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Introduction

By the geometric moving average of the independent, identically
distributed random variables {Xn}, we mean the stochastic process

Sn = *"*+tf-iX1+ • • • +Xn,

where a is a real number such that 0 £S a ^ 1.
This process presents itself naturally in physical situations involving

exponential decay. For example, it represents the response of an overdamped
dynamical system to a random impulse applied at regular intervals, or the
charge of a condenser which discharges into a resistance and into which is
fed a random impulse at regular intervals.

Second order properties of this process are very easy to calculate and
have been known for a long time. However, in many cases we are rather
interested in the maximum of Sn over an interval, i.e. in the process

Mn = max (2, St, S2, • • •, SB).

The distribution of the tail of M„ is required for instance for the rational
design of the overdamped dynamical system. In the case of the condenser,
it might be required to find the distribution of the first time that the
voltage of the condenser exceeds some threshold value. This problem has
been extensively studied for the case a = 0, i.e. the case of independent
random variables (see Gumbel [2]) and for the case a = 1, i.e. the case of
the random walk on the line (see Spitzer [4]).

In this paper it is first shown that the geometric moving average is
characterized by being the only non-trivial Markovian moving average.
Formulae for the characteristic function of Sn and recurrence relations for
its distribution are then obtained. The corresponding recurrence relations
for the distribution of Mn are then derived. They are used to obtain explicit
expressions in the case where Xn is exponentially distributed. Finally an
approximate expression for the tail of the distribution of Mn in the last-
mentioned case is obtained and an upper bound for the relative error
calculated.
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Markovian moving averages

The general definition of a moving average is as follows. Let {Xn} be a
sequence of independent, identically distributed random variables, and let
a0 = 1, {«„}, n > 0, be a sequence of real numbers. Then the moving average
process {Sn} is defined by

Sn = anz+ JX-***> (» = 0, 1, 2, • • •).

The process {Sn} is generally non-Markovian. In fact we presently prove
the following.

THEOREM. The only non-trivial Markovian moving average is the 'geo-
metric' moving average for which an = an.

PROOF. We can write the Markov property of the process in the form

(1) £[exp (ip SB)|Sn_x = s._J = £[exp (ip Sn)\Sk = sk, k = 1, • • •, * - l ] .

Let xk, (k = 1, • • •, n—1), be the (unique) solution of the set of equa-
tions arz+2*=i ar-kxk = s t , r = 1, • • •, »—1. Then the condition Sk = sk,
(k = 1, • • •, n— 1) is equivalent to the condition Xk = xk, (k = 1, • • •, n—1).
It follows that

£[exp (ip Sn)\Sk = sk> k = 1, • • •, n-1]
n - l

= £[exp (ip Xn)] exp [ip (anz+ 2 <*„_**»)].

Also

= £[exp (^ XB) '

Writing X'k = Xk—xk, S'n = 2 L i «n-*-^*. we find that equation (1) reduces
to

£{exp [ip 21fl._»Xi]|S:_1 = 0} = 1.

In other words, the condition

must imply

" l an.kX'k = 0

almost surely. For n = 3 we find that X2+«1Xi'= 0 implies
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a1X't+atX'1 = 0

a.s. This can obviously happen only if a2 = a\, or if the {Xn} are degenerate
random variables. By taking larger values of n we can show by induction
that an = an. Conversely, if an = an, we have Sn+1 = Xn+1-\-aSn, which
shows that Sn is Markovian. This completes the proof of the theorem.

In the sequel, we shall restrict ourselves to moving averages for which
an = an. These we shall call 'geometric moving averages'.

The distribution of the geometric moving average

Let us write explicitly

Sn(z) = «»z+fl»-1I1+«»-2Z2+ • • • +aXn_1+Xn.

Let <f>(t) = £{exp (it Xn)}. Then £{exp (itanXn)} = <f>(ant), and

(2) £{exp [USn(z)]} = e«°n

v In this way we can calculate explicitly the characteristic function of
SB(*), Also let us write F(x) = P{Xn < x}, Gn(z, x) = P{Sn(z) <x}. Then
the Chapman-Kolmogorov forward and backward equations provide us
with two recurrence relations, namely

(3) Gn+1(z, x) = J*0" Gn (z, ̂ ) dF(y)

and

(4) Gn+i(z,x) = \ Gn{y,x)dyF(y-az).
•"—00

Let^ = E(Xn). Then

!

l — an

a«z+ , if a ^ 1,

z-{-n/j,, if a = 1.
Let now Rv be the central moment of order p of Xn.

The central moment of order p of Sn will then be given by

!

—a n v

!

nRv, if a = 1.

If we let n -» oo, we see that, if \a\ = I, and Rp ^ 0, E[(Sn—Sn)»] diverges.
If, however, \a\ < 1 and Rp is finite, E[(Sn—Sn)]

v tends to the finite limit
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RJ(l—a). This is true in particular for the variance of Sn, provided that
the variance of Xn is finite. It follows that in this case the distribution of
Sn tends to a limit distribution (See the theorem on infinite convolutions
in Feller [1, p. 259]).

We shall now obtain an explicit formula for the distribution of Sn(z)
when Xn has the exponential distribution with unit parameter. In that case
we have F{x) = l-e~x, <f>(t) = 1/(1— it).

It follows that

Using the partial fraction expansion of the product, we find

n—1 rn—1 J -i gitanz

£{exp [it Sn(z)]} = 2 IT' , i-, T-^Ti!

where J J ' denotes taking a product over all values of k except k = r.
Inverting this expression, we find that

(5) GJz, x) = 1— V ("11' r - 1 e xP (— - +a"~r-2)>) •

For example, if n = 3, we find that

G3(Z, X) = 1 - „ f" _>v « - + 7 ^ :

The distribution of the maximum of SB for 0 < a < 1

We now write

Mn{z) = max [S0(z), S^z), • • -, Sn(z)], where S0(z) = z,

and we restrict ourselves to values of a satisfying 0 < a < 1.
We cannot study the distribution of Mn(z) directly, because it is not

a Markovian process. We therefore consider instead the first passage time
of Sn(z) at h. Let Nh(z) be this first passage time. Then

{Nh{z) = n) = {Sr(z) < h, i = 0, 1, • • •, n - l ; Sn(z) ^ h}.

This can be rewritten

{Nh(z) =n} = {Mn_x{z)< h; Mn(z) ^ h).

It follows that

{Nh(z) > «} s {Mn(z) < h), {Nh(z) ^ n) s {Mn_x{z) <h).
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(Note that Nh(z) is a defective random variable and may equal + °o with
finite probability).

Let us now write

= P{Sn(z)<z;Mn_1(z)<h}.

Then we can see that

= P{Mn(z) < h}.

The best tool for calculating Qn(z, h) is the backward Kolmogorov
equation

(6) Qn+1{z, h) = U(h-z) £ " Qn(y, h)dyF(y-az), n = 0, 1, • •.,

where U(x) = 1 for x > 0 and U(x) = 0 for x ^ 0. (See Kemperman
[3, p. 55]). Also, we obviously have Q0(z, x) = U(x—z). Thus Qn[z, h) can
be calculated by iteration. However, unlike the case a = 1 (i.e., the case of
the random walk), it does not seem possible to obtain a closed formula for
the generating function of the Qn.

It is important to note that if the Xn are non-negative, formula (6)
can be written in a slightly more manageable form which does not involve
an infinite interval of integration. In that case we can write the distribution
function of Xn in the form F (x) U(x). Let us also assume that the distribution
of Xn has no concentration of probability at the origin and has a probability
density/(x).

Then equation (6) reduces to

(7) C»+i(z> h) = U(h-z) jl Qn(y, h)f(y-az)dy.

The case of exponentially distributed Xm

We shall now obtain explicit expressions for the distribution of Mn(z)
in the case when Xn is exponentially distributed with unit parameter,
that is, when F(x) = l—e-°°,f(x) = er*. There is no loss of generality in
assuming unit parameter for the distribution, as only a change of scale is
involved.

We easily find

Ql(z, h) = (l-e-

e-d-°)*r 1/ e-d-°)*\ ea*z n

Q2(z, h) = [ 1 - , - {(l- - T — ) «"+ ^ J ] U(h-z)
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This suggests that Qn(z, h) is of the form

(8) Qn(z, h) = (1-er* 2 C<"> e°**)U(h-z).
*=i

It is easily checked that this form of Qn(z, h) satisfies the recurrence
relation (6), provided the coefficients Ck

n) satisfy the recurrence relations

If we write bk = 1/(1—a*), we can rewrite relations (9) in the form

c<«+u = i—f; C^bke-hlb",
(9a) *-*

Ct+v =blc_1Ck
nl1, k>\.

Let us write C(n) = (1, Cjn), C^, • • •, C™, 0, • • •), a row vector of
infinite length. Then

C<« = (1, 0, 0, • • •)•

The recurrence relations (9a) can be written in matrix form

(10) C«"+» = &n>P,

where P is the infinite matrix

1 1 0 0 ••

0 -bxe-hlh* Jj 0 • •
~ 0 -&,«-»/»• 0 6, • •

In equation (10) as well as in all matrix equations in the sequel, we
shall take as the norm of the matrix A = (atj) the value \\A\\ = max< (i^aw)•
It is obvious that we have \\A\\ < 2/(1—a).

From equation (10), we immediately deduce that

C(n) = CmAn.
Finally, if we write

z = (1, -«-»+", -e-***; • • •)',

where the dash denotes transposition, we see that for 0 ^ z < h,

(11) Qn(z, h) = C^z

https://doi.org/10.1017/S144678870000567X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870000567X


106 A. M. Hasofer [7]

From expression (11) we can calculate immediately the generating
function of the Qn. In fact we have

Q{z, A) = f t«Qn(z, h) = C<»> [ | t*A"]z,
n=0 n=0

where / denotes an infinite unit matrix. The inverse matrix (/—At)*1 will
certainly exist at least for ||;|| < H^lh1, that is, at least for \t\ < (1—a)/2.

We can calculate the elements (xH) of the matrix X = {I—At)-1 by
just writing down the scalar elements of the defining equation

X(I-At) = /.

However, in view of the fact that we are only interested in the product
C(0) (I—At)-1, which is actually only the first row of (I—At)-1, it is necessary
to calculate only xln, n = 1, 2, • • •. We find

1

1-t

nn-ll

where

(1—a)(l—a2) •• • (1—a"-1)

and k0 = 1.
It immediately follows that

(12)
Q{z,h) =

Let us denote by D(t) the series

|i-0(OI =

( ! - « » ) •

"- Then

n = l 1 - a

(n = 1, 2, • • •)

1*1

where 6 = I—a.
It follows that Z>(£) has no zeros at least for |*| < bj{\—e-bh).
It is also easily ascertainable that the series N(t) = ^>

=Qea"zhJn

has a radius of convergence of unity. Thus equation (12) does actually
define an analytic function of I in the neighbourhood of the origin.
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An asymptotic formula for large A

It is clear that for very large h the series D(t) will be very nearly equal
to one. We therefore conjecture that the coefficients of the generating
function Q (z, h) will be approximated for large h by those of

It is easy to see that the required coefficients Q*(z, h) are given by

• l _ a • • ( l _ a ) . . . (l_fl»-

To evaluate the goodness of the approximation, we note that

oo
V* lf\ C)*\tn =

7!=0

It follows that for R < 6/(1—e-hh),

(14) CL—0* = —

We notice that

1— &-|<l '
b—]t\(l—e-hh)

We can therefore conclude from (14) that

The maximum value of the last denominator is 27«36n+3[(»+3)/«]""(n+3>,
which for large n is approximately equal to 27(w/e)3&"+3.

Thus we eventually obtain the inequality

e-il+b)h+az+3

This shows that as h -> oo, |^n—Q*\ -> 0. We are, however, more interested
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in the relative error, as both Qn and Q* tend to one as h tends to infinity.
It is obvious from equation (13) that

|1—Q*\ > e~h+az.
Thus we have

e-bh+3

~ 27M3 6n+3

Thus the relative error in 1—Qn also tends to zero for large h.
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