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Abstract

The Douglas–Rachford method has been employed successfully to solve many kinds
of nonconvex feasibility problems. In particular, recent research has shown surprising
stability for the method when it is applied to finding the intersections of hypersurfaces.
Motivated by these discoveries, we reformulate a second order boundary value problem
(BVP) as a feasibility problem where the sets are hypersurfaces. We show that such a
problem may always be reformulated as a feasibility problem on no more than three sets
and is well suited to parallelization. We explore the stability of the method by applying
it to several BVPs, including cases where the traditional Newton’s method fails.

2010 Mathematics subject classification: primary 34B15; secondary 47H10.

Keywords and phrases: boundary value problem, Douglas–Rachford method, Newton’s
method, hypersurface.

1. Introduction

We explore a particular approach to obtaining approximate numerical solutions to
(second order, nonlinear) boundary value problems (BVPs) on [a, b] ⊆ R. We use
finite difference approximations to replace the continuous problem by a discrete
one involving a finite system of N nonlinear equations in N variables (that is, the
approximate solution values at each of the N partition points). The classical approach
to solving such a system of equations is to use Newton’s method. We explore some
alternative projection-based iterative methods.

The solution set for each of the N equations is a hypersurface S k in N-dimensional
Euclidean space RN . An approximate solution to the BVP then corresponds to a point
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in the intersection of these N hypersurfaces. This is a feasibility problem of the form

find x ∈
N⋂

k=1

S k.

One approach to solving such feasibility problems is to use an iterated process.
We consider the method of alternating projections (AP) and the Douglas–

Rachford method (DR) in particular. We explain how the methods are well suited to
parallelization. We then use the methods to solve the associated feasibility problems
for several BVPs and compare the results with those given by the classical Newton’s
method.

1.1. Objectives Our intent is not to compare the speeds of our projection-based
methods with that of Newton’s method, which is much faster, neither is it our goal to
provide a full comparison of their respective robustness. The main contributions are as
follows.

(1) We introduce the reformulation of ordinary differential equations (ODEs) as
hypersurface feasibility problems for solving with iterated projection methods.

(2) We show how they are particularly amenable to parallelization.
(3) For boundary value ODEs, we show how to reformulate the N-hypersurface

feasibility problem as a three-set feasibility problem.
(4) We analyse the behaviour for both AP and DR experimentally on hypersurface

problems for varying N, which for boundary value ODEs corresponds to
partition fineness. We catalogue the characteristics of oscillation so frequently
observed for DR in particular.

(5) We provide a characterization of how it might be employed to real world systems
of equations in cases where Newton’s method does not succeed.

This work extends to N sets via Pierra’s method [24] (also known as the divide and
concur method [17]), and the two-set investigation started by Borwein and Sims [9],
who analysed DR for the hypersurfaces choices of an (n − 1)-sphere and a line. In this
simpler setting, global convergence was shown by Aragón Artacho and Borwein [1]
under an assumption later relaxed by Benoist [7], who demonstrated convergence by
means of a Lyapunov function. The analysis has already been extended in R2 by
Borwein et al. [8], who considered the generalization of circles to ellipses and p-
spheres. Later, Lindstrom et al. considered plane curves more generally [21]. Inspired
by Benoist’s work [7], Dao and Tam [14] have since provided a beautiful illumination
of the method for curves in R2 by means of Lyapunov functions. Phan [23] and
later Dao and Phan [13] have since provided more general convergence results under
regularity (transversality) conditions.

While this article is an important extension of the analysis of projection methods
(and DR in particular) for nonconvex hypersurface feasibility problems, its approach
is comparable to other experimental works which analyse proximal point algorithms in
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[3] Application of projection algorithms to differential equations 25

the absence of convexity by cataloguing the performance of the method for a selection
of examples. These include the recent work of Aragón Artacho et al. [3] applying DR
to solve matrix completion problems and Sudoku puzzles [2, 10], the work of Aragón
Artacho and Campoy [4] with graph colouring problems and the seminal work of
Elser et al. [16].

We have listed here only a small selection of the nonconvex Douglas–Rachford
genre. The history is vast, and we have not even touched on its roots in convex
optimization and connections with the celebrated ADMM (alternating direction
method of multipliers) through duality. For a more thorough treatment, we refer the
reader to a recent survey of Lindstrom and Sims [20].

1.2. Outline The outline of this paper is as follows. In Section 2 we introduce
nonlinear boundary value problems. In Section 3 we introduce the two-set projection
algorithms and their extension to N sets. In Section 4 we discuss methods of projecting
onto individual hypersurfaces and in Section 5 we describe the full procedure, discuss
its amenability to parallelization and show a natural reformulation which reduces
the N-set problem to a three-set problem. We provide our experimental results and
conclusion in Section 6.

2. Nonlinear boundary value problems

We investigate the use of projection algorithms to obtain numerical solutions to
nonlinear boundary value problems. Here and throughout:

(i) y : [a, b] ⊂ R→ R with a < b is an “unknown” function for which we seek a
numerical solution;

(ii) y′ and y′′ are, respectively, the first and second derivatives of y;
(iii) α = y(a) ∈ R and β = y(b) ∈ R are given boundary values.

A complete statement of the problem is

given a function f : R3 → R, find y such that (2.1)

y′′ = f (x, y, y′) for x ∈ (a, b) ⊂ R with y(a) = α and y(b) = β.

Remark 2.1 (Solutions may not be unique). In general, even when a solution to
problem (2.1) exists, it may not be unique. However, (2.1) will have a unique
continuous solution over the interval [a, b] if the right-hand-side function f satisfies
the following conditions:

(1) f and the partial derivatives of f with respect to y and y′ are continuous on

D = {(x, y, y′) | a ≤ x ≤ b,−∞ < y <∞,−∞ < y′ <∞};

(2) (∂ f /∂y)(x, y, y′) > 0 on D; and
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(3) there exists a constant M such that∣∣∣∣∣ ∂ f
∂y′

(x, y, y′)
∣∣∣∣∣ ≤ M on D (2.2)

(see, for example, the book by Burden et al. [12, Theorem 11.1]). Because we seek to
present the wide variety of behaviours exhibited by our algorithms, we present both
examples which may and may not satisfy these criteria.

We use a finite difference method to approximate the solution of the given BVP. This
results in a system of nonlinear equations to which we apply our projection algorithm
to compute an approximate numerical solution.

To this end, consider a partition of the interval [a, b] into N equal subintervals using
the set of points xi = a + ih for i = 1, . . . ,N with x0 = a and xN+1 = b, so that

h =
b − a
N + 1

.

We introduce the centred-difference approximations for i = 1, . . . ,N,

y′(xi) ≈
y(xi+1) − y(xi−1)

2h

and

y′′(xi) ≈
y(xi+1) − 2y(xi) + y(xi−1)

h2 .

When the exact solution y is four times continuously differentiable these estimate
the first and second derivatives at xi with errors of h2y(3)(ηi)/6 and h2y(4)(ξi)/12,
respectively, where ηi and ξi lie in the interval (xi−1, xi+1).

Ignoring such truncation error terms, we replace the first and second derivatives of
y by their centred-difference approximations in (2.1) to obtain for i = 1, 2, 3, . . . ,N the
approximate relationships

y(xi+1) − 2y(xi) + y(xi−1)
h2 ≈ f

(
xi, y(xi),

y(xi+1) − y(xi−1)
2h

)
.

This leads us to take y(xi) ≈ ωi as an approximate numerical solution to (2.1), where
the ωi satisfy the system of generally nonlinear equations

ω0 = α, ωN+1 = β and
ωi+1 − 2ωi + ωi−1

h2 − f
(
xi, ωi,

ωi+1 − ωi−1

2h

)
= 0 for i = 1, 2, 3, . . . ,N.

If h < 2/M, where M is as defined in (2.2), and the other conditions of Remark 2.1
are satisfied, then this nonlinear system of equations has a unique solution [18, p. 86].
While many of our examples do not satisfy the conditions of Remark 2.1, uniqueness
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[5] Application of projection algorithms to differential equations 27

implies that we can easily measure the accuracy of a numerical approach, whereas if
we have nonuniqueness it is much harder. For i = 1, 2, . . . ,N, let

ϕi(ω) =
ωi+1 − 2ωi + ωi−1

h2 − f
(
xi, ωi,

ωi+1 − ωi−1

2h

)
and (2.3)

Ωi = {ω = (ω1, . . . , ωN) | ω satisfies ϕi(ω) = 0}. (2.4)

Then we can compute our approximate numerical solution to the BVP (2.1) by solving
the feasibility problem: find ω ∈

⋂N
i=1 Ωi. An approximate numerical solution to (2.1)

is then given by y(xi) = ωi. For the task, we employ both the method of alternating
projections and a parallelized version of DR as outlined below.

Remark 2.2. The astute reader will note that more complicated boundary conditions
may be handled by appropriately modifying either or both of the equations ω0 = α,
ωN+1 = β though this could potentially lead to an enlarged problem of N + 2 equations
in N + 2 unknowns. For example, the mixed condition y(a) + ηy′(a) = α could translate
to ϕ0(ω) = ω0 + η(ω1 − ω0)/h = α.

3. Preliminaries on projection methods

The DR and AP are frequently used to find a feasible point (a point in the
intersection) of two closed constraint sets A and B in a Hilbert space, in our setting:
N-dimensional Euclidean space, RN .

The projection onto a subset C of RN is defined for all x ∈ RN by

PC(x) =
{
z ∈ C | ‖x − z‖ = inf

z′∈C
‖x − z′‖

}
.

Note that PC is a set-valued map where values may be empty or contain
more than one point. In our case of interest, where C is a closed
hypersurface, PC has nonempty values and, in order to simplify both
notation and implementation, we will work with a selector for PC , that
is, a map PC : RN → C : x 7→ PC(x) ∈ PC(x).

When C is nonempty, closed and convex, the projection operator PC is uniquely
determined and firmly nonexpansive, that is, for all x, y ∈ RN ,

‖PC x − PCy‖2 + ‖(I − PC)x − (I − PC)y‖2 ≤ ‖x − y‖2.

See, for example, the book by Bauschke and Combettes [5, Ch. 4]. When C is a closed
subspace, it is also a linear operator [5, Corollary 3.22].

The reflection mapping through the set C is then defined by

RC = 2PC − I,

where I is the identity map.
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Definition 3.1 (Method of alternating projections). For two closed sets A and B and an
initial point x0 ∈ H, the method of alternating projections (AP) generates a sequence
(xn)∞n=1 as follows:

xn+1 ∈ T ′A,B(xn) where T ′A,B = PBPA.

DR was introduced half a century ago in connection with nonlinear heat flow
problems [15].

Definition 3.2 (Douglas–Rachford method). For two closed sets A and B and an initial
point x0 ∈ H, the Douglas–Rachford method (DR) generates a sequence (xn)∞n=1 as
follows:

xn+1 ∈ TA,B(xn) where TA,B = 1
2 (I + RBRA).

Definition 3.3 (Fixed point set). The fixed point set for an operator T is Fix T = {x ∈
H | x ∈ T x}.

The following theorem of Bauschke et al. [6] relaxes, in the context of convex
feasibility, previous convergence conditions established in a somewhat different
context by Lions and Mercier [22] (see also the article by Svaiter [26]).

Theorem 3.4 [6, Fact 5.9]. Suppose that A,B ⊆ H are closed and convex with nonempty
intersection. Given x0 ∈ H, the sequence of iterates {xn} defined by xn+1 = TA,Bxn

converges weakly to an x ∈ Fix TA,B with PAx ∈ A ∩ B.

Of course, in our case, where the space is finite dimensional, weak convergence
ensures convergence in norm.

Not withstanding the absence of a satisfactory theoretical justification, the DR
iteration scheme has been used to successfully solve a wide variety of practical
problems in which one or both of the constraints are nonconvex.

In an effort to develop the beginnings of a theoretical basis for employment in
the nonconvex setting, Borwein and Sims [9] explored a feasibility problem on two
particular hypersurfaces in Rn: a line and the (n − 1)-sphere. Among other results,
they established local convergence near each of the (possibly two) feasible points.
More extensive regions of convergence were determined by Borwein and Aragón
Artacho [1]. The definitive answer, as conjectured by Borwein and Sims [9], was
subsequently given by Benoist [7], who established convergence to the nearest feasible
point except for starting points lying on a singular set: the hyperplane of symmetry.

Borwein et al. [8] showed that local convergence still holds for a line and a smooth
hypersurface in RN not intersecting asymptotically, although the basis of convergence
may be quite sensitive to small perturbations of the sets. Additionally, Lindstrom
et al. [21] extended local convergence to isolated points of intersection for two smooth
hypersurfaces in RN . The authors of [19] showed local convergence for Neumann’s
method of alternating projections for sets under regularity conditions. Phan [23], and
later Phan and Dao [13], showed local convergence with R-linear convergence rate for
the strongly regular system {A, B} of superregular sets A, B. For more details on the
history, we again refer the reader to [20].

https://doi.org/10.1017/S1446181118000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181118000391


[7] Application of projection algorithms to differential equations 29

3.1. Extension of DR to multiple sets We can apply this method to a consistent
feasibility problem with N sets Ω1 · · ·ΩN ⊂ R

N to find x ∈
⋂N

k=1 Ωk , ∅. We do so by
working in the product space RN×N as follows. Let

A = Ω1 × · · · ×ΩN and B = {(x1, . . . , xN) ∈ RN×N | x1 = x2 = · · · = xN} (3.1)

and apply DR to the two sets A and B. The product space projections for
x = (x1, . . . , xN) ∈ RN×N are

PA(x1, . . . , xN) = (PΩ1 (x1), . . . , PΩN (xN)),

PB(x1, . . . , xN) =

( 1
N

N∑
k=1

xk, . . . ,
1
N

N∑
k=1

xk

)
.

This is sometimes called the “divide and concur” method (see, for example, the articles
by Gravel and Elser [17] and Pierra [24]). This method is particularly well suited to
parallelization. An alternative would be to use the cyclic DR algorithm introduced
in [11].

We consider, in particular, the case where the Ωi are as in (2.4). Where ω0 = α
and ωN+1 = β are fixed, the feasibility problem is reduced to finding a point in the
intersection of a family of N hypersurfaces Ω1, . . . ,ΩN in RN .

4. Computations for nearest-point projection onto a surface PΩk

For a hypersurface Ωk in X = RN implicitly defined by

x ∈ Ωk ⇐⇒ φk(x) = 0,

the nearest-point projection x = PΩk (u) of u ∈ RN onto Ωk solves

minimize F(x) = 1
2‖u − x‖2

subject to φk(x) = 0. (4.1)

So, provided u < Ωk and assuming sufficient differentiability, we know by the theory
of Lagrange multipliers [25] that there exists λ0 , 0 for which (PΩk (u), λ0) is a critical
point of the Lagrangian L(x, λ) = F(x) − λφk(x). That is, λ = λ0 and x = PΩk (u) is a
solution of

u − x + λ∇xφk(x) = 0 and φk(x) = 0. (4.2)

Again assuming sufficient differentiability to ensure that the (N + 1) × (N + 1)
Jacobian

J(x, λ)l, j =

λ
[

∂2

∂xl∂x j
φ
]
− I [∇xφl(x)]T

∇φx(x) 0


is well defined, the nonlinear system (4.2) could be solved using Newton’s method.
However, this requires solving, at each iteration, the system of N + 1 equations given
by J(x, λ)v = b. The quasi-Newton method requires solving a similar linear system.
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Alternatively, we might seek to locate a point (x0, λ0) where the scalar function

G(x, λ) = 1
2 {‖u − x + λ∇xφ(x)‖2 + φ(x)2}

has a minimum zero; PS(u) = x0 is then the desired solution. For this, we might use the
method of gradient (steepest) descent with a line search implemented at each iteration.
This obviates the need to invert J(x, λ), but, depending on the method employed for the
line search, may involve performing several iterations of Newton’s method on a one-
variable function at each step. The main difficulty here is choosing a suitable starting
point; (u, 0) is one choice.

A simple code for computing the hypersurface projections for Ω1, . . . ,ΩN may be
seen in Algorithm 1.

5. The procedure

To move from a given iterate to a successive iterate, one must compute the
approximate projections PΩk (u), k = 1, . . . , N. One may use an appropriate iterative
numerical method to solve the subproblem (4.1), continuing the method until
successive iterates differ by less than some pre-prescribed tolerance τ.

The choice of numerical method is between needing more steps but less
computational complexity (without the Jacobian) versus needing fewer steps with
each entailing greater computational complexity (with the Jacobian). For the sake of
simplicity, we used the Jacobian for all of our experiments and computed until the
change from one step to the next was less than 10−12.

Even though PΩk (xm,k), as a (possibly rough) numerical approximation to PΩk , may
not lie exactly on the surface Ωk, we naturally use R(xm,k) = (2PΩk − I)(xm,k) in place
of the reflection of xm,k in Ωm,k when computing the (m + 1)th iterate of the Douglas–
Rachford algorithm, so that

xm+1,k =
1
N

( N∑
j=1

RΩ j (xm,k)
)
−

1
2
RΩk (xm,k) +

1
2

xm,k.

Remark 5.1. One might consider using a tolerance τm that reduces as the number of
iterations increases and hopefully move nearer to a solution. Otherwise, it is unlikely
that the accuracy of the solution found would exceed the preselected tolerance, τ. One
could use τm = α diam{xm,k | k = 1, 2, . . . ,N}, where α ∈ (0, 1) and

diam(S ) = max
si,s j∈S

‖si − s j‖.

While theory does not guarantee convergence with either method of computing
projections, experimentation has shown that for some of the problems DR may be
relatively insensitive to small changes in how projections are computed [21]. This is
why it makes sense to consider adapting the tolerance over successive iterates.
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Algorithm 1: Compute Ω1, . . . ,ΩN ⊂ R
N and projections onto them.

procedure Generate hypersurfaces
Data: Receives as input a function f , which defines the differential equation,

boundary points a, b with corresponding solution values α, β, which
define the boundary conditions, and a number N of partition points.

Result: Returns φ = (φ1, . . . , φN), where Ωk = {z | φk(z) = 0} is the kth
hypersurface for the feasibility problem.

set h := (b − a)/(N + 1);
for k ∈ {1, . . . ,N} do

if k = 1 then
set φk := x 7→ 2xk − xk+1 + h2 f (a + kh, xk, (xk+1 − α)/2h) − α;

else if k = N then
set φk := x 7→ 2xk − β + h2 f (a + kh, xk, (β − xk−1)/2h) − xk−1;

else
set φk := x 7→ 2xk − xk+1 + h2 f (a + kh, xk, (xk+1 − xk−1)/2h) − xk−1;

store φ;
procedure Compute Lagrangian problems

Data: receives as input the N-tuple φ
Result: Stores ϕ = (ϕ1, . . . , ϕN), where ϕk = {ϕk,1, ϕk,2, ϕk,3} are three of the

four functions from the Lagrangian system for computing a
projection onto Ωk (the fourth function is φk).

for k ∈ {1, . . . ,N} do
set ϕk,2 := (v, u, λ) 7→ 2uk − 2vk − λ∂kφk(u);
if k = 1 then

set ϕk,1 := (v, u, λ) 7→ 0;
else if k = N then

ϕk,3 := (v, u, λ) 7→ 0;
else

set ϕk,1 := (v, u, λ) 7→ 2uk−1 − 2vk−1 − λ∂k−1φk(u);
set ϕk,3 := (v, u, λ) 7→ 2uk+1 − 2vk+1 − λ∂k+1φk(u);

store ϕ;
procedure Projection for Ωk

Data: receives as input a value k ∈ {1, . . . ,N} and a value x ∈ RN .
Result: Returns a point u ∈ PΩk (x).
Numerically solve the system
{φk(u) = 0, ϕk,1(x, u, λ) = 0, ϕk,2(x, u, λ) = 0, ϕk,3(x, u, λ) = 0} for u;

one may use, for example, Algorithm 2 or Algorithm 3.
return u;
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Algorithm 2: Projects a point x onto a set Ωk with Newton’s method

procedure Projection for Ωk
Data: receives as input a value k ∈ {1, . . . ,N}, a value x ∈ RN and a threshold

Γ

Result: Returns a point u ∈ PΩk (x).
Set G := (v, λ) 7→ (φk(v), ϕk,1(x, v, λ), ϕk,2(x, v, λ), ϕk,3(x, v, λ)).
Set J := (v, λ)→ J(v, λ), where J(v, λ) is the Jacobian of G evaluated at (v, λ).
Set Newt := (v, λ) 7→ (v, λ) −

((
MatrixInverse(J(v, λ))

)
.G(v, λ)

)
, where the dot

denotes multiplication of a vector by a matrix.
Set ηold = (x, 1).
Set ηnew = Newt(x, 1).
while ‖ηold − ηnew‖ > Γ do

Set ηold := ηnew.
Set ηnew := Newt(ηold).

Set u := ηnew.
Return (u1, . . . , uN), the first N components of u. Note that the (N + 1)th

component was merely the final Lagrange multiplier.

Algorithm 3: Projects a point x onto a set Ωk with steepest descent method

procedure Projection for Ωk
Data: receives as input a value k ∈ {1, . . . ,N}, a value x ∈ RN , a step size

modifier γ and a threshold Γ

Result: Returns a point u ∈ PΩk (x).
Set G := (v, λ) 7→ (φk(v))2 + (ϕk,1(x, v, λ))2 + (ϕk,2(x, v, λ))2 + (ϕk,3(x, v, λ))2.
Set G′(v, λ) as the gradient of G evaluated at (v, λ).
Set Descent := (v, λ) 7→ v − γG′(v, λ).
Set ηold = (x, 1).
Set ηnew = Descent(x, 1).
while ‖ηold − ηnew‖ > Γ do

Set ηold := ηnew.
Set ηnew := Descent(ηold).

Set u := ηnew.
Return (u1, . . . , uN), the first N components of u. Note that the (N + 1)th

component was merely the final Lagrange multiplier.
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Table 1. Values updated by PA = PΩ1×···×Ω6 .

PΩ1 (x1) PΩ2 (x2) PΩ3 (x3) PΩ4 (x4) PΩ5 (x5) PΩ6 (x6)

x11 x21 x31 x41 x51 x61

x12 x22 x32 x42 x52 x62

x13 x23 x33 x43 x53 x63

x14 x24 x34 x44 x54 x64

x15 x25 x35 x45 x55 x65

x16 x26 x36 x46 x56 x66

5.1. Alternative formulation We may also attempt to speed up convergence by
considering two modified versions of the method. Consider the problem with a
partition of seven segments, so N = 6. From the form of equation (2.3), for a
single iteration, the values updated by an iteration x 7→ RA(x) in the product space
are underlined in Table 1. However, in the computation of the projection onto the
agreement space (PB) values are averaged across rows and so many unchanged values
are included in the averaging step. More precise solutions require higher N and, for
higher N, the ratio of unchanged values to changed values in the averaging step grows.
This usually slows down computation and convergence. One possible solution is to
reformulate the problem as a problem of computation with three sets, Ω1 ∩ Ω4,Ω2 ∩

Ω5 and Ω3 ∩Ω6, as detailed below. Here the updated values in each column which are
underlined twice may be calculated separately from those underlined once and so this
reformulation is no less amenable to parallelization. Notice that we can reformulate in
this way for any N > 3 and that still only two unchanged values will remain at each step
(one for the first partition point and one for the last). The memory necessary to store
this product space vector x is smaller, although the number of projections computed
remains the same, because the computation of P⋂

k Ωi+3k (xi) requires the computation of
PΩi (xi), PΩi+3 (xi), . . . and so on.

Another approach is to simply change the map PB so that only the changed row
values are averaged in the agreement step. Then PB is, in this reformulation, still a
map into B. It is no longer the projection map, but we expect similar behaviour to that
of the three-set reformulation, because the only difference is the inclusion or exclusion
of two additional unchanged values for partition points 1 and N. Indeed, if we chose
to include just two unchanged values—one for each of first and Nth partition points—
then the formulations are equivalent. Thus, the altered PB may be thought of as a map
to some near point of the agreement set where the formulation in question is the three-
set formulation. Because of this similarity, we do not consider these two approaches
separately. For all of our examples we use the three-set reformulation which does not
include unchanged values in the averaging step.

Simple code for computing the projections PA and PB may be seen in Algorithm 4.
It uses the stored procedures from Algorithm 1. Note that the projection PB is the
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Table 2. Reformulating as a three-set feasibility problem.

PΩ1∩Ω4 (x1) PΩ2∩Ω5 (x2) PΩ3∩Ω6 (x3)

x11 x21 x31

x12 x22 x32

x13 x23 x33

x14 x24 x34

x15 x25 x35

x16 x26 x36

three-set reformulation described above, which does not include unchanged values in
the averaging step.

Algorithm 4: Compute projection for A = Ω1 × · · · ×ΩN and a near point in B.

procedure Project onto A
Data: Receives as input a point x = (x1, . . . , xN) ∈ RN×N (xk ∈ R

N for all k)
Result: Returns a point u = (u1, . . . , uN) ∈ RN×N such that u ∈ PA(x).
for k ∈ {1, . . . ,N} do

set uk := Projection for Ωk(uk);
return u;

procedure Concur in B
Data: Receives as input a point x = (x1, . . . , xN) ∈ RN×N (xk ∈ R

N for all k)
Result: Returns a point u = (µ, . . . , µ) ∈ RN×N , where µ ∈ RN (clearly u ∈ B).
set µ1 := (x1,1 + x2,1)/2;
set µN := (xN−1,N + xN,N)/2;
for j ∈ {2, . . . ,N − 1} do

set µ j := (x j−1, j + x j, j + x j+1, j)/3;

for k ∈ {1, . . . ,N} do
set uk := µ;

return u;

6. Examples

For all of our examples, unless otherwise specified, we use as an initial point for
the iterations x0 = (ω, . . . , ω) ∈ RN×N , where ωi = α + i(β − α)/(N + 1), i = 1, . . . , N,
are the node values of the affine function satisfying the boundary values. We also use
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N = 21, unless otherwise specified. We compute the error in the natural way:

ε =
b − a
N + 1

N∑
k=1

|ω′k − ωk|
2.

We will use the following terms when discussing the error.

(1) When ω′k is the value of the true solution at xk = a + k(b − a)/(N + 1), and ωk

represents the solution of the finite difference problem (2.3) at xk calculated
using Newton’s method, ε measures the true error of the approximate solution
from the true solution. We expect this error to decrease as N is increased. We
show this error for each of our examples with both N = 11 and N = 21 in Table 5.

(2) When the ωk are values obtained from DR or AP and the ω′k are the values at xk

of the true solution, we call ε the error from true solution.
(3) When the ωk are values obtained from DR or AP and the ω′k are the values at

xk obtained by Newton’s method (which is taken to be the numerical solution of
the finite difference problem (2.3)), we call ε the error from Newton solution.

(4) For an iterate of AP, each iterate lies on the agreement set B and so we compute
the error where the ωk are the induced numerical solution. For each iterate of
DR, we project back onto B to obtain a numerical solution. In either case, we
take relative error to mean the change in numerical solution from one iterate
to the next, the value of ε, when the w′k and wk values correspond to numerical
solutions from the nth and (n − 1)th steps of the method we are scrutinizing.

When we plot numerical solutions corresponding to various iterates of our methods
(as at left in Figure 1), we report first the name of the method (DR or AP) followed by
the number of the iterate for which we are plotting a numerical solution. We use the
shorthand NE M := N · 10M .

In cases where Newton’s method converges, it generally achieves a difference
between subsequent iterates of less than 10−12 within 10 steps. As will become
apparent from the examples, this is so much faster than our methods as to render any
comparison of speed useless. However, our methods sometimes work in cases where
Newton’s method struggles and they provide useful insights into the behaviour of such
algorithms in the nonconvex setting more generally, complementing previous work in
this area. The motivating and ideal conditions for implementation are further discussed
in the conclusion (Section 7).

Example 6.1. We first tested the method on a simple problem from [12], namely,
the differential equation y′′ = (32 + 2x3 − yy′)/8 with boundary conditions y(1) = 17,
y(3) = 43/3, which admits the smooth solution

y(x) = x2 + 16/x.

Here AP, DR and Newton’s method all successfully solve the induced system of
equations. Their behaviour is shown graphically in Figure 1, where N = 21.
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Figure 1. Convergence behaviour for Example 6.1.

Figure 2. Convergence behaviour for Example 6.1.

At around 400 000 iterates, the numerical solution from DR is close to the solution
of the finite difference problem (2.3) and so the error from the true solution appears
to stabilize, exposing the inherent error between the approximate solution (with 21
nodes) and the true solution.

Zooming in, the first 2000 iterates are shown at left in Figure 2; we see that the
“solid” appearance in Figure 1 is created by shorter-scale oscillations in relative error.
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At right in Figure 2, we see the behaviour of AP, which converges more quickly and
also without the drastic changes in relative error so typical of DR. This pattern of
converging faster was observed often though not always, and the relative error plots
for AP were similar in all our examples.

In the next two examples we consider the effect of partition size on the error from
the true solution and on the rate of convergence.

Example 6.2. We consider the equation y′′ = −|y| with boundary conditions y(−1) =

1, y(1) = −1, which admits the smooth solution

y(x) =


c1 sin(x) + c2 cos(x), x ≤

1
2

log
( c4

e + c4

)
,

c3 exp(x) + c4 exp(−x), x >
1
2

log
( c4

e + c4

)
,

c1 =
c2 cos(1) − 1

sin(1)
,

c2 =
−{tan(1) + tan( 1

2 log(c4/(e + c4)))}

tan(1) tan( 1
2 log(c4/(e + c4))) sin(1) − cos(1) tan(1) − cos(1) tan( 1

2 log(c4/(e + c4))) − sin(1)
,

c3 = −
c4e−1 + 1

e
,

c4 ≈ 0.6453 425 944.

We found convergence for each of our methods. The true solution and the effect
of partition fineness (N) on the error between various approximations and the true
solution are shown at left in Figure 3.

Example 6.3. We examine the differential equation

y′′ =

0, x < 0,
y, x ≥ 0

with boundary conditions y(−1) = −1 and y(1) = 1, which admits the smooth solution

y(x) =


(e−1 + 2

2e
+

1
2

)
x +

(e−1 + 2
2e

−
1
2

)
, x < 0,

e−1 + 2
2e

ex −
1
2

e−x, x ≥ 0.

The true solution and the effect of N on the error between true and approximate
solutions is shown at right in Figure 3. A convergence plot for DR is given in Figure 4,
where N = 11 is shown at left and N = 21 is shown at right.

Noting the different horizontal axis scales, it may be seen that, as one would
expect, convergence is much more rapid for smaller N, a phenomenon which held
both consistently and dramatically across all our examples.
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Figure 3. True solutions (left axis scale) and effect of partition size on error between true solution and
estimate by Newton (right axis scale) for Examples 6.2 (left) and 6.3 (right).

Figure 4. Effect of N on DR convergence for Example 6.3.

The “aqueducts”—which might seem to suggest long-scale oscillations in the
change from iterate to iterate—appear to be an artefact of the sample of iterates we
used to prepare the plot. For N = 21 our plot is made from sampling at every 400th
iterate. Shorter-scale oscillations of the kind visible in Figure 2 appeared for all of our
error plots and, by sampling infrequently, we tend to sample near the tops and sides of
the humps while missing the valleys. This phenomenon combined with the regularity
of the shorter-scale oscillations creates the illusion of aqueducts.

https://doi.org/10.1017/S1446181118000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181118000391


[17] Application of projection algorithms to differential equations 39

Figure 5. Relative error and error from true solution for converging DR iterates for an ellipse E and
a line L.

The relative error plots do, however, reveal an important characteristic of the
behaviour. The change in error from the true solution does not track the relative error
between iterates, but instead roughly tracks the change in relative error at the tops
of the humps in Figure 2. Once sufficiently close to the solution, these oscillations
become regular and so convergence can be estimated by tracking only the iterates
where relative error peaks.

This behaviour is consistent with the behaviour of DR in other contexts. At left in
Figure 5, we see DR iterates for an ellipse and a line. The line is the analogue of our
diagonal set B (3.1) and so at right we report ‖PLxn+1 − PLxn‖2. The similarities to
Figure 2 are unmistakable.

In each of the next three examples we consider the sensitivity of the methods to the
starting point. For the first two examples we have multiple potential solutions and for
the final example Newton’s method may cycle rather than finding a solution.

Example 6.4. The differential equation y′′ = −|y| with boundary conditions y(0) =

0, y(4) = −2 admits two possible smooth solutions:

y1(x) = −
2 sinh(x)
sinh(4)

, (6.1)

y2(x) =


2 sin(x)

sinh(4 − π)
, x ≤ π,

−
2 sinh(π − x)
sinh(π − 4)

, x > π.
(6.2)

Here we initially found convergence for small N, but our scripts stopped working
for larger N. Investigating, we found that MAPLE’s Fsolve was unable to compute the
solution to the Lagrangian system for the PΩi . Replacing it with our own numerical
solver, we recovered convergence. With the starting values corresponding to the affine
function matching the boundary conditions, all methods converged to the solution y1
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Figure 6. DR and AP may converge to two different solutions from the same starting point: at left,
Example 6.4; at right, Example 6.5.

Table 3. Sensitivity to starting point for Example 6.4: 1 or 2 indicate that the method converged to y1 or
y2, respectively, while S indicates that the method appeared stuck after 5E5 iterates.

Method/Start λ 0.01 0.1 0.5 1 2 3 4 5 6 7 8 9

Newton N = 11 2 2 2 2 2 2 2 2 2 2 2 2
DR N = 11 1 1 2 2 2 2 1 1 1 1 1 1
AP N = 11 1 1 2 2 2 2 2 2 2 2 2 2

Newton N = 21 2 2 2 2 2 2 2 2 2 2 2 2
DR N = 21 1 1 2 2 2 S S S S 2 2 2
AP N = 21 1 1 2 2 2 2 2 2 2 2 2 2

Method/Start λ −0.01 −0.1 −0.5 −1 −2 −3 −4 −5 −6 −7 −8 −9
Newton N = 11 1 1 1 1 1 1 1 1 1 1 1 1
DR N = 11 1 1 1 1 1 1 1 1 1 1 1 1
AP N = 11 1 1 1 1 1 1 1 1 1 1 1 1

Newton N = 21 1 1 1 1 1 1 1 1 1 1 1 1
DR N = 21 1 1 1 1 1 S S S S 2 2 2
AP N = 21 1 1 1 1 1 1 1 1 1 1 1 1

from (6.1). However, with the starting values matching the boundary conditions and
4χ(0,1) everywhere else, AP goes to the “nearer” solution of y2 (6.2), while DR finds
its way down to y1. This may be seen in Figure 6.

We repeated the experiment for a variety of starting points corresponding to
functions which matched the boundary values and were λχ(0,4) everywhere else for
various λ. The results are tabulated in Table 3.
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Figure 7. DR started sufficiently far from two feasible points may converge to the farther of the two while
AP converges to the nearer (left). For Example 6.4, after 5E5 iterates, DR appears stuck for some starting
points (right).

Newton’s method behaved very predictably, always converging to y1 for λ < 0 and
y2 for λ > 0 regardless of partition size. AP was slightly less predictable, converging
to y1 for λ = 0.01. For λ = 0.1, it appeared stuck between y1 and y2 even after 15E4
iterates regardless of partition size; eventually it converged to y1.

The behaviour of DR, by contrast, was highly unpredictable, changed drastically
with partition size and frequently converged to the “farther” away of the two solutions,
when started some distance from both. This is consistent with the known behaviour of
DR illustrated in Figure 7 (see, for example, the article by Borwein et al. [8]).

We observed another trend as well. For λ = 4 and N = 11, DR converged to y1 while
for λ = 2 it converged to y2; for λ = 3, convergence was extremely delayed. For most
values, we were able to ascertain the eventual solution within 15E4 iterates. For some
λ values we were unable to tell even after 5E5 iterates. This pattern of “crossroad”
points taking longer to close on a destination held consistently. One example is shown
at right in Figure 7.

Example 6.5. The differential equation y′′ = −exp(y) with boundary conditions y(0) =

y(1) = 0 admits two smooth solutions:

y(x) = log
(
c − c tanh2

(√ c
2

(1/2 − x)
))
,

where c ≈ 1.1508 (6.3)
or c ≈ 59.827. (6.4)

When the starting values match the unique affine function corresponding to the
boundary conditions, all of the numerical methods converge to the particular solution
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Table 4. Sensitivity to starting point for Example 6.5: 1, 2 indicate that the method converged to y1, y2,
while “D” and “S”, respectively, indicate that the method diverged or appeared to hover.

Method/Start λ −1 0 1 2 3 4 5 6 7

Newton N = 11 1 1 1 1 2 D D D D
DR N = 11 1 1 1 2 2 2 2 2 2
AP N = 11 1 1 1 1 2 2 2 S S

Newton N = 21 1 1 1 1 2 D D D D
DR N = 21 1 1 1 2 2 2 2 2 2
AP N = 21 1 1 1 1 2 2 2 2 S

given by (6.3), which we call y1. If we start instead from a function matching the
boundary conditions and 2χ(0,1) everywhere else, for N = 21 AP still goes to y1 while
DR converges to the other solution y2 given by (6.4). This can be seen in Figure 6.

We again repeated the experiment for a variety of starting points corresponding to
functions which matched the boundary values and were λχ(0,1) elsewhere for various
λ. The results are tabulated in Table 4, where it may be seen that for certain starting
values Newton’s method diverged or AP appeared stuck after 15E4 iterates.

Example 6.6. We consider the second order differential equation

y′′(x) =

−1, y(x) < 0,
1, y(x) ≥ 0

together with the boundary conditions y(−1) = −1 and y(1) = 1.
Here the right-hand side, being a Heaviside function [27], fails to satisfy the

standard conditions for existence and uniqueness. Nonetheless, it is readily seen to
admit a unique continuous solution on the interval [−1, 1], namely the odd function

y(x) =

− 1
2 x2 + 1

2 x, x < 0,
1
2 x2 + 1

2 x, x ≥ 0.

This example is especially interesting, because while Newton’s method finds the
solution when starting from the affine function satisfying the boundary criteria, it
fails to converge to the solution when started at 1χ(−1,1), . . . , 7χ(−1,1). Instead, it cycles
between the two nonsolutions shown at left in Figure 8.

Within six iterates of Newton’s method, the norm of the difference between
subsequent even iterates or subsequent odd iterates is less than 1E−19. By way of
contrast, DR and AP appear to work well from all of these starting points. At right we
show a plot of relative error for DR with 21 iterates starting from the affine function
values.

We provide an overview summary of our experimental results in Table 5. In the
first column we report how many iterates it took for log10 of the “peak” relative error
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Figure 8. Newton’s method may cycle for certain starting points in Example 6.6 (left), while DR
converges (right).

Table 5. A summary of experimental results from all examples.

DR AP DR DR AP True
1E–1 1E–1 wave error/relative error/relative error

Example 6.1 N = 11 9E3 4E3 142 44 2E3 3.4E–3
N = 21 129E3 60E3 516 155 26E3 6.7E–4

Example 6.2 N = 11 18E3 9E3 198 63 4E3 4.7E–4
N = 21 247E3 102E3 715 227 53E3 1.3E–4

Example 6.3 N = 11 9E3 4E3 138 43 2E3 2.5E–4
N = 21 117E3 58E3 500 155 25E3 5.1E–5

Example 6.4 N = 11 2E3 1E3 65 19 4E2 3.1E–3
N = 21 25E3 12E3 230 67 5E3 6.2E–4

Example 6.5 N = 11 16E3 8E3 184 57 34E2 2.6E–5
N = 21 208E3 104E3 670 211 46E3 5.1E–6

Example 6.6 N = 11 1E3 4E2 41 12 1E2 1.4E–3
N = 21 11E3 5E3 149 46 2E3 2.9E–4

for DR to go down by 1. In the second column we report this for AP where peaks
need no longer be considered. In the third column we give the average number of
iterates which compose the individual oscillations in the relative error of DR (as in
Figure 2). In the fourth column we report for DR the ratio of peak error from the
approximate solution to peak relative error. Because the two different peaks do not
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Figure 9. Stuck DR (left); relative error tends toward a pattern other than smooth oscillation (right).

coincide, we take each peak in the error from the approximate solution and compare
it to the previous peak in the relative error. In the fifth column we report for AP the
ratio of error from the approximate solution to the relative error; in this case peaks no
longer need be considered. In the final column we show the error of the approximate
solution (2.3) (obtained by Newton’s method) from the true solution.

Analysis of a stuck problem revealed that regular oscillations in relative error were
conspicuously absent. This is shown at left in Figure 9, where for Example 6.4 with
N = 21 and starting with λ = 6 DR appears stuck after 5E5 iterates. Original attempts to
catalogue average oscillation length for relative error resulted in data which appeared
at times periodic. This led to the discovery that the pattern in relative error may
tend toward a predictable pattern other than smooth oscillation. This is shown for
Example 6.2 with N = 11 at right in Figure 9.

7. Conclusion

The poor trade-off in convergence rate for finer partitions suggests some
modifications to the method for solving real-world problems. One such modification
is to begin with a coarse partition and increase the fineness over time. Another is to
simply switch to a more traditional solver once sufficient proximity to the true solution
is suspected from analysis of the relative error.

The impressive stability of DR relative to more traditional methods is consistent
with previous findings in the application of these methods to finding the intersections
of analytic curves [21]. This property and its unique suitability for parallelization make
it an ideal candidate for employment in settings where traditional solvers fail or for
getting close enough to a solution that traditional solvers may be applied.
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