THE mod © SUSPENSION THEOREM

BENSON SAMUEL BROWN*

1. Introduction. Our aim in this paper is to prove the general mod \mathbb{C} suspension theorem: Suppose that X and Y are CW-complexes, $\mathbb{C}^{\mathfrak{C}}$ is a class of finite abelian groups, and that
(i) $\pi_{i}(Y) \in \mathbb{C}$ for all $i<n$,
(ii) $H_{*}(X ; Z)$ is finitely generated,
(iii) $H^{i}(X ; Z) \in \Subset$ for all $i>k$.

Then the suspension homomorphism

$$
E:\left[S^{r} X, Y\right] \rightarrow\left[S^{r+1} X, S Y\right]
$$

is a (mod © $)$ monomorphism for $2 \leqq r \leqq 2 n-k-2$ (when $r=1$, ker E is a finite group of order d, where $\left.Z_{d} \in \mathbb{C}\right)$ and is a (mod $\left.\mathfrak{C}\right)$ epimorphism for $2 \leqq r \leqq 2 n-k-1$.

The proof is basically the same as the proof of the regular suspension theorem. It depends essentially on $(\bmod \mathbb{C})$ versions of the Serre exact sequence and of the Whitehead theorem.

In the first part of this paper we construct the (mod © $)^{(5)}$ Serre sequence. A certain amount of (mod \mathfrak{C}) algebra is required. As much as possible is carried over from (5) sometimes without explicit mention. However, the usual definition of exactness (mod \mathfrak{C}) is inconvenient and a slightly more general definition is adopted. I believe that this is justified in a remark after Corollary 3.1. Some of this algebra will also be useful in later work.

The (mod © $)$ Hurewicz and Whitehead theorems are proved here simply because they follow so easily from the (mod © $)$ Serre sequence. The suspension theorem for homotopy groups is now an easy consequence, but some of the work summarized in Theorem 6 is still necessary in order to pass to the general (mod ©) suspension theorem. (All of Theorem 6 is used in the sequel.) \dagger
2. Some definitions for $(\bmod \mathfrak{C})$ algebra. If \mathfrak{C} is a class of abelian groups $\overline{\mathfrak{C}}$, the non-abelian closure of \mathbb{C} is defined to be a family of groups satisfying the following conditions:
(i) if $G \in \mathbb{C}$, then $G \in \overline{\mathfrak{C}}$;
(ii) if $G \in \mathbb{\mathscr { C }}$ and H is a normal subgroup of G, then $H \in \mathbb{C}$;
(iii) if $G \in \overline{\mathscr{C}}$ and H is a quotient group of G, then $H \in \overline{\mathscr{C}}$;

[^0]\dagger Added in proof. See pp. 702-711, 712-729 of this issue of Can. J. Math.
(iv) if G^{\prime} and $G^{\prime \prime}$ are in $\overline{\mathscr{C}}$ and $0 \rightarrow G^{\prime} \rightarrow G \rightarrow G^{\prime \prime} \rightarrow 0$ is exact, then G is in $\overline{\mathscr{C}}$;
(v) if F is another family of groups satisfying (i)-(iv), then $F \supseteq \mathbb{C}$.

It is clear that any class of abelian groups \mathfrak{C} has a unique non-abelian closure. \mathbb{C} is simply the intersection of all families of groups satisfying conditions (i)-(iv).

A class © of finite abelian groups is characterized by a sequence of primes as follows:
(i) a prime p is in the sequence if and only if Z_{p} is in \mathfrak{C};
(ii) given the sequence $\left(p_{1}, p_{2}, \ldots\right)$, an abelian group G is in \mathbb{C} if and only if ord (order) $G=p_{1}{ }^{n_{1}} p_{2}{ }^{n_{2}} \ldots$.
A class \mathbb{C}^{C} characterized by the primes $\left(p_{1}, p_{2}, \ldots\right)$ will sometimes be denoted by $\mathfrak{C}\left(p_{1}, p_{2}, \ldots\right)$. Then \mathbb{C} is the family of all solvable groups G such that ord $G=p_{1}{ }^{n_{1}} p_{2}{ }^{n_{2}} \ldots$. If \mathbb{C} is the class of all finitely generated abelian groups, then \mathbb{C} is the family of all groups G with the following property: there exists a finite sequence of subgroups of G,

$$
G=G_{n} \supset G_{n-1} \supset \ldots \supset G_{1} \supset G_{0}=0
$$

such that G_{i-1} is normal in G_{i} and G_{i} / G_{i-1} is cyclic. In both cases, if G is abelian and $G \in \overline{\mathscr{C}}$, then $G \in \mathbb{C}$.

Definition. An element $a \in G$ is in $\mathfrak{C}\left(p_{1}, p_{2}, \ldots\right)$ if and only if ord $a=p_{1}{ }^{n_{1}} p_{2}{ }^{n_{2}} \ldots$, or equivalently, if the cyclic group generated by a is in \mathbb{C}. Suppose that G is a finitely generated abelian group. Consider its prime power decomposition. The set of elements in G which are in $\mathfrak{C}\left(p_{1}, p_{2}, \ldots\right)$ form a subgroup $G \mathbb{E}$ equal to the direct sum of those cyclic subgroups whose orders are powers of a prime in \mathfrak{C}. Thus, this subgroup $G \Subset$ is a direct summand of G. $G \Subset$ is the largest subgroup of G which is in \mathfrak{C}, hence $G \in \mathscr{C} \Leftrightarrow G=G \mathbb{E}$.

When the class \mathfrak{C} is fixed we shall write $\bar{G}=G / G \mathbb{C}$. There exist covariant functors $G \rightarrow G \mathbb{E}$ and $G \rightarrow \bar{G} . \bar{G}$ will be called the (mod $\mathbb{C})$ reduction of G.
3. Some lemmas in (mod \mathbb{C}) algebra. In the algebra below, all groups considered will be finitely generated abelian groups. Let \mathfrak{C} be a class of finite abelian groups.

Definition.

$$
A \xrightarrow{f} B \xrightarrow{g} D
$$

is exact (mod © $)$ if and only if

$$
g f(A) \in \mathfrak{C} \text { and } g^{-1}(D \mathbb{C}) / f(A) \in \mathfrak{C}
$$

Definition. $f: A \rightarrow B$ is a $(\bmod \mathfrak{C})$ isomorphism if and only if

$$
0 \rightarrow A \xrightarrow{f} B \rightarrow 0
$$

is exact $(\bmod \mathfrak{C})$.

Definition. $A \approx \Subset B(A$ is isomorphic to $B(\bmod \mathscr{C}))$ if and only if there exists a C such that

$$
0 \rightarrow A \rightarrow C \rightarrow 0 \quad \text { and } \quad 0 \rightarrow B \rightarrow C \rightarrow 0
$$

are both exact (mod © $)$. This is an equivalence relation; cf. (5, p. 299).
Suppose that

$$
0 \rightarrow A \stackrel{f}{\rightarrow} B \rightarrow 0
$$

is exact $(\bmod \mathfrak{C})$. Let $\bar{A}=A / A \mathbb{E}, \bar{B}=B / B \mathbb{E}$. Then $A=\bar{A} \oplus A \mathbb{E}$ and $B=\bar{B} \oplus B \in$. By looking at the prime power decompositions and counting, one sees that \bar{A} and \bar{B} must have the same cyclic summands, i.e., $\bar{A} \approx \bar{B}$. (Note that the induced homomorphism $\bar{f}: \bar{A} \rightarrow \bar{B}$ may not be an isomorphism, but it is an isomorphism $(\bmod (\mathbb{E})$. Furthermore, if $\bar{A} \approx \bar{B}$, we may take $C=A \oplus A \mathbb{E} \oplus B \mathbb{E}$, obtaining $A \approx_{\mathfrak{E}} B$. Thus, for finitely generated abelian groups,

$$
A \approx \mathbb{E} B \Leftrightarrow \bar{A} \approx \bar{B} .
$$

Lemma 1. If $G_{k} \supset G_{k-1} \supset \ldots \supset G_{1} \supset G_{0}$ and $G_{i} / G_{i-1} \in \mathbb{C}$ for all i, then $G_{k} / G_{0} \in \mathfrak{C}$.

Proof. We use the exact sequence

$$
0 \rightarrow G_{i} / G_{0} \rightarrow G_{i+1} / G_{0} \rightarrow G_{i+1} / G_{i} \rightarrow 0
$$

and induction on i.
Lemma 2. If f and g are homomorphisms from A to B and $(f-g) A \in \mathbb{C}$, then $f(A) \in \mathbb{C}$ if and only if $g(A) \in \mathbb{C}$.

Proof. Let $p: B \rightarrow \bar{B}$ be the canonical projection. Then $0=p(f-g) A=$ ($p f-p g$) A. Thus, $p f(A)=0$ if and only if $p g(A)=0$. That is, $f(A) \in \mathbb{C}$ if and only if $g(A) \in \mathbb{C}$.

The canonical projection $p: A \rightarrow \bar{A}$ has a right inverse $i: \bar{A} \rightarrow A$. That is, $p i=1$ and $(1-i p) A=A \mathbb{G}$. Furthermore, p and i are $(\bmod \mathbb{C})$ isomorphisms.

Lemma 3.

$$
G \stackrel{f}{\rightarrow} A \xrightarrow{h} B
$$

is exact $(\bmod \mathfrak{C})$ if and only if

$$
G \xrightarrow{p f} \bar{A} \xrightarrow{h i} B
$$

is exact mod \mathfrak{C}.
Proof. We have to prove (a) and (b).
(a) $(h f) G \in \mathbb{C} \leftrightarrow(h i p f) G \in \mathbb{C}$. $(1-i p) A=A \mathbb{E} \in \mathbb{C}$, therefore, $(h(1-i p) f) G=(h f-h i p f) G \in \mathbb{C}$. This implies (a).
(b) Suppose that $(h f) G$ and (hipf) G are in \mathfrak{C}, then

$$
h^{-1}(B \mathbb{E}) / f(G) \in \mathbb{C} \leftrightarrow \frac{(h i)^{-1} B \mathbb{E}}{(p f) G} \in \mathbb{C} .
$$

Since

$$
\frac{(h i)^{-1} B \mathbb{E}}{(p f) G}=\frac{i^{-1}\left(h^{-1}(B \mathbb{E})\right)}{p(f(G))}=\frac{p\left(h^{-1}(B \mathbb{E})\right)}{p(f(G))}
$$

and since p is a $(\bmod \mathbb{C})$ isomorphism, this last group is isomorphic mod \mathfrak{C} to $h^{-1}(B \mathbb{E}) / f(G)$.

Suppose that $A_{1} \approx \Subset A_{2}$. Let $p_{j}: A_{j} \rightarrow \bar{A}_{j}$ and $i_{j}: \bar{A}_{j} \rightarrow A_{j}$ be the canonical projections and their right inverses. Let $s: \bar{A}_{1} \rightarrow \bar{A}_{2}$ be an isomorphism.

Corollary 3.1.

$$
G \xrightarrow{f} A_{1} \xrightarrow{h} B
$$

is exact $(\bmod (\mathbb{C})$ if and only if

$$
G \xrightarrow{i_{2} s p_{1} f} A_{2} \xrightarrow{h i_{1} s^{-1} p_{2}} B
$$

is exact $(\bmod \mathbb{C})$.
Thus, using the method of changing homomorphisms described here, one can replace a group in a (mod © $)$ exact sequence by a group isomorphic (mod \mathbb{C}) to it without destroying the (mod © $)$ exactness. In future, the same symbols will generally be used for the original and the altered homomorphisms.

This corollary and Lemma 3 seem to justify the definition of (mod \mathfrak{C}) exactness given above. The usual definition is

$$
G \xrightarrow{f} A \xrightarrow{h} B
$$

is exact $(\bmod \mathbb{C})$ if and only if $h f=0$ and $\operatorname{ker} h / \operatorname{Im} f \in \mathbb{C}$. We present an example to show that these two concepts are different. $G=Z, A=Z+Z_{2}$ with generators a_{1} (of infinite order) and $a_{2}\left(2 a_{2}=0\right)$, and $B=Z_{2}$ (generator b). Define

$$
f: Z \rightarrow Z+Z_{2}
$$

by $f(1)=a_{1}+a_{2}$, and

$$
h: Z+Z_{2} \rightarrow Z_{2}
$$

by $h\left(a_{1}\right)=b, h\left(a_{2}\right)=b$. Then

$$
Z \xrightarrow{f} Z+Z_{2} \xrightarrow{h} Z_{2}
$$

is exact $(\bmod \mathscr{C}(2))$; in fact, it is exact. Let $p: Z+Z_{2} \rightarrow \overline{Z+Z_{2}}=Z$ be the canonical projection and $i: Z \rightarrow Z+Z_{2}$ its right inverse. Consider the sequence

$$
Z \xrightarrow{p f} \overline{Z+Z_{2}} \xrightarrow{h i} Z_{2} .
$$

$\operatorname{hipf}(1)=b \neq 0$; thus, in the old definition, this is not exact $(\bmod \mathfrak{C}(2))$. It is possible that Corollary 3.1 will remain true using the old definition, but the homomorphisms would have to be changed in a more complicated way.

Corollary 3.1 is essential to much of what follows in this section and will generally be used without explicit mention.

Lemma 4. If $G=G_{n} \supset G_{n-1} \supset \ldots \supset G_{1} \supset G_{0}=0$ and $F_{i}=G_{i} / G_{i-1} \in \mathbb{C}$
except for $i=r, s(r>s)$, then there exists a sequence $0 \rightarrow F_{s} \rightarrow G \rightarrow F_{r} \rightarrow 0$ which is exact $(\bmod \mathbb{C})$.

Proof. $0 \rightarrow G_{r} / G_{r-1} \rightarrow G_{n} / G_{r-1} \rightarrow G_{n} / G_{r} \rightarrow 0$ is exact. Lemma 1 implies that $G_{n} / G_{r} \in \mathfrak{C}$. Therefore, $F_{r}=G_{r} / G_{r-1} \approx \Subset G_{n} / G_{r}$. Furthermore,

$$
0 \rightarrow G_{s} \rightarrow G_{r-1} \rightarrow G_{r-1} / G_{s} \rightarrow 0
$$

and

$$
0 \rightarrow G_{s-1} \rightarrow G_{s} \rightarrow G_{s} / G_{s-1} \rightarrow 0
$$

are exact. Using Lemma 1 again we have that G_{r-1} / G_{s} and G_{s-1} are in \mathfrak{C}. Combining isomorphisms, this implies that $G_{r-1} \approx_{\mathbb{E}} G_{s} / G_{s-1}=F_{s}$. The lemma now follows by substitution in the exact sequence $0 \rightarrow G_{r-1} \rightarrow G \rightarrow G / G_{r-1} \rightarrow 0$.

Definition. A homomorphism $f: A \rightarrow B$ is in a class of finite abelian groups (C) if and only if f, as an element of $\operatorname{Hom}(A, B)$, is in \mathfrak{C}. This is equivalent to the condition that $f(A) \in \mathbb{C}$.

Definition. The triangle

is commutative (mod © $)$ if and only if $h-g f \in \mathfrak{C}$.
If f and g are two homomorphisms from A to B and $f-g \in \mathbb{C}$, then $f^{-1}(B \mathbb{C})=g^{-1}(B \mathbb{E})$ and $\overline{f(A)}=\overline{g(A)}$. This follows since $A \xrightarrow{f-g} B \xrightarrow{p} \bar{B}$ is the zero homomorphism, $f^{-1}(B \mathbb{E})=\operatorname{ker} p f=\operatorname{ker} p g=g^{-1}(B \mathbb{C})$, and
(iii)

$$
\overline{f(A)}=p f(A)=p g(A)=\overline{g(A)}
$$

Lemma 5. If the diagram

is commutative (mod $\mathfrak{C})$ and the vertical and horizontal lines are exact (mod $\mathfrak{C})$, then the sequence

$$
E \xrightarrow{c} F \xrightarrow{e} B \xrightarrow{h} G \xrightarrow{g} H
$$

is exact $(\bmod \mathfrak{C})$.
Proof. (A) $e-a d$ and $d c$ are in \mathfrak{C}. Hence, $e c=(e-a d) c+a d c \in \mathbb{C}$. Since a is a $(\bmod \mathbb{C})$ monomorphism, $a^{-1}(B \mathbb{E})=A \mathbb{E}$.

$$
\frac{e^{-1}(B \mathbb{E})}{c(E)}=\frac{(a d)^{-1} B \mathbb{E}}{c(E)}=\frac{d^{-1}\left(a^{-1}(B \mathbb{E})\right)}{c(E)} ;
$$

hence,

$$
\frac{d^{-1}(A \mathbb{E})}{c(E)} \in \mathbb{C} .
$$

(B) $h-f b, e-a d$, and $b a$ are all in \mathfrak{E}. Therefore, $h e=(h-f b) e+$ $f b(e-a d)+f b a d \in \mathbb{C}$. We are given that $b^{-1}(D \mathbb{C}) / a(A) \in \mathbb{C}$. Since $d: F \rightarrow A$ is onto (mod $\mathfrak{C})$, the inclusion $a d(F) \rightarrow a(A)$ is a (mod $\mathbb{C})$ isomorphism and induces a (mod © $)$ isomorphism

$$
\frac{b^{-1}\left(D_{\mathbb{E}}\right)}{a d(F)} \rightarrow \frac{b^{-1}\left(D_{\mathbb{E}}\right)}{a(A)} .
$$

Now

$$
\frac{b^{-1}(D \mathbb{E})}{a d(F)} \approx \mathbb{\S} \frac{\overline{b^{-1}\left(D_{\mathbb{E}}\right)}}{a d(F)}=\frac{\overline{b^{-1}(D \mathbb{C})}}{\overline{e(F)}} \approx \mathbb{E} \frac{b^{-1}(D \mathbb{E})}{e(F)} .
$$

Hence, this last group is in \mathfrak{C}. Since f is a (mod $\mathfrak{C})$ monomorphism, $f^{-1}(G \mathbb{E})=D \mathbb{E}$. Therefore,

$$
\frac{b^{-1}(D \mathbb{E})}{e(F)}=\frac{b^{-1}\left(f^{-1}(G \mathbb{E})\right)}{e(F)}=\frac{(f b)^{-1} G \mathbb{E}}{e(F)}=\frac{h^{-1}(G \mathbb{E})}{e(F)} .
$$

(C) $h-f b$ and $g f$ are in © . Thus, $g h=g(h-f b)+g f b \in \mathbb{C}$. Using the same reasoning as in part (B), we have:
(since b is onto $\bmod \mathfrak{C}$) and this last group is in \mathfrak{C}. Therefore

$$
\frac{g^{-1}(H \mathbb{®})}{h(B)} \in \mathbb{C} .
$$

The Five Lemma (mod © ${ }^{(5)}$. Suppose that

is commutative (mod (C), each row is exact (mod $\mathfrak{C})$ and c_{1}, c_{2}, c_{4}, and c_{5} are isomorphisms (mod $\mathfrak{C})$. Then c_{3} is an isomorphism (mod $\left.\mathfrak{C}\right)$.

Proof. Reduce every group (mod $\mathfrak{C}) . \bmod \mathfrak{C}$ exactness is preserved, and now each double composition is trivial. mod \mathfrak{C} commutativity becomes regular commutativity. The vertical maps remain (mod ©) isomorphisms. (In fact, they are monomorphisms and (mod ©) epimorphisms.) The reduced diagram now satisfies the hypotheses of ($\mathbf{5}, \mathrm{p} .309$). Thus, the reduced map $\bar{c}_{3}: \bar{A}_{3} \rightarrow \bar{B}_{3}$ is a (mod (E) isomorphism. This implies that $c_{3}: A_{3} \rightarrow B_{3}$ is a (mod $\mathfrak{C})$ isomorphism.
4. A spectral sequence studied $(\bmod (\mathbb{E})$. In the following section, I will use the definitions, notation, and some of the results of (5, Chapter VIII, §6).

Definition. A bigraded exact couple is a system

$$
C=\langle D, E ; i, j, k\rangle
$$

where D and E are bigraded abelian groups, i, j, and k are homogeneous homomorphisms, and

is exact. When the degree of i is $(1,-1)$, of j is $(0,0)$, and of k is $(-1,0)$, the couple is called a ∂-couple. A ∂-couple is regular if $D_{p, q}=0$ when $p<0$ and $E_{p, q}=0$ when $q<0$.

Define

$$
H_{p, q}=H_{p, q}(C)=D_{p+q+1,-1}^{q+2}
$$

and $H_{m}=H_{m, 0}$. Hu showed (5, p. 238) that for a regular ∂-couple we have, for each $\mathrm{m}>0$,

$$
\begin{equation*}
H_{m}=H_{m, 0} \supset H_{m-1,1} \supset \ldots \supset H_{0, m} \supset H_{-1, m+1}=0 \tag{A}
\end{equation*}
$$

and also

$$
\begin{equation*}
H_{p, q} / H_{p-1, q+1}=E_{p, q}^{\infty} . \tag{B}
\end{equation*}
$$

Using the algebraic lemmas above, we can now obtain a (mod © $)$ version of a standard exact sequence.

Theorem 1. Let $\langle D, E ; i, j, k\rangle$ be a regular ∂-couple. Suppose that $E_{p, q}^{2} \in(5$ for $p+q \leqq r$ unless $\langle p, q\rangle$ is of the form $(0, a)$ or $(b, 0)$. Then

$$
E_{0, r}^{2} \rightarrow H_{r} \rightarrow E_{r, 0}^{2} \rightarrow E_{0, \tau-1}^{2} \rightarrow \ldots
$$

is exact (mod $\mathfrak{C})$.
Proof. Notice that $E_{p, q}^{2} \in \mathbb{C}$ implies that $E_{p, q}^{n} \in \mathfrak{C}$ for all $n \geqq 2$, for $E_{p, q}^{k+1}$ is a quotient of a subgroup of $E_{p, q}^{k}$.

Fix $m \geqq 2$. Looking at (A) and using (B),

$$
H_{m-k, k} / H_{m-k-1, k+1} \approx E_{m-k, k}^{\infty} \in \mathbb{C}
$$

unless $k=0$ or m, we obtain, by Lemma 4, that
(1) $0 \rightarrow E_{0, m}^{\infty} \rightarrow H_{m}^{\infty} \rightarrow E_{m, 0} \rightarrow 0$ is exact (mod ©).

For a ∂-couple, d^{k} has degree ($-k, k-1$); consequently, $E_{n, 0}^{k}$ contains no boundaries and $E_{0, n}^{k}$ contains only cycles (for all n, k). For $2 \leqq n \leqq m$,

$$
d^{n}\left(E_{m+1,0}^{n}\right) \subset E_{m-n+1, n-1}^{n} \in \mathbb{C}
$$

and

$$
\begin{gathered}
0 \rightarrow \operatorname{ker} d_{m+1,0}^{n} \rightarrow E_{m+1,0}^{n} \rightarrow d^{n}\left(E_{m+1,0}^{n}\right) \rightarrow 0 \\
E_{m+1,0}^{n+1}
\end{gathered}
$$

is exact. Iterating this argument, we obtain

$$
E_{m+1,0}^{2} \approx_{\mathbb{E}} E_{m+1,0}^{m+1} .
$$

The same reasoning yields

$$
E_{m, 0}^{2} \approx_{\mathbb{C}} E_{m, 0}^{m} .
$$

For $2 \leqq n \leqq m, E_{n, m-n+1}^{n} \in \mathbb{C}$, and therefore $d^{n}\left(E_{n, m-n+1}^{n}\right) \in \mathbb{C}$ [here $m<r$] and

$$
0 \rightarrow d^{n}\left(E_{n, m-n+1}^{n}\right) \rightarrow E_{0, m}^{n} \rightarrow E_{0, m}^{n+1} \rightarrow 0
$$

is exact. Iteration then yields: $E_{0, m}^{2} \approx_{\mathbb{C}} E_{0, m}^{m+1}$. Similarly,

$$
E_{0, m-1}^{2} \approx \Subset E_{0, m-1}^{m} \quad \text { and } \quad E_{n, m-n+1}^{n} \rightarrow E_{0, m}^{n} \rightarrow E_{0, m}^{n+1} \rightarrow 0
$$

is exact. However, for $n \geqq m+2, E_{n, m-n+1}^{n}=0$, and consequently $E_{0, m}^{m+2} \approx \Subset E_{0, m}^{\infty}$. For $n \geqq m+1, d_{m, 0}^{n}=0$. Thus $E_{m, 0}^{m+1} \approx_{\mathbb{E}} E_{m, 0}^{\infty}$.

Since $E_{0, m}^{m+1}$ contains only cycles,
(2) $E_{m+1,0}^{m+1} \rightarrow E_{0, m}^{m+1} \rightarrow E_{0, m}^{m+2} \rightarrow 0$ is exact.

Since $E_{m, 0}^{m}$ has no boundaries,
(3) $0 \rightarrow E_{m, 0}^{m+1} \rightarrow E_{m, 0}^{m} \rightarrow E_{0, m-1}^{m}$ is exact.

Putting together sequences (1), (2), and (3) and the isomorphisms, we obtain

where the straight lines are exact $(\bmod \mathfrak{C})$ ．（When $m=r$ ，we must write $E_{0, r}^{r+1}$ in place of $E_{0, m}^{2}$ ．）Then by Lemma 5，

$$
\begin{equation*}
E_{m+1,0}^{2} \rightarrow E_{0, m}^{2} \rightarrow H_{m} \rightarrow E_{m, 0}^{2} \rightarrow E_{0, m-1}^{2} \tag{*}
\end{equation*}
$$

is exact（ $\bmod \mathfrak{C}$ ）．This is true for all $m<r$ and the homomorphisms $E_{m, 0}^{2} \rightarrow E_{0, m-1}^{2}$ are the same for different short sequences．（In each case it is $d_{m, 0}^{m}$ preceded and followed by the same（mod（5）isomorphisms．）Thus， combining the short sequences，we have that

$$
E_{r, 0}^{2} \rightarrow E_{0, r-1}^{2} \rightarrow H_{r-1} \rightarrow E_{r-1,0}^{2} \rightarrow \ldots
$$

is exact $(\bmod \mathbb{C})$ ．
Since all the exact sequences and all the isomorphisms（except（＊））hold when $m=r$ ，we can extend this sequence slightly to the left．

It is not true that $E_{0, r}^{2} \approx_{⿷ 匚}^{⿷} E_{0, r}^{r+1}$ ；however，since $E_{0, r}^{n}$ has no boundaries（for any n ），$E_{0, r}^{2}$ is mapped onto $E_{0, r}^{r+1}$ by $d^{r} d^{r-1} \ldots d^{2}$ ．Thus，the five－term exact sequence which results from the diagram above can be replaced by a four－term sequence，

$$
E_{0, r}^{2} \rightarrow H_{r} \rightarrow E_{r, 0}^{2} \rightarrow E_{0, r-1}^{2}
$$

which is exact $(\bmod \mathfrak{C})$ ．This completes the proof．
5．Some standard theorems $(\bmod \mathfrak{C})$ ．In this section，as before， \mathfrak{C} will be a class of abelian groups．Coefficient groups for homology，when suppressed， will be understood to be the integers．We wish to prove the following result．

Theorem 2 （The Serre exact sequence $(\bmod \mathbb{C}))$ ．Suppose that

$$
F \xrightarrow{i} X \xrightarrow{g} B
$$

is a Serre fibring，where B is path－connected and $H_{1}(B)$ operates simply on $H_{*}(F)$ ，and suppose that for some class $\mathfrak{C}, H_{i}(B) \in \mathbb{C}$ for $0<i<q$ and $H_{i}(F) \in \mathbb{C}$ for $0<i<p$ ．Then there exists a（mod © $)$ exact sequence

$$
H_{p+q-1}(F) \xrightarrow{i_{*}} H_{p+q-1}(X) \xrightarrow{g_{*}} H_{p+q-1}(B) \xrightarrow{\alpha} H_{p+q-2}(F) \rightarrow \ldots
$$

Proof．Serre（7）has shown that there is a regular ∂－couple D associated with the fibring in which

$$
E_{a, b}^{2}=H_{a}\left(B, H_{b}(F)\right) \quad \text { and } \quad H(D)=H(X) .
$$

Taking $r=p+q-1$ ，the exactness of the sequence follows from Theorem 1. The assertion about the homomorphisms i_{*} and g_{*} is proved in（5，p．271）． （ α is just a name．）
The Eilenberg－MacLane computation of $H_{*}\left(Z_{p}, 1\right)$ ，which used no（mod（5） theory，shows that $H_{i}\left(Z_{p}, 1 ; Z\right)$ is finitely generated（4）．In fact，since every element is of order $p, H_{i}\left(Z_{p}, 1\right) \in \mathfrak{C}(p)$ ．Using the fibring

$$
K\left(Z_{p}, 1\right) \rightarrow K\left(Z_{p^{r}}, 1\right) \rightarrow\left(Z_{p^{r-1}}, 1\right)
$$

the Serre exact sequence $(\bmod \mathfrak{C}(p))$, and induction, we obtain $H_{i}\left(Z_{p^{r}}, 1\right) \in \mathfrak{C}(p)$. Using the same technique on the fibring

$$
K\left(Z_{p^{r}}, k-1\right) \rightarrow E \rightarrow K\left(Z_{p^{r}}, k\right),
$$

we obtain $H_{i}\left(Z_{p^{r}}, k\right) \in \mathscr{C}(p)$ for all r, k. (Here, E is the space of paths in $K\left(Z_{p^{r}}, k\right)$ starting at a fixed base-point.)

Lemma 6. If $G \in \mathfrak{C}$, then $H_{i}(G, k ; Z) \in \mathbb{C}$.
Proof. Write G as a direct sum of cyclic groups of prime power order:

$$
G=\sum_{j} Z_{p_{j}}{ }^{n j} .
$$

Then $Z_{p_{j}} \in \mathbb{C}$ for all j,

$$
K(G, k)=\prod_{j} K\left(Z_{p_{j}}{ }^{n_{j}}, k\right) \quad \text { and } \quad H_{i}\left(K\left(Z_{p_{j}}{ }^{n_{j}}, k\right) ; Z\right) \in \mathbb{C} .
$$

Therefore, by the Künneth formulas, $H_{i}(G, k ; Z) \in \mathbb{C}$.
Lemma 7. Suppose that X has a finite number of non-zero homotopy groups, and $\pi_{i}(X) \in \mathfrak{G}$ for all i. Then $H_{i}(X) \in \mathbb{C}$ for all i.

Proof. The proof is by induction on the number n of non-zero homotopy groups of X. Lemma 6 establishes the result for the case $n=1$. Suppose that it holds for all simply connected spaces which have no more than j non-zero homotopy groups. Let Y be a simply connected space with non-zero homotopy groups in dimensions $n_{1}<n_{2}<\ldots<n_{j}<n_{j+1}$ with $\pi_{n_{i}}(Y) \in \mathfrak{G}, i=$ $1, \ldots, j+1$. There is a fibring

$$
F \rightarrow Y \rightarrow K\left(\pi_{n_{1}}(Y), n_{1}\right)
$$

such that

$$
p_{*}: \pi_{n_{1}}(Y) \rightarrow \pi_{n_{1}}\left(K\left(\pi_{n_{1}}(Y), n_{1}\right)\right)
$$

is an isomorphism. Using the homotopy exact sequence of this fibring we obtain

$$
\pi_{n_{i}}(F) \approx \pi_{n i}(Y), \quad 2 \leqq i \leqq j+1,
$$

and that these are the only non-zero homotopy groups of F. Then, by the induction hypothesis, $H_{i}(F) \in \mathbb{C}$ for all i.

Since both F and $K\left(\pi_{n_{1}}(Y) ; n_{1}\right)$ are infinitely connected (mod \mathbb{C}), the $(\bmod \mathfrak{C})$ Serre exact sequence is infinite, and this implies that $H_{i}(Y) \in \mathbb{C}$ for all i. This completes the induction.

Theorem 3 (The Hurewicz theorem (mod © $)$). Suppose that $\pi_{i}(X) \in \mathbb{C}$ for $i<n$. Then $\pi_{n}(X) \approx_{\mathfrak{G}} H_{n}(X)$.

Proof. Take a Postnikov system for X. Let B^{n-1} be that space in the Postnikov system made up of the homotopy groups of X up to dimension $n-1$. Then $p: X \rightarrow B^{n-1}$ is a fibring which induces isomorphisms in homotopy
up to dimension $n-1$, and $i: F \rightarrow X$ (the inclusion of the fibre) induces isomorphisms in homotopy in dimensions n and above. Furthermore, $\boldsymbol{\pi}_{i}(F)=0$ for all $i<n$ and $\pi_{n}(F) \approx H_{n}(F) . B^{n-1}$ is infinitely connected (mod $\left.\mathbb{E}\right)$; thus, by the Serre exact sequence $(\bmod (\mathbb{C})$ we obtain

$$
H_{n}(F) \approx_{\mathfrak{C}} H_{n}(X) .
$$

Using $\pi_{n}(F) \approx \pi_{n}(X)$ and combining the isomorphisms, we obtain

$$
\pi_{n}(X) \approx ๔ H_{n}(X)
$$

and the isomorphism is induced by the Hurewicz homomorphism since the following diagram is commutative

Theorem 4 (The Whitehead theorem $(\bmod \mathfrak{C}))$. Suppose that X and Y are simply connected and $f: X \rightarrow Y$ is a continuous map; then statements (i) and (ii) are equivalent:
(i) $f_{*}: H_{i}(X) \rightarrow H_{i}(Y)$ is a (mod (ك) isomorphism for $i<n$ and

$$
H_{n}(Y) / f_{*} H_{n}(X) \in \mathfrak{C} ;
$$

(ii) $f_{\#}: \pi_{i}(X) \rightarrow \pi_{i}(Y)$ is a (mod (5) isomorphism for $i<n$ and

$$
\pi_{n}(Y) / f_{\#} \pi_{n}(X) \in \mathfrak{C}
$$

Proof. (A) (i) implies (ii). Take f to be a fibre map with fibre F. Suppose that $H_{i}(F) \in \mathbb{C}$ for all $i<p \leqq n-1$. By assumption, $H_{i}(Y)=0$ for $i<2$. Using Theorem 2, the sequence

$$
H_{p+1}(F) \rightarrow H_{p+1}(X) \xrightarrow{f_{*}^{p+1}} H_{p+1}(Y) \rightarrow H_{p}(F) \rightarrow H_{p}(X) \xrightarrow{f_{*}^{p}} H_{p}(Y)
$$

is exact $(\bmod \mathbb{C})$. Since $p \leqq n-1, f_{*}^{p}$ is a $(\bmod \mathbb{C})$ isomorphism and f_{*}^{p+1} is certainly a mod \mathbb{E} epimorphism. Therefore, $H_{p}(F) \in \mathbb{C}$. Repeating this argument, we obtain $H_{i}(F) \in \mathbb{C}$ for all $i \leqq n-1$. Furthermore, $H_{1}(F)=$ $\pi_{1}(F) \in \mathfrak{C}$. Using the (mod © $)$ Hurewicz theorem, we have $\pi_{i}(F) \in \mathbb{C}$ for all $i \leqq n-1$. The result now follows from the homotopy exact sequence of the fibring

$$
F \rightarrow X \xrightarrow{f} Y .
$$

(B) (ii) implies (i). Using the homotopy exact sequence of the fibring, we see that $\pi_{i}(F) \in \mathfrak{C}$ for all $i \leqq n-1$. Therefore, $H_{i}(F) \in \mathbb{C}$ for $i \leqq n-1$. By hypothesis, $H_{1}(Y)=0$. The result clearly follows from the (mod © $)$ Serre exact sequence.

Theorem 5 (The suspension theorem (mod (5)). Suppose that X is connected and $\pi_{i}(X) \in \mathbb{C}$ for all $i<n$. Then $i_{\#}: \pi_{j}(X) \rightarrow \pi_{j}(\Omega S X)$ is a (mod (C) isomorphism for $j<2 n-1$ and a (mod (5) epimorphism for $j=2 n-1$ ($i: X \rightarrow \Omega S X$ is the natural inclusion).

Proof. Consider the acyclic fibring $\Omega S X \rightarrow E \rightarrow S X$. We have $H_{i}(S X)=$ $H_{i-1}(X) \in \mathbb{C}$ for $i<n+1$. Therefore, $\pi_{i}(S X) \in \mathbb{C}$ for $i<n+1$ and $\pi_{j}(\Omega S X) \in \mathbb{C}$ for $j<n$. Consequently, $H_{j}(\Omega S X) \in \mathbb{C}$ for $j<n$. Applying Theorem 2 we obtain:

$$
\begin{gathered}
H_{2 n}(\Omega S X) \rightarrow \\
\|_{2 n}(E) \rightarrow H_{2 n}(S X) \xrightarrow{\alpha} H_{2 n-1}(\Omega S X) \rightarrow \underset{2 n-1}{H_{2 n-1}(E) \rightarrow \ldots} \\
0
\end{gathered}
$$

is exact (mod © $)$. That is, $\alpha: H_{j+1}(S X) \rightarrow H_{j}(\Omega S X)$ is a (mod $\left.\mathfrak{C}\right)$ isomorphism for $j \leqq 2 n-1$.

Let $\Sigma: H_{i}(X) \rightarrow H_{i+1}(S X)$ be the suspension isomorphism. Then

$$
\alpha \Sigma= \pm i_{*}^{j}: H_{j}(X) \rightarrow H_{j}(\Omega S X)
$$

see (1). Therefore, the $i_{*}{ }^{j}$ induce (mod (5) homology isomorphisms for $j \leqq 2 n-1$. Then, by the (mod © $)$ Whitehead theorem, $i_{\#}: \pi_{j}(X) \rightarrow \pi_{j}(\Omega S X)$ is a (mod $\mathfrak{C})$ isomorphism when $j<2 n-1$ and a (mod $\mathfrak{C})$ epimorphism when $j=2 n-1$.
6. A Whitehead-type theorem. In this section, we prove the following theorems.

Theorem 6A. Suppose that X and Y are simply connected spaces and that $f: X \rightarrow Y$ is a continuous map. Then the following four statements are equivalent:
(i) $f_{*}: H_{i}(X) \rightarrow H_{i}(Y)$ is a (mod (5) isomorphism for all i;
(ii) $f_{\#}: \pi_{i}(X) \rightarrow \pi_{i}(Y)$ is a (mod (5) isomorphism for all i;
(iii) for any space L with $H_{*}(L)$ finitely generated, the homomorphism

$$
\left(\Omega^{2} f\right)_{*}:\left[L, \Omega^{2} X\right] \rightarrow\left[L, \Omega^{2} Y\right]
$$

is a (mod ©) isomorphism;
(iv) for any space P with $\pi_{*}(P)$ finitely generated, the homomorphism

$$
\left(S^{2} f\right)^{*}:\left[S^{2} Y, P\right] \rightarrow\left[S^{2} X, P\right]
$$

is a (mod © $)$ isomorphism.
Theorem 6B. Suppose that X and Y are simply connected spaces and that $f: X \rightarrow Y$ is a continuous map. Then the following two statements are equivalent:
(v) $f_{*}: H_{*}(X) \rightarrow H_{*}(Y)$ is a (mod (C) isomorphism;
(vi) for any space P, the homomorphism

$$
\left(S^{2} f\right)^{*}:\left[S^{2} Y, P\right] \rightarrow\left[S^{2} X, P\right]
$$

is a (mod © $)$ isomorphism.

Theorem 6C. Suppose that X and Y are simply connected spaces and that $f: X \rightarrow Y$ is a continuous map. Then the following two statements are equivalent:
(vii) $f_{\#}: \pi_{*}(X) \rightarrow \pi_{*}(Y)$ is a (mod © $)$ isomorphism;
(viii) for any space L, the homomorphism

$$
\left(\Omega^{2} f\right)_{*}:\left[L, \Omega^{2} X\right] \rightarrow\left[L, \Omega^{2} Y\right]
$$

is a (mod © $)$ isomorphism.
The proof of these theorems will proceed from a series of lemmas. First recall some standard homotopy theory.

If $f: X \rightarrow Y$ is a fibring with fibre F, then for any space L we have a long exact sequence

$$
\begin{aligned}
& \ldots\left[L, \Omega^{i} F\right] \rightarrow\left[L, \Omega^{i} X\right] \xrightarrow{\left(\Omega^{i} f\right)_{*}}\left[L, \Omega^{i} Y\right] \rightarrow\left[L, \Omega^{i-1} F\right] \rightarrow \ldots \\
& \rightarrow[L, F] \rightarrow[L, X] \xrightarrow{f_{*}}[L, Y] .
\end{aligned}
$$

If $f: X \rightarrow Y$ has mapping cone C_{f}, then, for any space P, there is a long exact sequence

$$
\begin{aligned}
\ldots \rightarrow\left[S^{i} C_{f}, P\right] \rightarrow\left[S^{i} Y, P\right]^{\left(S^{i}\right)^{*}} \rightarrow\left[S^{i} X, P\right] \rightarrow & {\left[S^{i-1} C_{f}, P\right] \rightarrow \ldots } \\
& \rightarrow\left[C_{f}, P\right] \rightarrow[Y, P] \rightarrow[X, P] .
\end{aligned}
$$

Let G be a finitely generated abelian group. Then $M(G, n)(n \geqq 2)$ will be a simply connected space with $H_{i}(M(G, n))=0$ for all $i \neq n$ and $H_{n}(M(G, n))=G$. For $n=1$, we have the condition that

$$
\pi_{1}(M(G, 1))=H_{1}(M(G, 1))
$$

Such spaces exist and are well-determined up to homotopy type (6).
Let $n: S^{k} \rightarrow S^{k}$ be a map of degree n. Then C_{n} has the homotopy type of an $M\left(Z_{n}, k\right)$, and the sequence

$$
\pi_{k}(P) \xrightarrow{n \#} \pi_{k}(P) \rightarrow\left[M\left(Z_{n}, k\right), P\right] \rightarrow \pi_{k+1}(P) \xrightarrow{n \#} \pi_{k+1}(P)
$$

is exact. Therefore, if $Z_{n} \in \mathfrak{C}$, then $\left[M\left(Z_{n}, k\right), P\right] \in \mathfrak{C}$ for $k \geqq 3$ (and $\left.\left[M\left(Z_{n}, 2\right), P\right] \in \mathbb{\Subset}\right)$.

Lemma 8. If $G \in \mathbb{C}$, then $[M(G, k), P] \in \mathfrak{C}$ for $k \geqq 3$.
Proof. Suppose that

$$
G=\sum_{i=1}^{s} Z_{n i}
$$

Then $M(G, k)=\vee_{i} M\left(Z_{n i}, k\right)$ (where the wedge product is the one-point union), and

$$
[M(G, k), P]=\sum_{i}\left[M\left(Z_{n_{i}}, k\right), P\right]
$$

Now by the remark above, each summand is in \mathbb{C} and therefore

$$
[M(G, k), P] \in \mathfrak{C}
$$

Lemma 9. Suppose that (a) $H_{*}(A) \in \mathbb{C}$ or that $(\mathrm{b}) H_{i}(A) \in \mathbb{C}$ for all i and that $\pi *(P)$ is finitely generated. Using either hypothesis, $[S A, P] \in \mathbb{C}$.

Proof. The Eckmann-Hilton decomposition of $S A$ is the suspension of that of A, i.e. all the spaces and maps that occur are suspensions:

and for all $r, M\left(H_{r+1}(A), r+2\right)=C_{S i_{r}}$ (3). The proof is by induction on r.
Assume that $\left[S A_{\tau}, P\right] \in \mathbb{C}$. Then

$$
\left[M\left(H_{r+1}(A), r+2\right), P\right] \xrightarrow{\left(S f_{r+1}\right)^{*}}\left[S A_{r+1}, P\right] \xrightarrow{\left(S i_{r}\right)^{*}}\left[S A_{r}, P\right]
$$

is exact. Using either hypothesis, $H_{r+1}(A) \in \mathfrak{C}$, and hence by Lemma 8 , $\left[M\left(H_{r+1}(A), r+2\right), P\right] \in \mathbb{C}$. Therefore, $\left[S A_{r+1}, P\right] \in \mathbb{C}$. Now, again using either hypothesis, for large enough $k,\left[M\left(H_{k}(A), k+1\right), P\right]=0$. That is, only a finite number of extensions are necessary to build up to $[S A, P]$, and therefore $[S A, P] \in \overline{\mathbb{C}}$.

Lemma 10. Suppose that $f: X \rightarrow Y$ either (a) induces a (mod (ك) isomorphism $f_{*}: H_{*}(X) \rightarrow H_{*}(Y)$ or (b) induces (mod © $)$ isomorphisms $f_{*}: H_{i}(X) \rightarrow H_{i}(Y)$ for all i and $\pi_{*}(P)$ is finitely generated. Using either hypothesis,

$$
\left(S^{2} f\right)^{*}:\left[S^{2} Y, P\right] \rightarrow\left[S^{2} X, P\right]
$$

is an isomorphism (mod $\mathfrak{C})$.
Proof. Let $A=C_{f}$. Then

$$
\left[S^{2} A, P\right] \rightarrow\left[S^{2} Y, P\right] \xrightarrow{\left(S^{2} f\right)^{*}}\left[S^{2} X, P\right] \rightarrow[S A, P]
$$

is an exact sequence of groups. Now either $H_{*}(A) \in \mathbb{C}$ or $H_{i}(A) \in \mathbb{C}$ (all i) and $\pi_{*}(P)$ is finitely generated. Thus, using Lemma $9,[S A, P] \in \mathbb{\mathbb { C }}$ and $\left[S^{2} A, P\right] \in \mathbb{C}$ (since it is abelian). Now coker $\left(S^{2} f\right)^{*}$ is abelian and is in $\overline{\mathbb{C}}$. Therefore, it is in $\mathscr{E}^{\mathcal{S}}$ and $\left(S^{2} f\right)^{*}$ is a ($\left.\bmod \mathbb{C}\right)$ isomorphism.

Lemma 11. Suppose that $G \in \mathbb{C}$ and L is any space, then $[L, K(G, n)] \in \mathbb{C}$.
Proof. $[L, K(G, n)]=H^{n}(L ; G)=H^{n}(L) \otimes G \oplus \operatorname{Tor}\left(H^{n+1}(L), G\right)$ which is in $\overline{\mathrm{C}}$.

Lemma 12. If $\pi_{i}(F) \in \mathbb{C}$ and $H_{*}(L)$ is finitely generated, or if $\pi_{*}(F) \in \mathbb{C}$ and L is any space, then $[L, \Omega F] \in \bar{\complement}$.

Proof. The Postnikov system for ΩF is the "loop" of the Postnikov system for F. That is, the spaces and maps that occur are the "loops" of those that occur for F :

$$
K\left(\pi_{i}(F), i-1\right)=\Omega\left(K\left(\pi_{i}(F)\right), i\right) \xrightarrow{\Omega j_{i}} \stackrel{\downarrow}{l}_{\Omega X_{i}}^{\Omega}
$$

and for each i,

$$
K\left(\pi_{i}(F), i-1\right) \xrightarrow{\Omega j_{i}} \Omega X_{i} \xrightarrow{\Omega p_{i}} \Omega X_{i-1}
$$

is a fibring.
The proof is by induction on i. Suppose that $\left[L, \Omega X_{i-1}\right] \in \mathbb{C}$. The sequence

$$
\left[L, K\left(\pi_{i}(F), i-1\right)\right] \rightarrow\left[L, \Omega X_{i}\right] \rightarrow\left[L, \Omega X_{i-1}\right]
$$

is exact. The two outside groups are in \mathbb{C}. Therefore $\left[L, \Omega X_{i}\right] \in \mathbb{C}$. Either hypothesis assures us that only a finite number of non-trivial extensions are involved as we build up to $[L, \Omega F]$. Therefore $[L, \Omega F] \in \mathbb{C}$.

Lemma 13. Suppose that $f: X \rightarrow Y$ either
(a) induces a (mod © \mathfrak{C}) isomorphism $f_{\#}: \pi_{*}(X) \rightarrow \pi_{*}(Y)$ or
(b) induces (mod © $)$ isomorphisms $f_{\sharp}: \pi_{i}(X) \rightarrow \pi_{i}(Y)$ for all i and $H_{*}(L)$ is finitely generated.
Then

$$
\left(\Omega^{2} f\right)_{*}:\left[L, \Omega^{2} X\right] \rightarrow\left[L, \Omega^{2} Y\right]
$$

is an isomorphism (mod (\mathbb{C}).
Proof. Take f to be a fibre map with fibre F. Then either $\pi_{*}(F) \in \mathbb{C}$ or $\pi_{i}(F) \in \mathbb{C}$ (all i) and $H_{*}(L)$ is finitely generated. In either case, Lemma 5 implies that $[L, \Omega F] \in \mathbb{C}$ and $\left[L, \Omega^{2} F\right] \in \mathbb{C}$. Now we have an exact sequence of groups

$$
\left[L, \Omega^{2} F\right] \rightarrow\left[L, \Omega^{2} X\right] \xrightarrow{\left(\Omega^{2} f\right)_{*}}\left[L, \Omega^{2} Y\right] \rightarrow[L, \Omega F] .
$$

$\operatorname{coker}\left(\Omega^{2} f\right)_{*}$ is abelian and is in \mathbb{C}. Therefore, it is in \mathbb{C} and $\left(\Omega^{2} f\right)_{*}$ is a (mod $\left.\mathbb{E}\right)$ isomorphism.

Proof of Theorem 6A. (i) \Rightarrow (ii). (Whitehead theorem);
(i) \Rightarrow (iv) (Lemma 3);
(ii) \Rightarrow (iii) (Lemma 6);
(iii) \Rightarrow (ii) since we can take $L=S^{n}, n=0,1,2, \ldots$;
(iv) \Rightarrow (i) since we can take $P=K(Z, n), n=2,3, \ldots$. This shows that we have (mod ©) isomorphisms in cohomology and implies the result for homology.

Proof of Theorem 6B. (v) \Rightarrow (vi) (Lemma 3).
$(\mathrm{vi}) \Rightarrow(\mathrm{v})$, since we can take

$$
P=\prod_{i=2}^{\infty} K(Z, i)
$$

Proof of Theorem 6C. (vii) \Rightarrow (viii) (Lemma 6).
(viii) \Rightarrow (vii) since we can take

$$
L=\bigvee_{i=0}^{\infty} S^{i} .
$$

That the "finiteness" conditions are necessary can be seen from the following example. Let $\mathfrak{C}=\mathfrak{C}(p)$, and let

$$
X=Y=\bigvee_{i=2}^{\infty} S^{i}
$$

Let $f_{i}: S^{i} \rightarrow S^{i}$ be a map of degree p^{i}, and let $f: X \rightarrow Y$ be the map

$$
\bigvee_{i=2}^{\infty} f_{i}: \bigvee_{i=2}^{\infty} S^{i} \rightarrow \bigvee_{i=2}^{\infty} S^{i}
$$

Clearly, $f_{*}: H_{i}(X) \rightarrow H_{i}(Y)(i \geqq 2)$ is multiplication by p^{i} and is an isomorphism $(\bmod \mathfrak{S}(p))$. Let

$$
P=\prod_{i=4}^{\infty} K(Z, i)
$$

and consider the induced homomorphism

$$
\left(S^{2} f\right)^{*}:\left[S^{2} Y, P\right] \rightarrow\left[S^{2} X, P\right]
$$

This is a monomorphism and the co-kernel is $\prod_{i=2}^{\infty} Z_{p^{i}}$. However, this group is not in $\mathscr{C}(p)$. The problem, of course, is that the classes we have discussed are not closed under the operation of taking limits.
7. The general (mod $\mathfrak{C})$ suspension theorem. This section completes the proof of the general (mod © $)^{(5)}$ suspension theorem. We begin with the following result.

Lemma 14. Suppose that $H_{*}(X)$ is finitely generated and that $H^{i}(X) \in \mathbb{C}$ for $i>k$; furthermore, suppose that $\pi_{i}(F) \in \mathbb{C}$ for $i<n$; then, when $k+r<n$ $(r \geqq 1),\left[S^{r} X, F\right] \in \mathbb{C}$ (or in \mathbb{C} when $r=1$).

Proof. Take a Postnikov system for F :

(In this proof read \mathbb{C} for $\mathbb{C}^{\mathbb{C}}$ when $r=1$.) The proof is by induction.
Suppose that $\left[S^{r} X, F^{s-1}\right] \in \mathbb{C}$. If $s<n$, then $\pi_{s}(F) \in \mathbb{C}$ and

$$
\left[S^{2} X, K\left(\pi_{s}(F), s\right)\right] \in \mathfrak{C}
$$

(Lemma 4). If $s \geqq n$, then $s>k+r$ and $H^{s}\left(S^{r} X\right)$ and $H^{s+1}\left(S^{r} X\right)$ are both in ©. However,

$$
\begin{aligned}
{\left[S^{\tau} X, K\left(\pi_{s}(F), s\right)\right] } & =H^{s}\left(S^{r} X ; \pi_{s}(F)\right) \\
& =H^{s}\left(S^{\tau} X\right) \otimes \pi_{s}(F) \oplus \operatorname{Tor}\left(H^{s+1}\left(S^{r} X\right) ; \pi_{s}(F)\right)
\end{aligned}
$$

and hence is in ©. Therefore, in the exact sequence

$$
\left[S^{r} X, K\left(\pi_{s}(F), s\right)\right] \rightarrow\left[S^{r} X, F^{s}\right] \rightarrow\left[S^{r} X, F^{s-1}\right]
$$

the two extreme groups are in ©. Thus, $\left[S^{r} X, F^{s}\right] \in \mathfrak{C}$. As before, because of the assumption on $H_{*}(X)$, only a finite number of extensions are required to build up to $\left[S^{r} X, F\right]$ and this last group is in \mathfrak{C}.

Theorem 7 (The general (mod (5) suspension theorem). Suppose that
(i) $\pi_{i}(Y) \in \mathbb{C}$ for all $i<n$,
(ii) $H_{*}(X)$ is finitely generated,
(iii) $H^{i}(X) \in \mathfrak{C}$ for all $i>k$.

Then the suspension homomorphism

$$
E:\left[S^{\tau} X, Y\right] \rightarrow\left[S^{\tau+1} X, S Y\right]
$$

is a (mod © \mathfrak{C} monomorphism for $2 \leqq r \leqq 2 n-k-2(w h e n r=1$, ker $E \in \mathbb{\subseteq})$; it is a (mod $\mathfrak{C})$ epimorphism for $2 \leqq r \leqq 2 n-k-1$.

Proof. Let $j: Y \rightarrow \Omega S Y$ be the natural inclusion and make it a fibre map with fibre F. The homotopy exact sequence of the fibring, together with Theorem 4, implies that $\pi_{i}(F) \in \mathscr{C}$ for $i<2 n-1$. The sequence

is exact. $\pi_{i}(\Omega F) \in \mathbb{C}$ for $i<2 n-2$. Using Lemma 1 we have:
$\left[S^{r-1} X, \Omega F\right] \in \mathbb{\Subset}$ when $r \geqq 1$ and $k+r-1<2 n-2$, and
$\left[S^{r-1} X, F\right] \in \mathbb{\complement}$ for $r \geqq 2$ and $k+r-1<2 n-1$.
The homomorphism E may be defined by the following diagram:

where the equalities indicate the natural equivalence.
Rewriting the inequalities above, we have that $(\Omega j) *$ is a (mod $\overline{\mathbb{C}})$ monomorphism for $1 \leqq r \leqq 2 n-k-2$ and is a (mod $\mathbb{C})$ epimorphism for $2 \leqq r \leqq 2 n-k-1$. However, all the kernels and co-kernels involved are clearly abelian (except for ker $E:[S X, Y] \rightarrow\left[S^{2} X, S Y\right]$), and hence the statements hold (mod $\mathfrak{C})$.

References

1. W. D. Barcus and J.-P. Meyer, The suspension of a loop space, Amer. J. Math. 80 (1958), 895-920.
2. H. Cartan, Algèbres d'Eilenberg-MacLane et homotopie, Séminaire Henri Cartan, 1954-1955 (Secrétariat mathématique, Paris, 1956).
3. B. Eckmann and P. J. Hilton, Décomposition homologique d'un polyèdre simplement connexe, C. R. Acad. Sci. Paris 248 (1959), 2054-2056.
4. S. Eilenberg and S. MacLane, Relations between homology and homotopy groups of spaces, Ann. of Math. (2) 46 (1945), 480-509.
5. S.-T. Hu, Homotopy theory, Pure and Applied Mathematics, Vol. VIII (Academic Press, New York, 1959).
6. J. C. Moore, On homotopy groups of spaces with a single non-vanishing homology group, Ann. of Math. (2) 59 (1954), 549-557.
7. J.-P. Serre, Homologie singulière des espaces fibrés. Applications, Ann. of Math. (2) 54 (1951), 425-505.
8. _-_Groupes d'homotopie et classes de groupes abéliens, Ann. of Math. (2) 58 (1953), 258-294.
9. __ Cohomologie modulo 2 des complexes d'Eilenberg-MacLane, Comment. Math. Helv. 27 (1953), 198-232.
10. E. H. Spanier, Duality and the suspension category, International Symposium on Algebraic Topology, Symposium Internacional de Topologia Algebrica, 1956 (Universidad Nacional Atonoma de Mexico, UNESCO, 1958).

Sir George Williams University, Montreal, Quebec

[^0]: Received December 28, 1967. Originally submitted on March 10, 1966 as part of a paper entitled Some results in mod © homotopy theory.
 *This paper is based on part of a dissertation written under the direction of Professor E. H. Spanier whom I thank for his assistance.

