and the Hirzebruch surface $\mathbb{F}_{a}$. For each example, we compute the functions $f_{\rho}$ and the finite affine set $\mathcal{Z}$.

Example $6.1\left(\mathbb{C} P^{2}\right) \quad$ The fan of $\mathbb{C} P^{2}$, and a polytope normal to it, is shown in Figure 2. There are three 1-dimensional cones denoted by $\rho_{1}, \rho_{2}$ and $\rho_{3}$ along the primitive vectors $\xi_{1}=(1,0), \xi_{2}=(0,1)$ and $\xi_{3}=(-1,-1)$. There are three 2dimensional cones $\sigma_{1}, \sigma_{2}$ and $\sigma_{3}$ corresponding to the three fixed points $z_{1}, z_{2}, z_{3}$. To each cone $\sigma_{i}$, there corresponds a vertex of the normal polytope and two vectors $u_{\sigma_{i}, \rho}$ at this vertex along the edges. For $\sigma_{1}$, these vectors are $\{(1,0),(0,1)\}$, for $\sigma_{2}$ they are $\{(-1,0),(-1,1)\}$ and finally, for $\sigma_{3}$ they are $\{(0,-1),(1,-1)\}$.


Figure 2: Fan of $\mathbb{C} P^{2}$ (right) and a polytope normal to the fan together with the vectors $u_{\sigma_{i}, \rho}$ (left).

Let $\gamma=\left(\gamma_{1}, \gamma_{2}\right)$ be a 1-parameter subgroup. From the definition of the functions $f_{\rho}$ (Proposition 4.2), we get the following table for their values:

|  | $z_{1}$ | $z_{2}$ | $z_{3}$ |
| :---: | :---: | :---: | :---: |
| $f_{1}$ | $\gamma_{2}$ | $\gamma_{2}-\gamma_{1}$ | 0 |
| $f_{2}$ | $\gamma_{1}$ | 0 | $\gamma_{1}-\gamma_{2}$ |
| $f_{3}$ | 0 | $-\gamma_{1}$ | $-\gamma_{2}$ |

and hence, $\mathcal{Z}=\left\{\left(\gamma_{2}, \gamma_{1}, 0\right),\left(\gamma_{2}-\gamma_{1}, 0,-\gamma_{1}\right),\left(0, \gamma_{1}-\gamma_{2},-\gamma_{2}\right)\right\} \subset \mathbb{C}^{3}$. Note that the points in $Z$ lie on the same line parallel to $(1,1,1)$. One can see that $\operatorname{Gr}_{i} A(Z) \cong$ $\mathbb{C}, 0 \leq i \leq 2$ and $\mathrm{Gr}_{i} A(\mathcal{Z})=\{0\}, i>2$. If $x$ is a non-zero element of $\mathrm{Gr}_{1} A(\mathcal{Z})$ then, $H^{*}\left(\mathbb{C} P^{2}, \mathbb{C}\right) \cong \operatorname{Gr} A(Z) \cong \mathbb{C}[x] /\left\langle x^{3}\right\rangle$.

The above calculation can be carried out in general for $\mathbb{C} P^{n}$. One can show that all the points in the set $Z$ lie on the same line parallel to $(1, \ldots, 1)$, and $\mathrm{Gr}_{i} \cong \mathbb{C}$ for $0 \leq i \leq n$ and $\mathrm{Gr}_{i} \cong 0$ for $i>n$ and thus $H^{*}\left(\mathbb{C} P^{n}, \mathbb{C}\right) \cong \operatorname{Gr} A(Z) \cong \mathbb{C}[x] /\left\langle x^{n+1}\right\rangle$. In fact, the associate graded algebra of the coordinate ring of any set of $n+1$ points lying on the same line (in the affine space) gives the cohomology algebra of $C^{C} P^{n}$.

Example 6.2 (Hirzebruch surface) For each $a \in \mathbb{N} \cup\{0\}$, one can construct a toric surface $\mathbb{F}_{a}$, called a Hirzebruch surface whose fan, and a normal polytope to it, is shown in Figure 3. There are four 1-dimensional cones denoted by $\rho_{1}, \rho_{2}, \rho_{3}$ and $\rho_{4}$ along the primitive vectors $\xi_{1}=(1,0), \xi_{2}=(0,1), \xi_{3}=(-1, a)$ and $\xi_{4}=(0,-1)$. There are four 2 -dimensional cones denoted by $\sigma_{1}$ to $\sigma_{4}$. They correspond to the four fixed points $z_{1}, z_{2}, z_{3}$ and $z_{4}$. To each $\sigma_{i}$ there corresponds a vertex of the normal polytope to the fan and two vectors $u_{\sigma_{i}, \rho}$ along the edges. For $\sigma_{1}$ these vectors are $\{(1,0),(0,1)\}$, for $\sigma_{2}$ they are $\{(-1,0),(a, 1)\}$, for $\sigma_{3}$ they are $\{(-1,0),(-a,-1)\}$ and finally, for $\sigma_{4}$ they are $\{(1,0),(0,-1)\}$.


Figure 3: Fan of $\mathbb{F}_{a}$ (right) and a polytope normal to the fan together with the vectors $u_{\sigma_{i}, \rho}$ (left).

Let $\gamma=\left(\gamma_{1}, \gamma_{2}\right)$ be a 1-parameter subgroup. We get the following table for the values of the $f_{\rho}$ :

|  | $z_{1}$ | $z_{2}$ | $z_{3}$ | $z_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| $f_{1}$ | $\gamma_{1}$ | 0 | 0 | $\gamma_{1}$ |
| $f_{2}$ | $\gamma_{2}$ | $a \gamma_{1}+\gamma_{2}$ | 0 | 0 |
| $f_{3}$ | 0 | $-\gamma_{1}$ | $-\gamma_{1}$ | 0 |
| $f_{4}$ | 0 | 0 | $-a \gamma_{1}-\gamma_{2}$ | $-\gamma_{2}$ |

and hence,
$Z=\left\{\left(\gamma_{1}, \gamma_{2}, 0,0\right),\left(0, a \gamma_{1}+\gamma_{2},-\gamma_{1}, 0\right),\left(0,0,-\gamma_{1},-a \gamma_{1}-\gamma_{2}\right),\left(\gamma_{1}, 0,0,-\gamma_{2}\right)\right\} \subset \mathbb{C}^{4}$.
Note that the points in $Z$ lie on the same 2-plane defined by $f_{1}-f_{3}=\gamma_{1}$ and $a f_{1}+$ $f_{2}-f_{4}=a \gamma_{1}+\gamma_{2}$. Also, no three of them are collinear. Thus, one can see that $\mathrm{Gr}_{0} \cong \mathbb{C}, \mathrm{Gr}_{1} \cong \mathbb{C}^{2}, \mathrm{Gr}_{2} \cong \mathbb{C}$ and $\mathrm{Gr}_{i}=\{0\}, i>2$. One can see that there are two polynomials $l_{1}$ and $l_{2}$ of degree 1 on $\mathbb{C}^{4}$ such that they form a basis for $\mathrm{Gr}_{1} A(Z)$ and, $l_{1}{ }^{2}=l_{2}{ }^{2}=0$ in $\operatorname{Gr}_{2} A(Z)$. Hence $H^{*}\left(\mathbb{F}_{a}\right) \cong \operatorname{Gr} A(Z) \cong \mathbb{C}\left[l_{1}, l_{2}\right] /\left\langle l_{1}{ }^{2}, l_{2}{ }^{2}\right\rangle$. In fact, any set of four points lying on the same 2-plane such that no three are collinear can give the cohomology of $\mathbb{F}_{a}$.

Acknowledgments I would like to express my gratitude to Prof. James Carrell for suggesting the problem to me and for helpful discussions. Also, I would like to thank Prof. Kalle Karu and Dr. Vladlen Timorin for helpful discussions. In particular, during the discussion with Dr. Timorin, we found the relation between $\operatorname{Gr} A(Z)$ and the description of cohomology in terms of the conewise continuous functions. I am also very thankful to the referee for numerous suggestions and for pointing out some crucial errors in the first version of the paper.

## References

[1] M. Brion, M. The structure of the polytope algebra. Tohoku Math. J. (2) 49(1997), 1-32.
[2] J. B. Carrell, Torus Actions and Cohomology. In: Algebraic Quotients. Torus Actions and Cohomology. The Adjoint Representation and The Adjoint Action, Encyclopaedia Math. Sci. 131, Springer, Berlin, 2002, pp. 83-158,.
[3] J. B. Carrell and D. I. Lieberman, Holomorphic vector fields and Kähler manifolds . Inven. Math. 21(1973), 303-309.
[4] , Vector fields and Chern numbers. Math. Ann. 225(1977), 263-273.
[5] W. Fulton, Introduction to toric varieties. Annals of Mathematics Studies 131, Princeton University Press, Princeton, NJ, 1993.
[6] A. G. Khovanskiŭ, Hyperplane sections of polyhedra, toric varieties and discrete groups in Lobachevskiŭ space. Funktsional. Anal. i Prilozhen. 20(1986), 50-61, 96.
[7] P. McMullen, The polytope algebra. Adv. Math. 78(1989), 76-130.
[8] T. Oda, Geometry of toric varieties. In: Proceedings of the Hyderabad Conference on Algebraic Groups, Manoj Prakashan, Madras, 1991, pp. 407-440.
[9] A. V. Pukhlikov and A. G. Khovanskiĭ, The Riemann-Roch theorem for integrals and sums of quasipolynomials on virtual polytopes.(Russian) Algebra i Analiz 4(1992), 188-216; translation in St. Petersburg Math. J. 4(1993), 789-812
[10] V. Puppe, Deformation of algebras and cohomology of fixed point sets. Manuscripta Mathematica 30(1979), 119-136.
[11] V. A. Timorin, An analogue of the Hodge-Riemann relations for simple convex polyhedra. (Russian) Uspekhi Mat. Nauk 54(1999), 113-162; translation in Russian Math. Surveys 54(1999), 381-426.

Department of Mathematics
University of British Columbia
Vancouver, B.C.
e-mail: kaveh@math.ubc.ca


[^0]:    Received by the editors October 3, 2003; revised August 5, 2004.
    AMS subject classification: Primary 14M25; secondary: 52B20.
    Keywords: Toric variety, torus action, cohomology ring, simple polytope, polytope algebra.
    (C)Canadian Mathematical Society 2005.

[^1]:    ${ }^{1}$ In fact, if $F_{i}$ denotes the space of functions on $Z$ consisting of the constant functions and the functions supported on the fixed points of index less than or equal to $2 i$, then for $i \leq j$ we have $F_{i} F_{j} \subset F_{i}$. This means that in the corresponding graded algebra, the multiplication is zero, which is certainly not the case in the cohomology algebra.

