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Abstract

Barley b-glucan (BG) has been shown to reduce glycaemic response (GR) in some studies. It is hypothesised that this reduction may be a

function of its physical properties that delay gastric emptying (GE). The effect of these changes in GR and GE on diet-induced thermo-

genesis (DIT) is not known. The aim of the present study was to assess the effect of BG of different molecular weights and purities on

GR, GE and DIT in healthy subjects. This was a randomised, single-blind, repeated-measures design where fifteen healthy subjects

were tested on three occasions following an overnight fast. Following the baseline measurements, the volunteers were fed a soup contain-

ing high-molecular-weight BG (HBG), a soup containing low-molecular-weight BG (LBG) or a control soup with no BG (CHO). Following

the consumption of the breakfast, GR was measured using finger-prick blood samples, GE was determined using the 13C-octanoic acid

breath test and DIT was measured using indirect calorimetry. There was a difference in GR AUC between the soups after 60 min but

not after 120 min. The CHO and LBG meals had a greater GR than the HBG meal. There were differences in all GE time points, with

the HBG meal having the slowest GE time. There was a correlation between the GR and the initial GE times. There were differences in

total DIT between the three test meals with the HBG meal having the lowest DIT. The present study indicates that HBG has the ability

to delay GE due to increased viscosity, resulting in a decreased GR and DIT.
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A worldwide increase in type 2 diabetes along with the

prevalence of obesity has prompted the development of nutri-

tional and lifestyle interventions to improve glycaemia and

increase energy expenditure. Soluble dietary fibres may have

beneficial effects on glycaemic and insulin responses and

cholesterol levels as well as body weight maintenance(1–3).

Barley b-glucan (BG) is one such fibre that forms a highly

viscous solution in the stomach and small intestine, which

entraps glucose molecules and slows down their intestinal

absorption(4). However, barley BG in foods has not always

been effective in lowering glycaemic response (GR)(5–8) due

to variations in its physical properties such as molecular

weight and viscosity. Soluble fibres in foods may increase

gastric distension, delay gastric emptying (GE) and alter the

levels of gut hormones involved in appetite and satiety(9,10).

However, the effect of BG on GE has shown variation with

meal consistency and is not always correlated with GR(11).

On the other hand, delayed GE has been reported irrespective

of any difference in GR or satiety(12). Juvonen et al.(13)

reported changes in glycaemia, insulinaemia and GE after

reducing the viscosity of oat BG in a liquid meal. Elsewhere,

the reduced GR could not be associated with a delayed GE

rate(14). Hence, it is evident that the variable effect of BG on

GE is not fully understood.

Low-glycaemic index foods have been shown to increase

satiety and decrease hunger(15,16), yet there is no evidence

of low-glycaemic index foods resulting in weight loss(17,18)

due to problems in study designs, lack of sufficient data on

energy expenditure and substrate oxidation. Diet-induced

thermogenesis (DIT) is the amount of energy required for

the absorption and metabolism of food and represents 10 %

of the total energy expenditure(19). Some studies(20–22) have

shown the ability of low-glycaemic index foods to increase

DIT, and the ingestion of soluble dietary fibres is one such

method that may be explored further(23).

The role of cereal BG in DIT has not been studied or under-

stood yet. Therefore, we hypothesised that barley BG will

increase DIT and the effect will depend on its molecular
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weight and viscosity. Hence, the main objective of the present

study was to investigate the effect of barley BG in a semi-solid

meal on postprandial GR, GE, short-term satiety and DIT in

healthy subjects. A secondary objective was to examine the

differences in the above-mentioned responses depending on

the variation in purity and molecular weight of the BG used.

Methods

The present study was a randomised, single-blind, repeated-

measures design with volunteers being fed three different

test meals on three different days.

Subjects

Fifteen healthy subjects (three males and twelve females, age

27·6 (SD 5·9) years, height 168·7 (SD 7·4) cm, weight 67·4

(SD 13·3) kg and BMI 23·5 (SD 3·0) kg/m2) were recruited for

the study by means of advertisements and personal communi-

cations over a period of 3 months. Before inclusion into the

study, potential participants were briefed on all aspects of

the experiment and were given the opportunity to ask ques-

tions. This was followed by a health assessment, which

included anthropometric measurements and a health ques-

tionnaire (giving details of food allergies/intolerances, meta-

bolic diseases, special dietary needs and smoking habits).

Those who fulfilled all the acceptable criteria (age 18–60

years, BMI ,30 kg/m2, blood pressure 110–120/75–85

mmHg, fasting blood glucose levels ,6 mmol/l, not on pre-

scription medication, and no genetic or metabolic diseases)

were included in the study. On the day before each test, the

subjects were asked to restrict their intake of alcohol and caf-

feine-containing drinks and to refrain from any strenuous

physical activity.

The present study was conducted according to the

guidelines laid down in the Declaration of Helsinki, and all

procedures involving human subjects were approved by

the Oxford Brookes University Research Ethics Committee.

Written informed consent was obtained from all subjects/

patients. On each test day, the subjects arrived between

07.00 and 09.00 hours in the morning after an overnight fast-

ing (10–12 h before testing time) and without undertaking any

physical activity.

Test meals

The test meals consisted of a soup (Potato and Leek, Cup a

Soup, Batchelors; Premier Foods Group). The energy and

macronutrient composition of the test meals are given in

Table 1. Available carbohydrates were calculated for each

test meal using the Food and Agricultural Organization/

WHO procedure(24) according to the nutrition information

available from the soup label and the BG suppliers (Polycell

Technologies) to provide 25 g of available carbohydrates.

Barley balance with a purity of 25 % was used as the source

of high-molecular-weight BG (HBG). Glucagel with a purity

of 75 % was used as the source of low-molecular-weight BG

(LBG). Both were provided by DKSH Great Britain Limited.

The preparation of the meals was according to the product

instructions. The subjects were blinded as to which soup

they consumed on each test day.

Study design

The volunteers participated in a randomised, balanced,

controlled cross-over study where they consumed a high-BG

(HBG) soup, a low-BG (LBG) soup and a control (CHO)

soup with no BG on separate days in a random order. The vol-

unteers were randomly assigned each day’s test meal using a

pseudo-random number generator by setting a random seed

(using srand, a function in the programming language C)

and by shuffling the order with no restrictions. This was com-

pleted by one researcher and testing itself was undertaken by

another researcher. On the day before testing, the volunteers

were asked to record the food they consumed and repeat it

before subsequent tests.

Energy expenditure

On arrival to the laboratory, the volunteers were asked to rest

for 30 min in a supine position on a bed before baseline

measurements of RMR were taken. RMR was determined in

the morning between 07.00 and 09.00 hours. RMR was

measured at 1 min intervals for 30 min under the ventilated

hood indirect calorimetry system (Deltatrace II Metabolic

Monitor; Datex-Ohmeda, Inc.). The analyser was calibrated

on each test day with standardised gases containing 5 % CO2

and 95 % O2.

DIT was determined for 180 min after the ingestion of the test

meal, with measurements taken for 15 min in every 30 min(25).

The first 5 min of every 15 min time period were discarded

to allow for stabilisation within the Deltatrac hood, and the aver-

age of the remaining 10 min was used. This time period was

recommended to be appropriate to measure the thermic effect

of foods(25). DIT was calculated as the increase in energy

Table 1. Energy and nutrient composition of the soup
test meals – high-molecular-weight b-glucan (HBG), low-
molecular-weight b-glucan (LBG) or a control containing no
b-glucan (CHO)*

HBG LBG CHO

Meal size (g) 48·70 46·66 43·43
Energy

kJ 797·75 809·93 783·51
kcal 189·94 192·84 186·55

Total carbohydrate (g) 31·94 31·22 28·25
Available carbohydrate (g) 25 25 25
Total fibre (g) 6·94 6·22 3·25
Protein (g) 5·14 3·71 3·57
Lipid (g) 6·17 7·28 7·31
b-Glucan

g 12·88 3·61 –
% of purity 25 75 –

Carbohydrate (%) 67·27 64·77 60·57
Protein (%) 10·82 7·70 7·66
Lipid (%) 29·22 27·79 28·98

* Calculations were based on the label of the soup and the nutritional
information supplied by the manufacturers of the barley b-glucan.
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expenditure per min above pre-meal values for 3 h after the

intake of a meal. Energy expenditure and fat oxidation were

calculated using the equations of Lusk(26).

Glycaemic response

The protocol used to measure the blood glucose response

was adopted from that described by Brouns et al.(27), and it

is in line with the procedures recommended by the Food

and Agricultural Organization/WHO(24). Blood was obtained

by finger prick using the Unistik 3 single-use lancing device

(Owen Mumford). Before a finger prick, the subjects were

encouraged to warm their hand to increase blood flow.

To minimise plasma dilution, fingertips were not squeezed

to extract blood but instead gently massaged starting from

the base of the hand moving towards the tips. The first two

drops of the extracted blood were discarded, and the next

drop was used for testing.

Blood glucose levels were measured using the HemoCue

201 þ Glucose analyser (HemoCue Limited). The HemoCue

method is reliable for blood glucose analysis(28). Fasting

blood samples were taken at 25 and 0 min, and the test

food was consumed immediately afterwards within 15 min

at a comfortable pace. Further blood samples were then

taken at 15, 30, 45, 60, 90, 120, 150 and 180 min after the

consumption of the test meal.

The change in GR was calculated by computing the differ-

ence between the blood glucose concentration at a time

point and the mean baseline blood glucose concentration

(based on two baseline values recorded 5 min apart). Because

it represented the relative increment in the GR at any time

point compared with the baseline value, it was this change

in GR that was used for all further analyses, including

incremental AUC (iAUC) calculations, blood glucose response

curve construction and statistics. The total blood glucose

response was expressed as the iAUC ignoring the area

beneath the baseline and was calculated geometrically using

the trapezoidal rule(26,29).

Gastric emptying

In the present study, 100 mg of [1-13C]sodium acetate were

used to measure GE as acetate is hydrophilic, poorly absorbed

in the stomach and rapidly metabolised after absorption.

Sodium[1-13C]acetate is considered a reliable and valid sub-

stance for identifying changes in GE of semi-solids(30).

Breath samples were collected by making the volunteers

blow gently into a 10 ml Exetainer (Labco) with a drinking

straw and replacing the cap just before the end of exhalation.

Breath samples were analysed using isotope ratio MS (ABCA),

and the results were expressed relative to ViennaPDB, an

international standard for known 13C composition. 13CO2

values were expressed as the excess amount in the breath

above the baseline and converted into moles. CO2 production

was assumed to be 300 mmol/m2 body surface area per h.

Body surface area was calculated using a validated weight–

height formula(31). Data are displayed as the percentage of
13CO2 dose recovered per h and the cumulative percentage

of 13CO2 recovered over time. The data were then fitted to a

GE model developed by Ghoos et al.(32). For all the data,

r 2 coefficient between the modelled and raw data was calcu-

lated, and r 2 was ,0·95 for all the test meals. From this

model, several parameters were measured. Lag phase (Tlag)

and half-time (Thalf) were calculated using the formulae

derived by Ghoos et al.(32). Tlag is the time taken for the maxi-

mal rate of 13CO2 excretion(33) and is equivalent to the time of

the inflection point(34). Thalf is the time it takes for 50 % of

the 13C dose to be excreted(33). Latency phase (Tlat)
(34) is the

point of intersection of the tangent at the inflection point of

the 13CO2 excretion curve representing an initial delay in the

excretion curve. Ascension time (Tasc)
(34) is the time course

between Tlat and Thalf, representing a period of high 13CO2

excretion rates.

Measurement of viscosity

Viscosity was measured in order to determine the change in

rheological properties of the soups with differing molecular

weights of BG. The viscosity of the soups was measured

using a Bohlin Gemini 2 Rheometer (Malvern Instruments

Limited) fitted with a cone and plate geometry (28 cone

angle and 55 mm diameter). All measurements were made at

378C to mimic stomach temperature and at shear rates ranging

from 0·02 to 20 per s.

Statistical analysis

Studies of the analysis of GR in humans have been based on

ten subjects, as reviewed by the Food and Agricultural Organ-

ization/WHO(24) to take into account the inter-individual

variations. Hence, a sample size of 12 was considered ade-

quate for the present study, and fifteen subjects were recruited

to avoid losses that may lead to errors in the sample size. Data

collection was ended at the point at which fifteen subjects

were recruited. Outcome measures consisted of GR, GE and

DIT. Statistical analysis was performed using Statistical Pack-

age for the Social Sciences (version 20.0; SPSS), and the data

and figures were processed in a Microsoft Excel spreadsheet

(2006). The iAUC were determined for blood glucose, total

DIT and fat oxidation using the trapezoidal rule for values

above the baseline. The relative increment in the GR and

energy expenditure at any time point compared with the base-

line value was used to assess the differences at each time.

Power calculation was done for the primary outcome measure

of GE, T half
(35). A sample size of 11 was required to detect a

40 min difference in Thalf with a set at 0·05 and a power of

90 %. The differences were assessed using a three-factor

repeated-measures ANOVA. Where there was a main effect

of meal type, pairwise comparisons were made using Sidak

post hoc tests. Significance was set at P,0·05. Values are pre-

sented as means and standard deviations or as means with

their standard errors.

Results

All fifteen volunteers completed all three trials fully.
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Viscosity

The viscosity of the HBG soup was considerably greater than

that of either the CHO soup or the LBG soup (Fig. 1). Similar

viscosities were demonstrated by the LBG and CHO soups.

There was a significant difference between the viscosity

of the HBG soup and that of the LBG soup (P,0·05) and

between the viscosity of the LBG soup and that of the CHO

soup (P,0·05) at a shear rate of 0·02 per s. A greater differ-

ence in viscosity was noted between the HBG soup and the

CHO soup (P,0·01).

Glycaemic response

There was no significant difference in GR iAUC between

the meals after 120 min (HBG meal: 84·0 (SD 41·2), LBG

meal: 99·0 (SD 50·1), and CHO meal: 111·1 (SD 63·1) mmol £

min/l; P¼0·186); however, there was a significant difference

in GR iAUC after 60 min (HBG meal: 40·0 (SD 17·6), LBG

meal: 70·4 (SD 25·4), and CHO meal: 76·4 (SD 27·1) mmol £

min/l; P,0·001). Differences existed between the HBG and

LBG meals and between the HBG and CHO meals, with the

CHO and LBG meals having a greater GR than the HBG

meal. Over the test duration, differences existed between the

three meals at 15 min (P¼0·043), 30 min (P,0·001), 45 min

(P¼0·016) and 120 min (P¼0·006; Fig. 2). For the LBG and

CHO meals, the blood glucose levels rose rapidly and reached

a peak at 30 min and declined rapidly from there. For the HBG

meal also, the blood glucose levels also rose at 30 min and

reached a much lower peak, but exhibited a slower decline,

resulting in a greater GR than the LBG and CHO meals at

120 min.

Gastric emptying

There were significant differences in all GE time points: Thalf:

P,0·001, Tlag: P¼0·001, Tlat: P¼0·02, and Tasc: P,0·001. For

all time points, the HBG meal had the slowest GE time with

the LBG and CHO meals having similar emptying times

(Table 2).

There was a significant correlation between the GE Thalf and

the GR (P¼0·024; r 0·344) and the GE Tasc and the GR at

60 min (P¼0·012; r 0·382) such that the shorter the GE time,

the greater the GR.

Energy expenditure

The RMR were similar on each test day (HBG meal: 4.10 (SD 0.75)

kJ/min (0.98 (SD 0.18) kcal/min), LBG meal: 4.06 (SD 0·84) kJ/min

(0·97 (SD 0·20) kcal/min), andCHOmeal: 4·1 (SD 0·16) kJ/min (0·97

(SD 0·11) kcal/min);P.0·05). Therewere significantdifferences in

totalDITbetween the three testmeals (HBGmeal: 20·9 (SD 18·4) kJ

(5·9 (SD 4·4 kcal), LBG meal: 47·3 (SD 34·7) kJ (11·3 (SD 8·3) kcal),
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Fig. 2. Blood glucose response following the consumption of soups contain-

ing high-molecular-weight b-glucan ( ), low-molecular-weight b-glucan ( )

or a control containing no b-glucan ( ). Values are means, with their

standard errors represented by vertical bars (n 15). * Mean values were

significantly different between the test meals (P,0·05).
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and CHO meal: 43·5 (SD 26·4 kJ (10·4 (SD 6·3) kcal); P¼0·032).

These differences existed between the HBG meal and the LBG

meal (P¼0·037) and between the HBG meal and the CHO meal

(P¼0·015), with the HBG meal having the lowest DIT. These

differences occurred at 60min (P¼0·021) and approached signifi-

cance at 30 and 90min (P¼0·059 and 0·058, respectively; Fig. 3).

There was no significant difference in total fat oxidation

between the three meals (HBG meal: 0·47 (SD 0·69), LBG

meal: 0·43 (SD 0·61), and CHO meal: 0·60 (SD 0·61) g; P.0·05).

Discussion

The present study demonstrated that HBG has the ability to

reduce GR and delay GE and that it has the lowest DIT in com-

parison with LBG and a control (CHO).

It has been shown previously that BG has the ability to

reduce GR, but this has not been shown in all studies(5–8).

Several reasons for this have been given in the previous litera-

ture. First, BG entraps glucose molecules and slows down

their intestinal absorption, resulting in slower release of

blood glucose(4). Second, soluble viscous fibres contribute to

the formation of an unstirred layer adjacent to the mucosa

of the small-intestinal wall, and this layer acts as a physical

barrier to the absorption of nutrients(36,37). The present study

provides another insight into why barley BG can reduce GR.

Barley BG can form a viscous substance when placed in a sol-

ution as demonstrated by the rheological data presented. The

higher the molecular weight, the greater the viscosity formed

due to the entangling of the molecules(38). The BG products

used in the present study were LBG and HBG having molecu-

lar weights of 150 and 650 kDa, respectively, so there was a

considerable difference between the two. The increased vis-

cosity results in a slowed transit of food through the gastroin-

testinal tract. This was evident in the present study from the

delayed GE for the HBG soup but not for the LBG soup,

reflecting the viscosity data. The effect of GE was also mir-

rored in the GR data, which was similarly reduced in the

HBG soup but not in the LBG soup or the control soup, and

the two sets of data were correlated. The present data strongly

indicate that the increased viscosity of the HBG soup delayed

GE and delayed the delivery of nutrients into the duodenum,

hence causing a lag in the uptake of glucose at the brush

border, whereas the LBG soup did not. Previous research by

our group has shown that BG with a low molecular weight

does not influence GR(5), whereas HBG does(39). Juvonen

et al.(13) reported an increase in glycaemic and insulinaemic

responses and the acceleration of GE after a reduction in the

viscosity of oat BG in a liquid meal. In another study, GR

was reduced following the consumption of 4 g oat BG in a

semi-solid meal, but there were no changes in the GE

rate(14). However, in this study, the two test meals used did

not contain the same amount of available carbohydrates as

would be assumed in GR studies with the oat BG meal con-

taining less available carbohydrates. It is likely that this may

have caused the lower GR. The present study is the first to

compare GE and GR after the ingestion of BG of different

molecular weights and to demonstrate that the GE rate has a

large influence on GR due to the increased viscosity.

An interesting finding of the present study was that the LBG

and CHO meals had the ability to raise DIT significantly more

than the HBG meal. Before commencing the present study,
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Fig. 3. Diet-induced thermogenesis following the consumption of soups containing high-molecular-weight b-glucan (HBG, ), low-molecular-weight b-glucan

( ) or a control containing no b-glucan ( ). Values are means, with standard deviations represented by vertical bars (n 15). † Mean values were significantly

different from those of the HBG meal (P,0·05). Error bars for the LBG values were similar in magnitude to the other data and are not presented to improve

clarity.

Table 2. Gastric emptying times (min), half-time (Thalf), lag phase (Tlag),
latency phase (Tlat) and ascension time (Tasc) of each of the soups
containing either high-molecular-weight b-glucan (HBG), low-molecular-
weight b-glucan (LBG) or a control containing no b-glucan (CHO).

(Mean values and standard deviations, n 15)

Gastric emptying
time (min)

HBG LBG CHO

Mean SD Mean SD Mean SD

Thalf* 136·8 43·9 97·1† 13·9 99·2† 11·2
Tlag* 83·5 32·3 60·1† 12·6 59·9† 11·9
Tlat* 27·1 14·2 19·9 7·2 19·3† 7·1
Tasc* 109·8 32·4 77·9† 9·0 79·9† 8·9

* Mean values were significantly different between the test meals (P,0·05).
† Mean values were significantly different from those of the HBG meal (P,0·05).
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it was hypothesised that adding barley BG to a semi-solid food

would increase DIT and the effect would depend on its

physicochemical properties such as molecular weight and vis-

cosity. The authors proposed that the increased viscosity would

cause an increase in DIT due to the extended time required to

digest, absorb and assimilate the nutrients. This theory was sup-

ported by previous research that has shown that low-glycaemic

index foods result in an increase in DIT(21), which has been

attributed to slower carbohydrate absorption and disposal, as

a consequence of a slower GE rate, with consequent prolonged

energy consumption for the absorption and storage of carbo-

hydrates as glycogen and fat.

However, the opposite effect was observed in the present

study with DIT being reduced following the consumption of

the HBG test meal. A reduction in DIT after the consumption

of a high-fibre meal than after the consumption of a low-fibre

meal has been observed in other studies. Heijnen et al.(40)

found a reduction in DIT with the addition of resistant

starch to a test meal. However, the study did not use equal

amounts of digestible carbohydrates in the test meals and

instead the resistant starch displaced digestible carbohydrates

in the meal. Hence, the amount of available energy was

reduced in the resistant starch test meal, which would cause

a lower DIT due to lower amounts of carbohydrates to be

transported and stored. Another study by Raben et al.(41)

found that with the addition of a pea fibre, DIT was reduced.

The study hypothesised that the difference was not due to

parasympathetic nervous stimulation but most likely due to

sympathetic nervous stimulation due to either the rate of

absorption, transport and storage of nutrients or the reduced

palatability and cephalic responses of the fibre meal. The

second hypothesis is further supported by palatability data

obtained from rats(42) and intubation studies that have

shown that reducing the palatability or bypassing cephalic

stimulation causes DIT to be reduced(43). The present study

did not assess the palatability of the two test meals with BG.

However, responses from the participants indicated that

the main difference in the soups was due to the increase in

viscosity caused by the BG.

The reduction in DIT may also be attributed to the attenu-

ation of GR and GE by HBG, which resulted in a retarded

absorption of nutrients and a decrease in metabolisable

energy. This is in agreement with the findings of Baer

et al.(44), who proposed an inverse relationship between the

intake of soluble fibres and metabolisable energy. Many

studies have noticed the increased ability of high-molecular-

weight BG to lower serum lipid levels in comparison with

low-molecular-weight BG. The ability of BG to bind with fat

and decrease its absorption may also have caused the

reduction in DIT(45–47), although no changes were evident

in fat oxidation during the 3 h test period. Similar to the effects

on GR and GE, the addition of LBG in the soup did not result

in a reduction in DIT, probably because it is less efficient in

binding to fat and reducing its absorption or due to its inability

to retard the absorption of glucose.

There are a few limitations to the present study. Although

sufficiently powered for GE, the sample size might have

been too small to detect changes in DIT and satiety (data not

presented). The satiety testing was only based on subjective

measures using the visual analogue scale and not on sub-

sequent energy intake. Continuing the DIT measurement for

a longer period of time is also recommended because the fibre

might undergo fermentation and result in some changes in

energy expenditure(48).

In conclusion, the present study has highlighted the import-

ance of retaining barley BG of a high molecular weight in

foods in order to derive the beneficial effects on GR and

GE. Although diets high in BG are recommended for weight

loss, it may be noted that the effect is not mediated by an

increase in postprandial DIT in the case of HBG. Hence,

further studies are required to investigate the long-term effects

of BG on energy expenditure.
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