# THE mod & SUSPENSION THEOREM

## BENSON SAMUEL BROWN\*

**1. Introduction.** Our aim in this paper is to prove the general mod  $\mathfrak{C}$  suspension theorem: Suppose that X and Y are CW-complexes,  $\mathfrak{C}$  is a class of finite abelian groups, and that

(i)  $\pi_i(Y) \in \mathfrak{G}$  for all i < n,

(ii)  $H_*(X; Z)$  is finitely generated,

(iii)  $H^i(X; Z) \in \mathfrak{G}$  for all i > k.

Then the suspension homomorphism

 $E: [S^rX, Y] \to [S^{r+1}X, SY]$ 

is a (mod  $\mathfrak{C}$ ) monomorphism for  $2 \leq r \leq 2n - k - 2$  (when r = 1, ker E is a finite group of order d, where  $Z_d \in \mathfrak{C}$ ) and is a (mod  $\mathfrak{C}$ ) epimorphism for  $2 \leq r \leq 2n - k - 1$ .

The proof is basically the same as the proof of the regular suspension theorem. It depends essentially on (mod  $\mathfrak{C}$ ) versions of the Serre exact sequence and of the Whitehead theorem.

In the first part of this paper we construct the (mod  $\mathfrak{C}$ ) Serre sequence. A certain amount of (mod  $\mathfrak{C}$ ) algebra is required. As much as possible is carried over from (5) sometimes without explicit mention. However, the usual definition of exactness (mod  $\mathfrak{C}$ ) is inconvenient and a slightly more general definition is adopted. I believe that this is justified in a remark after Corollary 3.1. Some of this algebra will also be useful in later work.

The (mod  $\mathfrak{C}$ ) Hurewicz and Whitehead theorems are proved here simply because they follow so easily from the (mod  $\mathfrak{C}$ ) Serre sequence. The suspension theorem for homotopy groups is now an easy consequence, but some of the work summarized in Theorem 6 is still necessary in order to pass to the general (mod  $\mathfrak{C}$ ) suspension theorem. (All of Theorem 6 is used in the sequel.)†

**2.** Some definitions for (mod  $\mathfrak{C}$ ) algebra. If  $\mathfrak{C}$  is a class of abelian groups  $\overline{\mathfrak{C}}$ , the non-abelian closure of  $\mathfrak{C}$  is defined to be a family of groups satisfying the following conditions:

(i) if  $G \in \mathfrak{G}$ , then  $G \in \overline{\mathfrak{G}}$ ;

(ii) if  $G \in \overline{\mathbb{G}}$  and H is a normal subgroup of G, then  $H \in \overline{\mathbb{G}}$ ;

(iii) if  $G \in \overline{\mathbb{G}}$  and H is a quotient group of G, then  $H \in \overline{\mathbb{G}}$ ;

Received December 28, 1967. Originally submitted on March 10, 1966 as part of a paper entitled *Some results in* mod  $\mathfrak{C}$  homotopy theory.

<sup>\*</sup>This paper is based on part of a dissertation written under the direction of Professor E. H. Spanier whom I thank for his assistance.

<sup>†</sup>Added in proof. See pp. 702-711, 712-729 of this issue of Can. J. Math.

(iv) if G' and G'' are in  $\overline{\mathbb{C}}$  and  $0 \to G' \to G \to G'' \to 0$  is exact, then G is in  $\overline{\mathbb{C}}$ ; (v) if F is another family of groups satisfying (i)–(iv), then  $F \supseteq \overline{\mathbb{C}}$ .

It is clear that any class of abelian groups  $\mathfrak{C}$  has a unique non-abelian closure.  $\overline{\mathfrak{C}}$  is simply the intersection of all families of groups satisfying conditions (i)-(iv).

A class & of finite abelian groups is characterized by a sequence of primes as follows:

(i) a prime p is in the sequence if and only if  $Z_p$  is in  $\mathfrak{C}$ ;

(ii) given the sequence  $(p_1, p_2, ...)$ , an abelian group G is in  $\mathfrak{G}$  if and only if ord(order) $G = p_1^{n_1} p_2^{n_2} \dots$ 

A class  $\mathfrak{C}$  characterized by the primes  $(p_1, p_2, \ldots)$  will sometimes be denoted by  $\mathfrak{C}(p_1, p_2, \ldots)$ . Then  $\overline{\mathfrak{C}}$  is the family of all solvable groups G such that ord  $G = p_1^{n_1} p_2^{n_2} \ldots$ . If  $\mathfrak{C}$  is the class of all finitely generated abelian groups, then  $\overline{\mathfrak{C}}$  is the family of all groups G with the following property: there exists a finite sequence of subgroups of G,

$$G = G_n \supset G_{n-1} \supset \ldots \supset G_1 \supset G_0 = 0,$$

such that  $G_{i-1}$  is normal in  $G_i$  and  $G_i/G_{i-1}$  is cyclic. In both cases, if G is abelian and  $G \in \overline{\mathbb{G}}$ , then  $G \in \mathbb{G}$ .

Definition. An element  $a \in G$  is in  $\mathfrak{C}(p_1, p_2, \ldots)$  if and only if ord  $a = p_1^{n_1} p_2^{n_2} \ldots$ , or equivalently, if the cyclic group generated by a is in  $\mathfrak{C}$ . Suppose that G is a finitely generated abelian group. Consider its prime power decomposition. The set of elements in G which are in  $\mathfrak{C}(p_1, p_2, \ldots)$  form a subgroup  $G\mathfrak{C}$  equal to the direct sum of those cyclic subgroups whose orders are powers of a prime in  $\mathfrak{C}$ . Thus, this subgroup  $G\mathfrak{C}$  is a direct summand of G.  $G\mathfrak{C}$  is the largest subgroup of G which is in  $\mathfrak{C}$ , hence  $G \in \mathfrak{C} \Leftrightarrow G = G\mathfrak{C}$ .

When the class  $\mathfrak{C}$  is fixed we shall write  $\overline{G} = G/G\mathfrak{C}$ . There exist covariant functors  $G \to G\mathfrak{C}$  and  $G \to \overline{G}$ .  $\overline{G}$  will be called the (mod  $\mathfrak{C}$ ) reduction of G.

**3.** Some lemmas in  $(\mod \mathbb{C})$  algebra. In the algebra below, all groups considered will be finitely generated abelian groups. Let  $\mathbb{C}$  be a class of finite abelian groups.

Definition.

$$A \xrightarrow{f} B \xrightarrow{g} D$$

is exact (mod  $\mathfrak{G}$ ) if and only if

$$gf(A) \in \mathfrak{C}$$
 and  $g^{-1}(D\mathfrak{C})/f(A) \in \mathfrak{C}$ .

Definition.  $f: A \to B$  is a (mod  $\mathfrak{C}$ ) isomorphism if and only if

$$0 \to A \xrightarrow{f} B \to 0$$

is exact (mod  $\mathfrak{G}$ ).

#### BENSON SAMUEL BROWN

Definition.  $A \approx \mathfrak{C} B$  (A is isomorphic to B (mod  $\mathfrak{C}$ )) if and only if there exists a C such that

$$0 \to A \to C \to 0$$
 and  $0 \to B \to C \to 0$ 

are both exact (mod @). This is an equivalence relation; cf. (5, p. 299).

Suppose that

$$0 \to A \xrightarrow{f} B \to 0$$

is exact (mod  $\mathfrak{S}$ ). Let  $\overline{A} = A/A\mathfrak{S}, \overline{B} = B/B\mathfrak{S}$ . Then  $A = \overline{A} \oplus A\mathfrak{S}$  and  $B = \overline{B} \oplus B\mathfrak{S}$ . By looking at the prime power decompositions and counting, one sees that  $\overline{A}$  and  $\overline{B}$  must have the same cyclic summands, i.e.,  $\overline{A} \approx \overline{B}$ . (Note that the induced homomorphism  $\overline{f}: \overline{A} \to \overline{B}$  may not be an isomorphism, but it is an isomorphism (mod  $\mathfrak{S}$ ). Furthermore, if  $\overline{A} \approx \overline{B}$ , we may take  $C = A \oplus A\mathfrak{S} \oplus B\mathfrak{S}$ , obtaining  $A \approx \mathfrak{S} B$ . Thus, for finitely generated abelian groups,

$$A \approx \mathfrak{G} B \Leftrightarrow \overline{A} \approx \overline{B}.$$

LEMMA 1. If  $G_k \supset G_{k-1} \supset \ldots \supset G_1 \supset G_0$  and  $G_i/G_{i-1} \in \mathfrak{C}$  for all *i*, then  $G_k/G_0 \in \mathfrak{C}$ .

*Proof.* We use the exact sequence

$$0 \to G_i/G_0 \to G_{i+1}/G_0 \to G_{i+1}/G_i \to 0$$

and induction on i.

LEMMA 2. If f and g are homomorphisms from A to B and  $(f - g)A \in \mathfrak{C}$ , then  $f(A) \in \mathfrak{C}$  if and only if  $g(A) \in \mathfrak{C}$ .

*Proof.* Let  $p: B \to \overline{B}$  be the canonical projection. Then 0 = p(f - g)A = (pf - pg)A. Thus, pf(A) = 0 if and only if pg(A) = 0. That is,  $f(A) \in \mathbb{C}$  if and only if  $g(A) \in \mathbb{C}$ .

The canonical projection  $p: A \to \overline{A}$  has a right inverse  $i: \overline{A} \to A$ . That is, pi = 1 and  $(1 - ip)A = A \mathfrak{c}$ . Furthermore, p and i are (mod  $\mathfrak{C}$ ) isomorphisms. LEMMA 3.

$$G \xrightarrow{f} A \xrightarrow{h} B$$

is exact (mod S) if and only if

$$G \xrightarrow{pf} \bar{A} \xrightarrow{hi} B$$

is exact mod C.

*Proof.* We have to prove (a) and (b). (a)  $(hf)G \in \mathfrak{C} \leftrightarrow (hipf)G \in \mathfrak{C}$ .  $(1 - ip)A = A\mathfrak{c} \in \mathfrak{C}$ , therefore,  $(h(1 - ip)f)G = (hf - hipf)G \in \mathfrak{C}$ . This implies (a). (b) Suppose that (hf)G and (hipf)G are in  $\mathfrak{C}$ , then

$$h^{-1}(B\mathfrak{G})/f(G) \in \mathfrak{C} \leftrightarrow \frac{(hi)^{-1}B\mathfrak{G}}{(pf)G} \in \mathfrak{C}.$$

Since

$$\frac{(hi)^{-1}B\varepsilon}{(pf)G} = \frac{i^{-1}(h^{-1}(B\varepsilon))}{p(f(G))} = \frac{p(h^{-1}(B\varepsilon))}{p(f(G))}$$

and since p is a (mod  $\mathfrak{C}$ ) isomorphism, this last group is isomorphic mod  $\mathfrak{C}$  to  $h^{-1}(B\mathfrak{C})/f(G)$ .

Suppose that  $A_1 \approx \& A_2$ . Let  $p_j: A_j \to \bar{A}_j$  and  $i_j: \bar{A}_j \to A_j$  be the canonical projections and their right inverses. Let  $s: \bar{A}_1 \to \bar{A}_2$  be an isomorphism.

COROLLARY 3.1.

$$G \xrightarrow{f} A_1 \xrightarrow{h} B$$

is exact (mod S) if and only if

$$G \xrightarrow{i_2 s \not p_1 f} A_2 \xrightarrow{h i_1 \overline{s}^- p_2} B$$

is exact (mod  $\mathfrak{C}$ ).

Thus, using the method of changing homomorphisms described here, one can replace a group in a (mod  $\mathfrak{S}$ ) exact sequence by a group isomorphic (mod  $\mathfrak{S}$ ) to it without destroying the (mod  $\mathfrak{S}$ ) exactness. In future, the same symbols will generally be used for the original and the altered homomorphisms.

This corollary and Lemma 3 seem to justify the definition of (mod  $\mathfrak{C}$ ) exactness given above. The usual definition is

$$G \xrightarrow{f} A \xrightarrow{h} B$$

is exact (mod  $\mathfrak{C}$ ) if and only if hf = 0 and ker  $h/\operatorname{Im} f \in \mathfrak{C}$ . We present an example to show that these two concepts are different. G = Z,  $A = Z + Z_2$  with generators  $a_1$  (of infinite order) and  $a_2$  ( $2a_2 = 0$ ), and  $B = Z_2$  (generator b). Define  $f: Z \to Z + Z_2$ 

by 
$$f(1) = a_1 + a_2$$
, and

$$h: Z + Z_2 \to Z_2$$

by  $h(a_1) = b$ ,  $h(a_2) = b$ . Then

$$Z \xrightarrow{f} Z + Z_2 \xrightarrow{h} Z_2$$

is exact (mod  $\mathfrak{C}(2)$ ); in fact, it is exact. Let  $p: Z + Z_2 \rightarrow \overline{Z + Z_2} = Z$  be the canonical projection and  $i: Z \rightarrow Z + Z_2$  its right inverse. Consider the sequence

$$Z \xrightarrow{pf} \overline{Z + Z_2} \xrightarrow{hi} Z_2.$$

 $hipf(1) = b \neq 0$ ; thus, in the old definition, this is not exact (mod  $\mathfrak{C}(2)$ ). It is possible that Corollary 3.1 will remain true using the old definition, but the homomorphisms would have to be changed in a more complicated way.

Corollary 3.1 is essential to much of what follows in this section and will generally be used without explicit mention.

LEMMA 4. If 
$$G = G_n \supset G_{n-1} \supset \ldots \supset G_1 \supset G_0 = 0$$
 and  $F_i = G_i/G_{i-1} \in \mathbb{S}$ 

#### BENSON SAMUEL BROWN

except for i = r, s (r > s), then there exists a sequence  $0 \to F_s \to G \to F_r \to 0$ which is exact (mod  $\mathfrak{S}$ ).

*Proof.*  $0 \to G_r/G_{r-1} \to G_n/G_{r-1} \to G_n/G_r \to 0$  is exact. Lemma 1 implies that  $G_n/G_r \in \mathfrak{G}$ . Therefore,  $F_r = G_r/G_{r-1} \approx \mathfrak{G}_n/G_r$ . Furthermore,

$$0 \to G_s \to G_{r-1} \to G_{r-1}/G_s \to 0$$

and

$$0 \to G_{s-1} \to G_s \to G_s/G_{s-1} \to 0$$

are exact. Using Lemma 1 again we have that  $G_{r-1}/G_s$  and  $G_{s-1}$  are in  $\mathfrak{C}$ . Combining isomorphisms, this implies that  $G_{r-1} \approx \mathfrak{C}G_s/G_{s-1} = F_s$ . The lemma now follows by substitution in the exact sequence  $0 \rightarrow G_{r-1} \rightarrow G \rightarrow G/G_{r-1} \rightarrow 0$ .

Definition. A homomorphism  $f: A \to B$  is in a class of finite abelian groups  $\mathfrak{C}$  if and only if f, as an element of Hom(A, B), is in  $\mathfrak{C}$ . This is equivalent to the condition that  $f(A) \in \mathfrak{C}$ .

Definition. The triangle

$$A \xrightarrow{f} B \\ h \xrightarrow{f} D \\ h \xrightarrow{g} D$$

is commutative (mod  $\mathfrak{C}$ ) if and only if  $h - gf \in \mathfrak{C}$ .

If f and g are two homomorphisms from A to B and  $f - g \in \mathfrak{C}$ , then  $f^{-1}(B\mathfrak{C}) = g^{-1}(B\mathfrak{C})$  and  $\overline{f(A)} = \overline{g(A)}$ . This follows since

- (i)  $A \xrightarrow{f-g} B \xrightarrow{p} \bar{B}$  is the zero homomorphism,
- (ii)  $f^{-1}(B\mathfrak{c}) = \ker pf = \ker pg = g^{-1}(B\mathfrak{c})$ , and

(iii) 
$$f(A) = pf(A) = pg(A) = g(A).$$

LEMMA 5. If the diagram



is commutative (mod  $\mathfrak{C}$ ) and the vertical and horizontal lines are exact (mod  $\mathfrak{C}$ ), then the sequence

$$E \xrightarrow{c} F \xrightarrow{e} B \xrightarrow{h} G \xrightarrow{g} H$$

is exact (mod C).

*Proof.* (A) e - ad and dc are in  $\mathfrak{C}$ . Hence,  $ec = (e - ad)c + adc \in \mathfrak{C}$ . Since a is a (mod  $\mathfrak{C}$ ) monomorphism,  $a^{-1}(B\mathfrak{C}) = A\mathfrak{C}$ .

$$\frac{e^{-1}(B\mathfrak{g})}{c(E)} = \frac{(ad)^{-1}B\mathfrak{g}}{c(E)} = \frac{d^{-1}(a^{-1}(B\mathfrak{g}))}{c(E)};$$

hence,

$$\frac{d^{-1}(A\mathfrak{G})}{c(E)} \in \mathfrak{G}.$$

(B) h - fb, e - ad, and ba are all in  $\mathfrak{C}$ . Therefore,  $he = (h - fb)e + fb(e - ad) + fbad \in \mathfrak{C}$ . We are given that  $b^{-1}(D\mathfrak{C})/a(A) \in \mathfrak{C}$ . Since  $d: F \to A$  is onto (mod  $\mathfrak{C}$ ), the inclusion  $ad(F) \to a(A)$  is a (mod  $\mathfrak{C}$ ) isomorphism and induces a (mod  $\mathfrak{C}$ ) isomorphism

$$\frac{b^{-1}(D\mathfrak{G})}{ad(F)} \to \frac{b^{-1}(D\mathfrak{G})}{a(A)} \,.$$

Now

$$\frac{b^{-1}(D\mathfrak{c})}{ad(F)} \approx \mathfrak{c} \frac{\overline{b^{-1}(D\mathfrak{c})}}{\overline{ad(F)}} = \frac{\overline{b^{-1}(D\mathfrak{c})}}{\overline{e(F)}} \approx \mathfrak{c} \frac{b^{-1}(D\mathfrak{c})}{e(F)} \,.$$

Hence, this last group is in  $\mathfrak{C}$ . Since f is a (mod  $\mathfrak{C}$ ) monomorphism,  $f^{-1}(G\mathfrak{C}) = D\mathfrak{C}$ . Therefore,

$$\frac{b^{-1}(D\mathfrak{c})}{e(F)} = \frac{b^{-1}(f^{-1}(G\mathfrak{c}))}{e(F)} = \frac{(fb)^{-1}G\mathfrak{c}}{e(F)} = \frac{h^{-1}(G\mathfrak{c})}{e(F)}.$$

(C) h - fb and gf are in  $\mathfrak{C}$ . Thus,  $gh = g(h - fb) + gfb \in \mathfrak{C}$ . Using the same reasoning as in part (B), we have:

$$\frac{g^{-1}(H\varepsilon)}{h(B)} \approx \varepsilon \frac{\overline{g^{-1}(H\varepsilon)}}{\overline{h(B)}} = \frac{\overline{g^{-1}(H\varepsilon)}}{\overline{fb(B)}} \approx \varepsilon \frac{g^{-1}(H\varepsilon)}{fb(B)} \approx \varepsilon \frac{g^{-1}(H\varepsilon)}{f(D)}$$

(since b is onto mod  $\mathfrak{C}$ ) and this last group is in  $\mathfrak{C}$ . Therefore

$$\frac{g^{-1}(H\mathfrak{G})}{h(B)}\in \mathfrak{G}.$$

THE FIVE LEMMA (mod  $\mathfrak{C}$ ). Suppose that

$$A_{1} \rightarrow A_{2} \rightarrow A_{3} \rightarrow A_{4} \rightarrow A_{5}$$

$$c_{1} \downarrow c_{2} \downarrow c_{3} \downarrow c_{4} \downarrow \downarrow c_{5}$$

$$B_{1} \rightarrow B_{2} \rightarrow B_{3} \rightarrow B_{4} \rightarrow B_{5}$$

is commutative (mod  $\mathfrak{S}$ ), each row is exact (mod  $\mathfrak{S}$ ) and  $c_1$ ,  $c_2$ ,  $c_4$ , and  $c_5$  are isomorphisms (mod  $\mathfrak{S}$ ). Then  $c_3$  is an isomorphism (mod  $\mathfrak{S}$ ).

*Proof.* Reduce every group (mod  $\mathfrak{C}$ ). mod  $\mathfrak{C}$  exactness is preserved, and now each double composition is trivial. mod  $\mathfrak{C}$  commutativity becomes regular commutativity. The vertical maps remain (mod  $\mathfrak{C}$ ) isomorphisms. (In fact, they are monomorphisms and (mod  $\mathfrak{C}$ ) epimorphisms.) The reduced diagram now satisfies the hypotheses of (**5**, p. 309). Thus, the reduced map  $\bar{c}_3: \bar{A}_3 \to \bar{B}_3$  is a (mod  $\mathfrak{C}$ ) isomorphism. This implies that  $c_3: A_3 \to B_3$  is a (mod  $\mathfrak{C}$ ) isomorphism.

**4.** A spectral sequence studied (mod  $\mathfrak{G}$ ). In the following section, I will use the definitions, notation, and some of the results of (5, Chapter VIII, § 6).

Definition. A bigraded exact couple is a system

$$C = \langle D, E; i, j, k \rangle,$$

where D and E are bigraded abelian groups, i, j, and k are homogeneous homomorphisms, and

$$D \xrightarrow{i} D$$

$$k \swarrow / j$$

$$E$$

is exact. When the degree of *i* is (1, -1), of *j* is (0, 0), and of *k* is (-1, 0), the couple is called a  $\partial$ -couple. A  $\partial$ -couple is regular if  $D_{p,q} = 0$  when p < 0 and  $E_{p,q} = 0$  when q < 0.

Define

$$H_{p,q} = H_{p,q}(C) = D_{p+q+1,-1}^{q+2}$$

and  $H_m = H_{m,0}$ . Hu showed (5, p. 238) that for a regular  $\partial$ -couple we have, for each m > 0,

(A) 
$$H_m = H_{m,0} \supset H_{m-1,1} \supset \ldots \supset H_{0,m} \supset H_{-1,m+1} = 0$$

and also

(B) 
$$H_{p,q}/H_{p-1,q+1} = E_{p,q}^{\infty}$$

Using the algebraic lemmas above, we can now obtain a (mod  $\mathfrak{C}$ ) version of a standard exact sequence.

THEOREM 1. Let  $\langle D, E; i, j, k \rangle$  be a regular  $\partial$ -couple. Suppose that  $E_{p,q}^2 \in \mathfrak{C}$  for  $p + q \leq r$  unless  $\langle p, q \rangle$  is of the form (0, a) or (b, 0). Then

$$E_{0,r}^2 \to H_r \to E_{r,0}^2 \to E_{0,r-1}^2 \to \dots$$

is exact (mod  $\mathfrak{C}$ ).

*Proof.* Notice that  $E_{p,q}^2 \in \mathbb{S}$  implies that  $E_{p,q}^n \in \mathbb{S}$  for all  $n \geq 2$ , for  $E_{p,q}^{k+1}$  is a quotient of a subgroup of  $E_{p,q}^k$ .

Fix  $m \ge 2$ . Looking at (A) and using (B).

$$H_{m-k,k}/H_{m-k-1,k+1} \approx E_{m-k,k}^{\infty} \in \mathfrak{G}$$

unless k = 0 or m, we obtain, by Lemma 4, that

(1)  $0 \to E_{0,m}^{\infty} \to H_m^{\infty} \to E_{m,0} \to 0$  is exact (mod §).

For a  $\partial$ -couple,  $d^k$  has degree (-k, k-1); consequently,  $E_{n,0}^k$  contains no boundaries and  $E_{0,n}^k$  contains only cycles (for all n, k). For  $2 \leq n \leq m$ ,

$$d^n(E^n_{m+1,0}) \subset E^n_{m-n+1,n-1} \in \mathfrak{G}$$

and

$$0 \rightarrow \ker d_{m+1,0}^{n} \rightarrow E_{m+1,0}^{n} \rightarrow d^{n}(E_{m+1,0}^{n}) \rightarrow 0$$
$$\parallel E_{m+1,0}^{n+1}$$

is exact. Iterating this argument, we obtain

$$E_{m+1,0}^2 \approx \mathbb{E} E_{m+1,0}^{m+1}$$

The same reasoning yields

$$E_{m,0}^2 \approx \mathbb{S} E_{m,0}^m.$$

For  $2 \leq n \leq m$ ,  $E_{n,m-n+1}^n \in \mathbb{G}$ , and therefore  $d^n(E_{n,m-n+1}^n) \in \mathbb{G}$  [here m < r] and

$$0 \to d^n(E^n_{n,m-n+1}) \to E^n_{0,m} \to E^{n+1}_{0,m} \to 0$$

is exact. Iteration then yields:  $E_{0,m}^2 \approx_{\mathfrak{S}} E_{0,m}^{m+1}$ . Similarly,

$$E_{0,m-1}^2 \approx \mathbb{E}_{0,m-1}^m \quad \text{and} \quad E_{n,m-n+1}^n \to E_{0,m}^n \to E_{0,m}^{n+1} \to 0$$

is exact. However, for  $n \ge m+2$ ,  $E_{n,m-n+1}^n = 0$ , and consequently  $E_{0,m}^{m+2} \approx_{\mathfrak{C}} E_{0,m}^{\infty}$ . For  $n \ge m+1$ ,  $d_{m,0}^n = 0$ . Thus  $E_{m,0}^{m+1} \approx_{\mathfrak{C}} E_{m,0}^{\infty}$ .

 $E_{0,m} \cong E_{0,m} \text{ for } n \equiv m + 1, a_{m,0} = 0.14$ Since  $E_{0,m}^{m+1}$  contains only cycles, (2)  $E_{m+1,0}^{m+1} \rightarrow E_{0,m}^{m+1} \rightarrow E_{0,m}^{m+2} \rightarrow 0$  is exact. Since  $E_{m,0}^{m}$  has no boundaries, (3)  $0 \rightarrow E_{m,0}^{m+1} \rightarrow E_{m,0}^{m} \rightarrow E_{0,m-1}^{0}$  is exact.

Putting together sequences (1), (2), and (3) and the isomorphisms, we obtain



where the straight lines are exact (mod  $\mathfrak{G}$ ). (When m = r, we must write  $E_{0,r}^{r+1}$  in place of  $E_{0,m}^2$ .) Then by Lemma 5,

(\*) 
$$E_{m+1,0}^2 \to E_{0,m}^2 \to H_m \to E_{m,0}^2 \to E_{0,m-1}^2$$

is exact (mod  $\mathfrak{C}$ ). This is true for all m < r and the homomorphisms  $E_{m,0}^2 \to E_{0,m-1}^2$  are the same for different short sequences. (In each case it is  $d_{m,0}^m$  preceded and followed by the same (mod  $\mathfrak{C}$ ) isomorphisms.) Thus, combining the short sequences, we have that

$$E_{r,0}^2 \longrightarrow E_{0,r-1}^2 \longrightarrow H_{r-1} \longrightarrow E_{r-1,0}^2 \longrightarrow \dots$$

is exact (mod  $\mathfrak{C}$ ).

Since all the exact sequences and all the isomorphisms (except (\*)) hold when m = r, we can extend this sequence slightly to the left.

It is not true that  $E_{0,r}^2 \approx_{\mathfrak{C}} E_{0,r}^{r+1}$ ; however, since  $E_{0,r}^n$  has no boundaries (for any *n*),  $E_{0,r}^2$  is mapped onto  $E_{0,r}^{r+1}$  by  $d^r d^{r-1} \dots d^2$ . Thus, the five-term exact sequence which results from the diagram above can be replaced by a four-term sequence,

$$E_{0,r}^2 \longrightarrow H_r \longrightarrow E_{r,0}^2 \longrightarrow E_{0,r-1}^2,$$

which is exact (mod  $\mathfrak{G}$ ). This completes the proof.

5. Some standard theorems (mod  $\mathfrak{G}$ ). In this section, as before,  $\mathfrak{G}$  will be a class of abelian groups. Coefficient groups for homology, when suppressed, will be understood to be the integers. We wish to prove the following result.

THEOREM 2 (The Serre exact sequence  $(mod \mathfrak{S})$ ). Suppose that

$$F \xrightarrow{\imath} X \xrightarrow{g} B$$

is a Serre fibring, where B is path-connected and  $H_1(B)$  operates simply on  $H_*(F)$ , and suppose that for some class  $\mathfrak{G}$ ,  $H_i(B) \in \mathfrak{G}$  for 0 < i < q and  $H_i(F) \in \mathfrak{G}$  for 0 < i < p. Then there exists a (mod  $\mathfrak{G}$ ) exact sequence

$$H_{p+q-1}(F) \xrightarrow{\iota_*} H_{p+q-1}(X) \xrightarrow{g_*} H_{p+q-1}(B) \xrightarrow{\alpha} H_{p+q-2}(F) \to \dots$$

*Proof.* Serre (7) has shown that there is a regular  $\partial$ -couple D associated with the fibring in which

$$E_{a,b}^2 = H_a(B, H_b(F))$$
 and  $H(D) = H(X)$ .

Taking r = p + q - 1, the exactness of the sequence follows from Theorem 1. The assertion about the homomorphisms  $i_*$  and  $g_*$  is proved in (5, p. 271). ( $\alpha$  is just a name.)

The Eilenberg-MacLane computation of  $H_*(Z_p, 1)$ , which used no (mod  $\mathfrak{C}$ ) theory, shows that  $H_i(Z_p, 1; Z)$  is finitely generated (4). In fact, since every element is of order  $p, H_i(Z_p, 1) \in \mathfrak{C}(p)$ . Using the fibring

$$K(Z_p, 1) \rightarrow K(Z_{p^r}, 1) \rightarrow (Z_{p^{r-1}}, 1),$$

the Serre exact sequence (mod  $\mathfrak{C}(p)$ ), and induction, we obtain  $H_i(\mathbb{Z}_{p^r}, 1) \in \mathfrak{C}(p)$ . Using the same technique on the fibring

$$K(Z_{p^r}, k-1) \to E \to K(Z_{p^r}, k),$$

we obtain  $H_i(Z_{p^r}, k) \in \mathfrak{C}(p)$  for all r, k. (Here, E is the space of paths in  $K(Z_{p^r}, k)$  starting at a fixed base-point.)

LEMMA 6. If  $G \in \mathfrak{G}$ , then  $H_i(G, k; Z) \in \mathfrak{G}$ .

*Proof.* Write G as a direct sum of cyclic groups of prime power order:

$$G = \sum_{j} Z_{p_j}^{n_j}.$$

Then  $Z_{p_j} \in \mathfrak{G}$  for all j,

$$K(G, k) = \prod_{i} K(Z_{p_{i}}^{n_{j}}, k) \text{ and } H_{i}(K(Z_{p_{i}}^{n_{j}}, k); Z) \in \mathfrak{C}$$

Therefore, by the Künneth formulas,  $H_i(G, k; Z) \in \mathbb{G}$ .

LEMMA 7. Suppose that X has a finite number of non-zero homotopy groups, and  $\pi_i(X) \in \mathfrak{C}$  for all *i*. Then  $H_i(X) \in \mathfrak{C}$  for all *i*.

*Proof.* The proof is by induction on the number n of non-zero homotopy groups of X. Lemma 6 establishes the result for the case n = 1. Suppose that it holds for all simply connected spaces which have no more than j non-zero homotopy groups. Let Y be a simply connected space with non-zero homotopy groups in dimensions  $n_1 < n_2 < \ldots < n_j < n_{j+1}$  with  $\pi_{n_i}(Y) \in \mathfrak{C}$ ,  $i = 1, \ldots, j + 1$ . There is a fibring

$$F \rightarrow Y \rightarrow K(\pi_{n_1}(Y), n_1)$$

such that

$$p_*: \pi_{n_1}(Y) \to \pi_{n_1}(K(\pi_{n_1}(Y), n_1))$$

is an isomorphism. Using the homotopy exact sequence of this fibring we obtain

$$\pi_{n_i}(F) \approx \pi_{n_i}(Y), \qquad 2 \leq i \leq j+1,$$

and that these are the only non-zero homotopy groups of F. Then, by the induction hypothesis,  $H_i(F) \in \mathbb{C}$  for all i.

Since both F and  $K(\pi_{n_1}(Y); n_1)$  are infinitely connected (mod  $\mathfrak{S}$ ), the (mod  $\mathfrak{S}$ ) Serre exact sequence is infinite, and this implies that  $H_i(Y) \in \mathfrak{S}$  for all *i*. This completes the induction.

THEOREM 3 (The Hurewicz theorem (mod  $\mathfrak{G}$ )). Suppose that  $\pi_i(X) \in \mathfrak{G}$  for i < n. Then  $\pi_n(X) \approx_{\mathfrak{G}} H_n(X)$ .

*Proof.* Take a Postnikov system for X. Let  $B^{n-1}$  be that space in the Postnikov system made up of the homotopy groups of X up to dimension n-1. Then  $p: X \to B^{n-1}$  is a fibring which induces isomorphisms in homotopy

up to dimension n - 1, and  $i: F \to X$  (the inclusion of the fibre) induces isomorphisms in homotopy in dimensions n and above. Furthermore,  $\pi_i(F) = 0$ for all i < n and  $\pi_n(F) \approx H_n(F)$ .  $B^{n-1}$  is infinitely connected (mod  $\mathfrak{G}$ ); thus, by the Serre exact sequence (mod  $\mathfrak{G}$ ) we obtain

$$H_n(F) \approx_{\mathfrak{G}} H_n(X).$$

Using  $\pi_n(F) \approx \pi_n(X)$  and combining the isomorphisms, we obtain

$$\pi_n(X) \approx \mathfrak{C} H_n(X);$$

and the isomorphism is induced by the Hurewicz homomorphism since the following diagram is commutative

$$\begin{array}{ccc} \pi_n(F) & \stackrel{i_*}{\longrightarrow} & \pi_n(X) \\ h & & & \downarrow h \\ H_n(F) & \stackrel{i_*}{\longrightarrow} & H_n(X) \end{array}$$

THEOREM 4 (The Whitehead theorem (mod  $\mathfrak{S}$ )). Suppose that X and Y are simply connected and  $f: X \to Y$  is a continuous map; then statements (i) and (ii) are equivalent:

(i)  $f_*: H_i(X) \to H_i(Y)$  is a (mod  $\mathfrak{G}$ ) isomorphism for i < n and

 $H_n(Y)/f_*H_n(X) \in \mathfrak{C};$ (ii)  $f_{\#}: \pi_i(X) \to \pi_i(Y)$  is a (mod  $\mathfrak{C}$ ) isomorphism for i < n and  $\pi_n(Y)/f_*\pi_n(X) \in \mathfrak{C}.$ 

*Proof.* (A) (i) implies (ii). Take f to be a fibre map with fibre F. Suppose that  $H_i(F) \in \mathfrak{C}$  for all  $i . By assumption, <math>H_i(Y) = 0$  for i < 2. Using Theorem 2, the sequence

$$H_{p+1}(F) \to H_{p+1}(X) \xrightarrow{f_*^{p+1}} H_{p+1}(Y) \to H_p(F) \to H_p(X) \xrightarrow{f_*^{p}} H_p(Y)$$

is exact (mod  $\mathfrak{S}$ ). Since  $p \leq n-1$ ,  $f_*^p$  is a (mod  $\mathfrak{S}$ ) isomorphism and  $f_*^{p+1}$  is certainly a mod  $\mathfrak{S}$  epimorphism. Therefore,  $H_p(F) \in \mathfrak{S}$ . Repeating this argument, we obtain  $H_i(F) \in \mathfrak{S}$  for all  $i \leq n-1$ . Furthermore,  $H_1(F) = \pi_1(F) \in \mathfrak{S}$ . Using the (mod  $\mathfrak{S}$ ) Hurewicz theorem, we have  $\pi_i(F) \in \mathfrak{S}$  for all  $i \leq n-1$ . The result now follows from the homotopy exact sequence of the fibring

$$F \longrightarrow X \xrightarrow{f} Y.$$

.

(B) (ii) implies (i). Using the homotopy exact sequence of the fibring, we see that  $\pi_i(F) \in \mathfrak{C}$  for all  $i \leq n-1$ . Therefore,  $H_i(F) \in \mathfrak{C}$  for  $i \leq n-1$ . By hypothesis,  $H_1(Y) = 0$ . The result clearly follows from the (mod  $\mathfrak{C}$ ) Serre exact sequence.

THEOREM 5 (The suspension theorem (mod  $\mathfrak{S}$ )). Suppose that X is connected and  $\pi_i(X) \in \mathfrak{S}$  for all i < n. Then  $i_{\sharp}: \pi_j(X) \to \pi_j(\Omega SX)$  is a (mod  $\mathfrak{S}$ ) isomorphism for j < 2n - 1 and a (mod  $\mathfrak{S}$ ) epimorphism for j = 2n - 1(i:  $X \to \Omega SX$  is the natural inclusion).

*Proof.* Consider the acyclic fibring  $\Omega SX \to E \to SX$ . We have  $H_i(SX) = H_{i-1}(X) \in \mathbb{C}$  for i < n + 1. Therefore,  $\pi_i(SX) \in \mathbb{C}$  for i < n + 1 and  $\pi_j(\Omega SX) \in \mathbb{C}$  for j < n. Consequently,  $H_j(\Omega SX) \in \mathbb{C}$  for j < n. Applying Theorem 2 we obtain:

$$H_{2n}(\Omega SX) \to H_{2n}(E) \to H_{2n}(SX) \xrightarrow{\alpha} H_{2n-1}(\Omega SX) \to H_{2n-1}(E) \to \dots$$

is exact (mod  $\mathfrak{G}$ ). That is,  $\alpha: H_{j+1}(SX) \to H_j(\Omega SX)$  is a (mod  $\mathfrak{G}$ ) isomorphism for  $j \leq 2n - 1$ .

Let  $\Sigma: H_i(X) \to H_{i+1}(SX)$  be the suspension isomorphism. Then

$$\alpha \Sigma = \pm i_*^{j} \colon H_j(X) \to H_j(\Omega SX);$$

see (1). Therefore, the  $i_*{}^j$  induce (mod  $\mathfrak{C}$ ) homology isomorphisms for  $j \leq 2n-1$ . Then, by the (mod  $\mathfrak{C}$ ) Whitehead theorem,  $i_{\sharp}: \pi_j(X) \to \pi_j(\Omega SX)$  is a (mod  $\mathfrak{C}$ ) isomorphism when j < 2n-1 and a (mod  $\mathfrak{C}$ ) epimorphism when j = 2n - 1.

6. A Whitehead-type theorem. In this section, we prove the following theorems.

**THEOREM 6A.** Suppose that X and Y are simply connected spaces and that  $f: X \to Y$  is a continuous map. Then the following four statements are equivalent:

(i)  $f_*: H_i(X) \to H_i(Y)$  is a (mod  $\mathfrak{G}$ ) isomorphism for all i;

(ii)  $f_{\#}: \pi_i(X) \to \pi_i(Y)$  is a (mod  $\mathfrak{S}$ ) isomorphism for all i;

(iii) for any space L with  $H_*(L)$  finitely generated, the homomorphism

$$(\Omega^2 f)_*$$
:  $[L, \Omega^2 X] \rightarrow [L, \Omega^2 Y]$ 

is a (mod S) isomorphism;

(iv) for any space P with  $\pi_*(P)$  finitely generated, the homomorphism

$$(S^2f)^*: [S^2Y, P] \rightarrow [S^2X, P]$$

is a (mod C) isomorphism.

THEOREM 6B. Suppose that X and Y are simply connected spaces and that  $f: X \to Y$  is a continuous map. Then the following two statements are equivalent:

(v)  $f_*: H_*(X) \to H_*(Y)$  is a (mod  $\mathfrak{C}$ ) isomorphism;

(vi) for any space P, the homomorphism

$$(S^2f)^*: [S^2Y, P] \rightarrow [S^2X, P]$$

is a (mod S) isomorphism.

THEOREM 6C. Suppose that X and Y are simply connected spaces and that f:  $X \to Y$  is a continuous map. Then the following two statements are equivalent: (vii)  $f_{\#}: \pi_*(X) \to \pi_*(Y)$  is a (mod  $\mathfrak{S}$ ) isomorphism; (viii) for any space L, the homomorphism

$$(\Omega^2 f)_*: [L, \Omega^2 X] \to [L, \Omega^2 Y]$$

is a (mod S) isomorphism.

The proof of these theorems will proceed from a series of lemmas. First recall some standard homotopy theory.

If  $f: X \to Y$  is a fibring with fibre F, then for any space L we have a long exact sequence

$$\dots [L, \Omega^{i}F] \to [L, \Omega^{i}X] \xrightarrow{(\Omega^{i}f)_{*}} [L, \Omega^{i}Y] \to [L, \Omega^{i-1}F] \to \dots$$
$$\to [L, F] \to [L, X] \xrightarrow{f_{*}} [L, Y].$$

If  $f: X \to Y$  has mapping cone  $C_f$ , then, for any space P, there is a long exact sequence

$$\dots \to [S^i C_f, P] \to [S^i Y, P]^{(S^i f)^*} \to [S^i X, P] \to [S^{i-1} C_f, P] \to \dots$$
$$\to [C_f, P] \to [Y, P] \to [X, P].$$

Let *G* be a finitely generated abelian group. Then M(G, n)  $(n \ge 2)$  will be a simply connected space with  $H_i(M(G, n)) = 0$  for all  $i \ne n$  and  $H_n(M(G, n)) = G$ . For n = 1, we have the condition that

$$\pi_1(M(G, 1)) = H_1(M(G, 1)).$$

Such spaces exist and are well-determined up to homotopy type (6).

Let  $n: S^k \to S^k$  be a map of degree n. Then  $C_n$  has the homotopy type of an  $M(Z_n, k)$ , and the sequence

$$\pi_k(P) \xrightarrow{n \#} \pi_k(P) \to [M(Z_n, k), P] \to \pi_{k+1}(P) \xrightarrow{n \#} \pi_{k+1}(P)$$

is exact. Therefore, if  $Z_n \in \mathfrak{C}$ , then  $[M(Z_n, k), P] \in \mathfrak{C}$  for  $k \geq 3$  (and  $[M(Z_n, 2), P] \in \mathfrak{C}$ ).

LEMMA 8. If  $G \in \mathfrak{G}$ , then  $[M(G, k), P] \in \mathfrak{G}$  for  $k \geq 3$ .

Proof. Suppose that

$$G = \sum_{i=1}^{s} Z_{n_i}.$$

Then  $M(G, k) = \bigvee_i M(Z_{n_i}, k)$  (where the wedge product is the one-point union), and

$$[M(G, k), P] = \sum_{i} [M(Z_{ni}, k), P].$$

Now by the remark above, each summand is in C and therefore

$$[M(G, k), P] \in \mathfrak{C}.$$

https://doi.org/10.4153/CJM-1969-078-7 Published online by Cambridge University Press

**LEMMA 9.** Suppose that (a)  $H_*(A) \in \mathfrak{C}$  or that (b)  $H_i(A) \in \mathfrak{C}$  for all i and that  $\pi_*(P)$  is finitely generated. Using either hypothesis,  $[SA, P] \in \mathfrak{C}$ .

*Proof.* The Eckmann-Hilton decomposition of SA is the suspension of that of A, i.e. all the spaces and maps that occur are suspensions:

$$\begin{array}{c|c} M(H_1(A), 2) \to SA_2 \to \ldots \to SA_r \xrightarrow{Si_r} SA_{r+1} \to \ldots \\ & & & \downarrow \\ & & & \downarrow \\ SA_1 & M(H_2(A), 3) & M(H_{r+1}(A), r+2) \end{array}$$

and for all r,  $M(H_{r+1}(A), r+2) = C_{Si_r}$  (3). The proof is by induction on r. Assume that  $[SA_r, P] \in \overline{\mathbb{G}}$ . Then

$$[M(H_{r+1}(A), r+2), P] \xrightarrow{(Sf_{r+1})^*} [SA_{r+1}, P] \xrightarrow{(Si_r)^*} [SA_r, P]$$

is exact. Using either hypothesis,  $H_{r+1}(A) \in \mathbb{C}$ , and hence by Lemma 8,  $[M(H_{r+1}(A), r+2), P] \in \mathbb{C}$ . Therefore,  $[SA_{r+1}, P] \in \mathbb{C}$ . Now, again using either hypothesis, for large enough k,  $[M(H_k(A), k+1), P] = 0$ . That is, only a finite number of extensions are necessary to build up to [SA, P], and therefore  $[SA, P] \in \mathbb{C}$ .

**LEMMA 10.** Suppose that  $f: X \to Y$  either (a) induces a (mod  $\mathfrak{C}$ ) isomorphism  $f_*: H_*(X) \to H_*(Y)$  or (b) induces (mod  $\mathfrak{C}$ ) isomorphisms  $f_*: H_i(X) \to H_i(Y)$  for all i and  $\pi_*(P)$  is finitely generated. Using either hypothesis,

$$(S^2f)^*: [S^2Y, P] \rightarrow [S^2X, P]$$

is an isomorphism (mod  $\mathfrak{C}$ ).

*Proof.* Let  $A = C_f$ . Then

$$[S^{2}A, P] \to [S^{2}Y, P] \xrightarrow{(S^{2}f)^{*}} [S^{2}X, P] \to [SA, P]$$

is an exact sequence of groups. Now either  $H_*(A) \in \mathfrak{C}$  or  $H_i(A) \in \mathfrak{C}$  (all *i*) and  $\pi_*(P)$  is finitely generated. Thus, using Lemma 9,  $[SA, P] \in \overline{\mathfrak{C}}$  and  $[S^2A, P] \in \mathfrak{C}$  (since it is abelian). Now coker  $(S^2f)^*$  is abelian and is in  $\overline{\mathfrak{C}}$ . Therefore, it is in  $\mathfrak{C}$  and  $(S^2f)^*$  is a (mod  $\mathfrak{C}$ ) isomorphism.

LEMMA 11. Suppose that  $G \in \mathfrak{C}$  and L is any space, then  $[L, K(G, n)] \in \mathfrak{C}$ .

*Proof.*  $[L, K(G, n)] = H^n(L; G) = H^n(L) \otimes G \oplus \text{Tor}(H^{n+1}(L), G)$  which is in  $\overline{\mathbb{G}}$ .

LEMMA 12. If  $\pi_i(F) \in \mathfrak{C}$  and  $H_*(L)$  is finitely generated, or if  $\pi_*(F) \in \mathfrak{C}$ and L is any space, then  $[L, \Omega F] \in \mathfrak{C}$ . *Proof.* The Postnikov system for  $\Omega F$  is the "loop" of the Postnikov system for F. That is, the spaces and maps that occur are the "loops" of those that occur for F:

and for each i,

$$K(\pi_i(F), i-1) \xrightarrow{\Omega j_i} \Omega X_i \xrightarrow{\Omega p_i} \Omega X_{i-1}$$

is a fibring.

The proof is by induction on *i*. Suppose that  $[L, \Omega X_{i-1}] \in \overline{\mathbb{G}}$ . The sequence

 $[L, K(\pi_i(F), i-1)] \rightarrow [L, \Omega X_i] \rightarrow [L, \Omega X_{i-1}]$ 

is exact. The two outside groups are in  $\overline{\mathbb{C}}$ . Therefore  $[L, \Omega X_i] \in \overline{\mathbb{C}}$ . Either hypothesis assures us that only a finite number of non-trivial extensions are involved as we build up to  $[L, \Omega F]$ . Therefore  $[L, \Omega F] \in \overline{\mathbb{C}}$ .

LEMMA 13. Suppose that  $f: X \to Y$  either

- (a) induces a (mod  $\mathfrak{G}$ ) isomorphism  $f_{\#}: \pi_*(X) \to \pi_*(Y)$  or
- (b) induces (mod  $\mathfrak{G}$ ) isomorphisms  $f_{\sharp}: \pi_i(X) \to \pi_i(Y)$  for all i and  $H_*(L)$  is

finitely generated.

Then

 $(\Omega^2 f)_* \colon [L, \Omega^2 X] \to [L, \Omega^2 Y]$ 

is an isomorphism (mod  $\mathfrak{C}$ ).

*Proof.* Take f to be a fibre map with fibre F. Then either  $\pi_*(F) \in \mathbb{C}$  or  $\pi_i(F) \in \mathbb{C}$  (all i) and  $H_*(L)$  is finitely generated. In either case, Lemma 5 implies that  $[L, \Omega F] \in \mathbb{C}$  and  $[L, \Omega^2 F] \in \mathbb{C}$ . Now we have an exact sequence of groups

$$[L, \Omega^2 F] \to [L, \Omega^2 X] \xrightarrow{(\Omega^2 f)_*} [L, \Omega^2 Y] \to [L, \Omega F].$$

 $\operatorname{coker}(\Omega^2 f)_*$  is abelian and is in  $\overline{\mathbb{C}}$ . Therefore, it is in  $\mathbb{C}$  and  $(\Omega^2 f)_*$  is a (mod  $\mathbb{C}$ ) isomorphism.

*Proof of Theorem* 6A. (i)  $\Rightarrow$  (ii). (Whitehead theorem);

(i)  $\Rightarrow$  (iv) (Lemma 3);

(ii)  $\Rightarrow$  (iii) (Lemma 6);

(iii)  $\Rightarrow$  (ii) since we can take  $L = S^n$ , n = 0, 1, 2, ...;

 $(iv) \Rightarrow (i)$  since we can take P = K(Z, n), n = 2, 3, ... This shows that we have (mod  $\mathfrak{C}$ ) isomorphisms in cohomology and implies the result for homology.

Proof of Theorem 6B.  $(v) \Rightarrow (vi)$  (Lemma 3).  $(vi) \Rightarrow (v)$ , since we can take

$$P = \prod_{i=2}^{\infty} K(Z, i).$$

Proof of Theorem 6C. (vii)  $\Rightarrow$  (viii) (Lemma 6). (viii)  $\Rightarrow$  (vii) since we can take

$$L = \bigvee_{i=0}^{\infty} S^i.$$

That the "finiteness" conditions are necessary can be seen from the following example. Let  $\mathfrak{C} = \mathfrak{C}(p)$ , and let

$$X = Y = \bigvee_{i=2}^{\infty} S^i.$$

Let  $f_i: S^i \to S^i$  be a map of degree  $p^i$ , and let  $f: X \to Y$  be the map

$$\bigvee_{i=2}^{\infty} f_i \colon \bigvee_{i=2}^{\infty} S^i \to \bigvee_{i=2}^{\infty} S^i.$$

Clearly,  $f_*: H_i(X) \to H_i(Y)$   $(i \ge 2)$  is multiplication by  $p^i$  and is an isomorphism (mod  $\mathfrak{C}(p)$ ). Let

$$P = \prod_{i=4}^{\infty} K(Z, i)$$

and consider the induced homomorphism

$$(S^2f)^*$$
:  $[S^2Y, P] \rightarrow [S^2X, P]$ .

This is a monomorphism and the co-kernel is  $\prod_{i=2}^{\infty} Z_{pi}$ . However, this group is not in  $\mathfrak{C}(p)$ . The problem, of course, is that the classes we have discussed are not closed under the operation of taking limits.

7. The general (mod  $\mathfrak{C}$ ) suspension theorem. This section completes the proof of the general (mod  $\mathfrak{C}$ ) suspension theorem. We begin with the following result.

LEMMA 14. Suppose that  $H_*(X)$  is finitely generated and that  $H^i(X) \in \mathfrak{G}$  for i > k; furthermore, suppose that  $\pi_i(F) \in \mathfrak{G}$  for i < n; then, when k + r < n  $(r \ge 1)$ ,  $[S^rX, F] \in \mathfrak{G}$  (or in  $\mathfrak{G}$  when r = 1).

*Proof.* Take a Postnikov system for *F*:

$$F$$

$$\downarrow$$

$$\vdots$$

$$\downarrow$$

$$F^{s}$$

$$\downarrow f_{s}$$

$$F^{s-1}$$

$$\downarrow$$

$$K(\pi_{1}(F), \mathbf{1})$$

(In this proof read  $\overline{\mathbb{G}}$  for  $\mathbb{G}$  when r = 1.) The proof is by induction. Suppose that  $[S^rX, F^{s-1}] \in \mathbb{G}$ . If s < n, then  $\pi_s(F) \in \mathbb{G}$  and

$$[S^2X, K(\pi_s(F), s)] \in \mathbb{G}$$

(Lemma 4). If  $s \ge n$ , then s > k + r and  $H^s(S^rX)$  and  $H^{s+1}(S^rX)$  are both in  $\mathfrak{C}$ . However,

$$[S^{r}X, K(\pi_{s}(F), s)] = H^{s}(S^{r}X; \pi_{s}(F))$$
  
=  $H^{s}(S^{r}X) \otimes \pi_{s}(F) \oplus \operatorname{Tor}(H^{s+1}(S^{r}X); \pi_{s}(F)),$ 

and hence is in *C*. Therefore, in the exact sequence

 $[S^{r}X, K(\pi_{s}(F), s)] \rightarrow [S^{r}X, F^{s}] \rightarrow [S^{r}X, F^{s-1}]$ 

the two extreme groups are in  $\mathfrak{C}$ . Thus,  $[S'X, F^s] \in \mathfrak{C}$ . As before, because of the assumption on  $H_*(X)$ , only a finite number of extensions are required to build up to [S'X, F] and this last group is in  $\mathfrak{C}$ .

THEOREM 7 (The general (mod  $\mathfrak{G}$ ) suspension theorem). Suppose that

- (i)  $\pi_i(Y) \in \mathfrak{G}$  for all i < n,
- (ii)  $H_*(X)$  is finitely generated,
- (iii)  $H^i(X) \in \mathfrak{G}$  for all i > k.

Then the suspension homomorphism

$$E: [S^{r}X, Y] \to [S^{r+1}X, SY]$$

is a (mod  $\mathfrak{C}$ ) monomorphism for  $2 \leq r \leq 2n - k - 2$  (when r = 1, ker  $E \in \overline{\mathfrak{C}}$ ); it is a (mod  $\mathfrak{C}$ ) epimorphism for  $2 \leq r \leq 2n - k - 1$ .

*Proof.* Let  $j: Y \to \Omega SY$  be the natural inclusion and make it a fibre map with fibre F. The homotopy exact sequence of the fibring, together with Theorem 4, implies that  $\pi_i(F) \in \mathbb{S}$  for i < 2n - 1. The sequence

$$[S^{r-1}X, \Omega F] \to [S^{r-1}X, \Omega Y]$$

$$\downarrow (\Omega j) *$$

$$[S^{r-1}X, \Omega^2 S Y]$$

$$\downarrow$$

$$[S^{r-1}X, F]$$

is exact.  $\pi_i(\Omega F) \in \mathbb{G}$  for i < 2n - 2. Using Lemma 1 we have:  $[S^{r-1}X, \Omega F] \in \overline{\mathbb{G}}$  when  $r \ge 1$  and k + r - 1 < 2n - 2, and  $[S^{r-1}X, F] \in \overline{\mathbb{G}}$  for  $r \ge 2$  and k + r - 1 < 2n - 1. The homomorphism F may be defined by the following diagr

The homomorphism E may be defined by the following diagram:

where the equalities indicate the natural equivalence.

Rewriting the inequalities above, we have that  $(\Omega j)_*$  is a  $(\mod \overline{\mathbb{C}})$  monomorphism for  $1 \leq r \leq 2n - k - 2$  and is a  $(\mod \overline{\mathbb{C}})$  epimorphism for  $2 \leq r \leq 2n - k - 1$ . However, all the kernels and co-kernels involved are clearly abelian (except for ker  $E: [SX, Y] \rightarrow [S^2X, SY]$ ), and hence the statements hold  $(\mod \mathbb{C})$ .

### References

- 1. W. D. Barcus and J.-P. Meyer, The suspension of a loop space, Amer. J. Math. 80 (1958), 895-920.
- H. Cartan, Algèbres d'Eilenberg-MacLane et homotopie, Séminaire Henri Cartan, 1954–1955 (Secrétariat mathématique, Paris, 1956).
- 3. B. Eckmann and P. J. Hilton, Décomposition homologique d'un polyèdre simplement connexe, C. R. Acad. Sci. Paris 248 (1959), 2054-2056.
- S. Eilenberg and S. MacLane, Relations between homology and homotopy groups of spaces, Ann. of Math. (2) 46 (1945), 480-509.
- S.-T. Hu, *Homotopy theory*, Pure and Applied Mathematics, Vol. VIII (Academic Press, New York, 1959).
- 6. J. C. Moore, On homotopy groups of spaces with a single non-vanishing homology group, Ann. of Math. (2) 59 (1954), 549-557.
- 7. J.-P. Serre, Homologie singulière des espaces fibrés. Applications, Ann. of Math. (2) 54 (1951), 425-505.
- 8. Groupes d'homotopie et classes de groupes abéliens, Ann. of Math. (2) 58 (1953), 258–294.
- 9. —— Cohomologie modulo 2 des complexes d'Eilenberg-MacLane, Comment. Math. Helv. 27 (1953), 198–232.
- E. H. Spanier, Duality and the suspension category, International Symposium on Algebraic Topology, Symposium Internacional de Topologia Algebrica, 1956 (Universidad Nacional Atonoma de Mexico, UNESCO, 1958).

Sir George Williams University, Montreal, Quebec